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1 Introduction
In , Censor and Elfving [] introduced the following split feasibility problem (in short,
SFP): find a point

x∗ ∈ C such that Ax∗ ∈Q, (.)

where C and Q are nonempty closed convex subsets of Rn and R
m, respectively, and A is

anm×nmatrix. They proposed an algorithm to find the solution of SFP. Their algorithm
did not become popular, since it concerns the complicated matrix inverse computations
and, subsequently, is considered in the case when n = m. Based on these observations,
Byrne [] applied the forward-backward method, a type of projected gradient method,
presenting the so-called CQ-iterative procedure, which is defined by

xk+ = PC
(
xk + γA�(PQ – I)Axk

)
, ∀k ≥ ,

where an initial x ∈ R
n, γ ∈ (, /‖A‖), and PC and PQ denote the metric projections

onto C and Q, respectively. The convergence result of the sequence {xk}∞k= to a solution
of the considered split feasibility problem was presented. Further, Byrne also proposed
an application to dynamic emission tomographic image reconstruction. A few years later,
Censor et al. [, ] proposed an incredible application of the split feasibility problem to the
inverse problem of intensity-modulated radiation therapy treatment planning. Recently,
Xu [] considered SFP in the setting of infinite-dimensional Hilbert spaces and established
the following CQ-algorithm: Let H and H be real Hilbert spaces and A : H → H be a
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bounded linear operator. For a given x ∈H, generated a sequence {xk}∞k= by the following
iterative scheme:

xk+ = PC
(
xk + γA∗(PQ – I)Axk

)
, ∀k ≥ ,

where γ ∈ (, /‖A‖), and A∗ is the adjoint operator of A. He also proved the weak con-
vergence of the sequence produced by the above procedure to a solution of the SFP. The
details of the CQ-algorithm for SFP problem are given in []. A comprehensive literature,
survey, and references on SFP can be found in [].
In , Censor and Segal [] presented an important form of the split feasibility prob-

lem called the split common fixed point problem, which is to find a point

x∗ ∈ Fix(T) such that Ax∗ ∈ Fix(S), (.)

where T and S are some nonlinear operators on R
n and R

m, respectively, and A is a real
m × n matrix. Based on the properties of operators T and S, called cutter or directed
operators, they presented the following algorithm for solving the split commonfixed point
problem:

xk+ = T
(
xk + γA�(S – I)Axk

)
, ∀k ≥ , (.)

where an initial x ∈ R
n, γ ∈ (, /‖A‖). They also presented a convergence result for

this algorithm. Moudafi [] studied the split common fixed point problem in the context
of the demicontractive operators T and S in the setting of infinite-dimensional Hilbert
spaces. He established the weak convergence of the sequence generated by his scheme to
a solution of the split common fixed point problem.
On the other hand, the theory of variational inequalities is well known and well devel-

oped because of its applications in different areas of science, social science, engineering,
and management. There are several monographs on variational inequalities, but we men-
tion here a few [–]. Let C be a nonempty closed convex subset of a real Hilbert space
H and f : H → H be an operator. The variational inequality problem defined by C and f
is to find x∗ ∈ C such that

(VIP(C; f ))
〈
f
(
x∗),x – x∗〉 ≥ , for all x ∈ C.

Another problem closely related to VIP(C; f ) is known as the Minty variational inequality
problem: find x∗ ∈ C such that

(MVIP(C; f ))
〈
f (x),x – x∗〉 ≥ , for all x ∈ C.

The trivial unlikeness of two proposed problems is the linearity of variational inequalities.
In fact, the Minty variational inequalityMVIP(C; f ) is linear but the variational inequality
VIP(C; f ) is not. However, under the (hemi)continuity and monotonicity of f , the solution
sets of these problems are the same (see [, Lemma ]).
If the constrained set C in variational inequality formulations is a set of fixed points of

an operator, then the variational inequality problem is known as hierarchical variational
inequality problem.
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Let T : H → H be a nonlinear operator with the set of fixed points Fix(T) 
= ∅ and f :
H → H be an operator. The hierarchical variational inequality problem is to find x∗ ∈
Fix(T) such that

〈
f
(
x∗),x – x∗〉 ≥ , for all x ∈ Fix(T). (.)

A closely related problem to hierarchical variational inequality problem is the hierarchical
Minty variational inequality problem: find x∗ ∈ Fix(T) such that

〈
f (x),x – x∗〉 ≥ , for all x ∈ Fix(T). (.)

In the recent past, several methods for solving hierarchical variational inequalities have
been investigated in the literature; see, for example, [–] and the references therein.
The goal of this paper is to introduce a split-type problem, by combining a split fixed

point problem and a hierarchical variational inequality problem. The considered problem
can be applied to solvemany existing problems.Wepresent an iterative procedure for find-
ing a solution of the proposed problem and show that under some suitable assumptions,
the sequence generated by our algorithm converges weakly to a solution of the considered
problem.
The rest of this paper is divided into four sections. In Section , we recall and state

preliminaries on numerous nonlinear operators and their useful properties. Section  we
divide in two subsections, that is, first, we present a split problem, called the split hierar-
chical Minty variational inequality problem. We subsequently propose an algorithm for
solving our problem and establish a convergence result under some assumptions. Second,
we present the split hierarchical variational inequality problem. In the last section, we
investigate some related problems, where we can apply the considered problem.

2 Preliminaries
Let H be a real Hilbert space whose inner product and norm are denoted by 〈· , ·〉 and
‖ · ‖, respectively. The strong convergence and weak convergence of a sequence {xk}∞k=
to x ∈ H are denoted by xk → x and xk ⇀ x, respectively. Let T : H → H be an operator.
We denote by R(T) the range of T , and by Fix(T) the set of all fixed points of T , that
is, Fix(T) = {x ∈ H : x = Tx}. The operator T is said to be nonexpansive if for all x, y ∈ H ,
‖Tx–Ty‖ ≤ ‖x–y‖; strongly nonexpansive [, ] ifT is nonexpansive and for all bounded
sequences {xk}∞k=, {yk}∞k= in H , the condition limk→∞(‖xk – yk‖– ‖Txk –Tyk‖) =  implies
limk→∞ ‖(xk – yk) – (Txk – Tyk)‖ = ; averaged nonexpansive if for all x, y ∈ H , T = ( –
α)I + αS holds for a nonexpansive operator S :H →H and α ∈ (, ); firmly nonexpansive
if T – I is nonexpansive, or equivalently for all x, y ∈H , ‖Tx–Ty‖ ≤ 〈x–y,Tx–Ty〉; cutter
[] if 〈x –Tx, z –Tx〉 ≤  for all x ∈ H and all z ∈ Fix(T);monotone if 〈Tx –Ty,x – y〉 ≥ ,
for all x, y ∈H ; α-inverse strongly monotone (or α-cocoercive) if there exists a positive real
number α such that 〈Tx – Ty,x – y〉 ≥ α‖Tx – Ty‖, for all x, y ∈ H .
Let B : H → H be a set-valued operator, we define a graph of B by {(x, y) ∈ H × H :

y ∈ B(x)} and an inverse operator of B, denoted B–, by {(y,x) ∈ H × H : x ∈ B(y)}. A set-
valued operator B : H → H is called monotone if for all x, y ∈ H , u ∈ B(x) and v ∈ B(y)
such that 〈x – y,u – v〉 ≥ . A monotone operator B is said to be maximal monotone if
there exists no other monotone operator such that its graph properly contains the graph
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of B. For a maximal monotone operator B, we know that for each x ∈H and a positive real
number σ , there is a unique z ∈ H such that x ∈ (I + σB)z. We define the resolvent of B
with parameter σ by JBσ := (I + σB)–. It is well known that the resolvent is a single-valued
and firmly nonexpansive operator.

Remark . It can be seen that the class of averaged nonexpansive operators is a proper
subclass of the class of strongly nonexpansive operators. Since any firmly nonexpansive
operator is an averaged nonexpansive operator, it is clear that a class of firmly nonex-
pansive operators is contained in the class of strongly nonexpansive operators. Further,
a firmly nonexpansive operator with fixed point is cutter. However, a nonexpansive cutter
operator need not to be firmly nonexpansive; for further details, see [].

The following well-known lemma is due to Opial [].

Lemma. (Demiclosedness principle) [, Lemma ] Let C be a nonempty closed convex
subset of a real Hilbert space H and T : C →H be a nonexpansive operator. If the sequence
{xk}∞k= ⊆ C converges weakly to an element x ∈ C and the sequence {xk –Txk}∞k= converges
strongly to , then x is a fixed point of the operator T .

To prove the main theorem of this paper, we need the following lemma.

Lemma . [, Section .., Lemma ] Assume that {ak}∞k= and {bk}∞k= are nonnegative
real sequences such that ak+ ≤ ak + bk . If

∑∞
k= bk < ∞, then limk→∞ ak exists.

The following lemma can be immediately obtained by the properties of an inner product.

Lemma . Let H be a real Hilbert space H . Then, for all x, y ∈ H ,

‖x – y‖ ≤ ‖x‖ + 〈y, y – x〉.

3 Split hierarchical variational inequality problems and convergent results
In this section we introduce split hierarchical variational inequality problems and discuss
some related problems. Further, we propose an iterative method for finding a solution of
the hierarchical variational inequality problem and prove the convergence result for the
sequence generated by the proposed iterative method.

3.1 Split hierarchical Minty variational inequality problem
LetH andH be two real Hilbert spaces, f ,T :H →H be operators such that Fix(T) 
= ∅,
and h,S :H →H be operators such that Fix(S) 
= ∅. Let A :H → H be an operator with
R(A) ∩ Fix(S) 
= ∅. The split hierarchical Minty variational inequality problem (in short,
SHMVIP) is to find x∗ ∈ Fix(T) such that

〈
f (x),x – x∗〉 ≥ , for all x ∈ Fix(T), (.)

and such that Ax∗ ∈ Fix(S) satisfies

〈
h(y), y –Ax∗〉 ≥ , for all y ∈ Fix(S). (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/208
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The solution set of SHMVIP (.)-(.) is denoted by �, that is,

� :=
{
x which solves (.) : Ax solves (.)

}
.

We note that the problems (.) and (.) are nothing but hierarchical Minty variational
inequality problems. If f and h are zero operators, that is, f ≡ h ≡ , then SHMVIP (.)
and (.) reduces to the split fixed point problem (.). Moreover, SHMVIP (.) and (.)
can be applied to several existing split-type problems, which we will discuss in Section .
Inspired by the iterative scheme (.) for solving split common fixed point problem (.)

and the existing algorithms, a generalization of the projected gradient method, for solving
the hierarchical variational inequality problem of Yamada [] and Iiduka [], we now
present an iterative algorithm for solving HMVIP (.)-(.).

Algorithm .
Initialization: Choose {αk}∞k=, {βk}∞k= ⊂ (, +∞). Take arbitrary x ∈H.
Iterative Step: For a given current iterate xk ∈ H, compute

yk := xk – γA∗(I – S(I – βkh)
)
Axk ,

where γ ∈ (, 
‖A‖ ) and define xk+ ∈H by

xk+ := T(I – αkf )yk .

Update k := k + .

Rest of the section, unless otherwise specified, we assume that T is a strongly nonex-
pansive operator on H with Fix(T) 
= ∅ and S is a strongly nonexpansive cutter operator
on H with Fix(S) 
= ∅, f (respectively, h) is a monotone and continuous operator on H

(respectively, H) and A :H →H is a bounded linear operator with R(A)∩ Fix(S) 
= ∅.

Remark . (i) The Algorithm . can be applied to the iterative scheme (.) by setting
the operators f ≡ h≡ .
(ii) The iterative Algorithm . extends and develops the algorithms in [, Algo-

rithm .] and [, Algorithm ()] in many aspects. Indeed, the metric projections PC

and PQ in [, Algorithm .] and the resolvent operators JBλ and JBλ in [, Algorithm
()] are firmly nonexpansive operators which are special cases of the assumption on the
operators T and S. Second, its involves control sequences {αk}∞k= and {βk}∞k=, while in
[, Algorithm .] and [, Algorithm ()] they are constant. Furthermore, we assume
γ ∈ (, 

‖A‖ ), while in [, Algorithm .] and [, Algorithm ()], it was assumed to be in
(, 

‖A‖ ), which clearly is a more restrictive assumption.
(iii) By setting an operator A to be zero operator, the iterative Algorithm . relates to

existing iterative schemes for solving the hierarchical variational inequality problem in,
for example, [, Algorithm .] and [, Algorithm ].

The following theorem provides the weak convergence of the sequence generated by the
Algorithm . to an element of �.

http://www.fixedpointtheoryandapplications.com/content/2014/1/208
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Theorem . Let a sequence {xk}∞k= be generated by Algorithm . with x ∈ H, and let
{αk}∞k= and {βk}∞k= ⊂ (, ) be sequences such that

∑∞
k= αk < ∞ and limk→∞ βk = . If

� 
= ∅, then the following statements hold.
(i) If there exists a natural number k such that

� ⊂
∞⋂

k=k

{
z ∈H :

〈
h(Axk),S(I – βkh)Axk –Az

〉 ≥ 
}
,

then, for all k ≥ k and z ∈ �, we have

‖yk – z‖ ≤ ‖xk – z‖ – γ
(
 – γ ‖A‖)∥∥(

I – S(I – βkh)
)
Axk

∥∥.

(ii) If the sequence {f (yk)}∞k= is bounded, then limk→∞ ‖xk – z‖ exists for all z ∈ �.
(iii) If the sequence {h(Axk)}∞k= is bounded, then limk→∞ ‖xk+ – xk‖ = ,

limk→∞ ‖xk – Txk‖ = , and limk→∞ ‖Axk – SAxk‖ = .
(iv) If ‖xk+ – xk‖ = o(αk), and αk = o(β

k ), then the sequence {xk}∞k= converges weakly to
an element of �.

Proof (i) Let z ∈ � be given. Then

‖yk – z‖ =
∥∥xk – γA∗(I – S(I – βkh)

)
Axk – z

∥∥

= ‖xk – z‖ + γ ∥∥A∗(I – S(I – βkh)
)
Axk

∥∥

– γ
〈
xk – z,A∗(I – S(I – βkh)

)
Axk

〉
≤ ‖xk – z‖ + γ ‖A‖∥∥(

I – S(I – βkh)
)
Axk

∥∥

– γ
〈
xk – z,A∗(I – S(I – βkh)

)
Axk

〉
, (.)

for all k ≥ . On the other hand, since S is a cutter operator, we have with

〈
xk – z,A∗(S(I – βkh) – I

)
Axk

〉
=

〈
Axk –Az,

(
S(I – βkh) – I

)
Axk

〉
=

〈
S(I – βkh)(Axk) –Az,S(I – βkh)(Axk) –Axk

〉
–

∥∥(
S(I – βkh) – I

)
Axk

∥∥

=
〈
S(I – βkh)(Axk) –Az,S(I – βkh)(Axk) – (I – βkh)Axk

〉
– βk

〈
S(I – βkh)(Axk) –Az,h(Axk)

〉
–

∥∥(
S(I – βkh) – I

)
Axk

∥∥

≤ –
∥∥(
S(I – βkh) – I

)
Axk

∥∥, (.)

for all k ≥ k. By using (.), the inequality (.) becomes

‖yk – z‖ ≤ ‖xk – z‖ + γ ‖A‖∥∥(
S(I – βkh) – I

)
Axk

∥∥

– γ
∥∥(
S(I – βkh) – I

)
Axk

∥∥

= ‖xk – z‖ – γ
(
 – γ ‖A‖)∥∥(

S(I – βkh) – I
)
Axk

∥∥,

http://www.fixedpointtheoryandapplications.com/content/2014/1/208
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for all k ≥ k, as required. Furthermore, since γ < 
‖A‖ , we observe that γ ( – γ ‖A‖) > ,

and hence

‖yk – z‖ ≤ ‖xk – z‖, ∀k ≥ k. (.)

(ii) LetM := sup{‖f (yk)‖ : k ≥ }. For k ≥ k, we have ‖xk+ – z‖ ≤ ‖xk – z‖+αkM. Since∑∞
k= αk < ∞, by using Lemma ., we obtain the result that limk→∞ ‖xk – z‖ exists.
(iii) We first show that limk→∞ ‖xk – xk+‖ = .
Let wk := yk – αkf (yk) for all k ≥ . Note that {wk}∞k= is a bounded sequence, since for all

k ≥ k we know that ‖wk – z‖ ≤ ‖yk – z‖ + αk‖f (yk)‖ and {yk}∞k= is a bounded sequence.
By using the nonexpansiveness of T and (.), we have

 ≤ ‖wk – z‖ – ‖Twk – Tz‖ ≤ ‖xk – z‖ + αk
∥∥f (yk)∥∥ – ‖xk+ – z‖, ∀k ≥ k.

Subsequently, by the existence of limk→∞ ‖xk – z‖ and the fact that αk → , it follows that

lim
k→∞

(‖wk – z‖ – ‖Twk – Tz‖) = .

By the strong nonexpansiveness of T and the boundedness of {wk}∞k=, we have

lim
k→∞

‖wk – Twk‖ = .

On the other hand, by (i), we observe that

‖xk+ – z‖ ≤ ∥∥yk – αkf (yk) – z
∥∥

≤ ‖yk – z‖ + α
k
∥∥f (yk)∥∥ + αk

∥∥f (yk)∥∥‖yk – z‖
≤ ‖xk – z‖ – γ

(
 – γ ‖A‖)∥∥(

I – S(I – βkh)
)
Axk

∥∥

+ αk
∥∥f (yk)∥∥ + αk

∥∥f (yk)∥∥‖yk – z‖,

which is equivalent to

γ
(
 – γ ‖A‖)∥∥(

I – S(I – βkh)
)
Axk

∥∥ ≤ ‖xk – z‖ – ‖xk+ – z‖ + αk
∥∥f (yk)∥∥

+ αk
∥∥f (yk)∥∥‖yk – z‖, (.)

for all k ≥ k. Taking the limit as k → ∞, we get

lim
k→∞

∥∥(
I – S(I – βkh)

)
Axk

∥∥ = , (.)

which implies, by the definition of yk , that

lim
k→∞

‖yk – xk‖ = , (.)

and also

lim
k→∞

‖wk – xk‖ = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/208
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These together imply that

lim
k→∞

‖xk – xk+‖ ≤ lim
k→∞

(‖xk –wk‖ + ‖wk – Twk‖
)
= , (.)

as desired.
We now show that limk→∞ ‖xk – Txk‖ = .
Observe that ‖xk+ –Tyk‖ ≤ αk‖f (yk)‖ →  as k → ∞. Using this one togetherwith (.),

(.) and the nonexpansiveness of T , we obtain

lim
k→∞

‖xk – Txk‖ = . (.)

Next, we show that limk→∞ ‖Axk – SAxk‖ = .
Set zk := Axk – βkh(Axk) for all k ≥ . For every k ≥ k, we observe that

 ≤ ‖zk –Az‖ – ‖Szk – SAz‖ ≤ βk
∥∥h(Axk)∥∥ + ‖Axk – Szk‖.

Thus, the boundedness of {h(Axk)}∞k= and (.) yield

lim
k→∞

(‖zk –Az‖ – ‖Szk – SAz‖) = ,

andhence, by the fact that the sequence {zk}∞k= is bounded and S is a strongly nonexpansive
mapping, we have

lim
k→∞

‖zk – Szk‖ = . (.)

We note that ‖Axk – zk‖ = βk‖h(Axk)‖ →  as k → ∞. Also, we observe that

‖zk – SAxk‖ ≤ ‖zk – Szk‖ +
∥∥S(Axk – βkh(Axk)

)
– SAxk

∥∥ ≤ ‖zk – Szk‖ + βk
∥∥h(Axk)∥∥,

for all k ≥ k. By using (.) and taking the limit as k → ∞, we get

lim
k→∞

‖zk – SAxk‖ = .

Hence, we get

lim
k→∞

‖Axk – SAxk‖ = , (.)

as required.
(iv) Since {xk}∞k= is a bounded sequence, there exist a subsequence {xkj}∞j= of {xk}∞k= and

q ∈ H such that xkj ⇀ q ∈ H. By (iii) and the demiclosed principle of the nonexpansive
operator T , we obtain q ∈ Fix(T). We claim that q ∈ Fix(T) solves (.).
In fact, for k ≥ k, we have

‖xk+ – z‖ ≤ ‖yk – z‖ + αk
〈
f (yk), z –wk

〉
= ‖xk – z‖ + αk

〈
f (yk), z – yk

〉
+ α

k
∥∥f (yk)∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/208
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= ‖xk – z‖ + αk
〈
f (z), z – yk

〉
– αk

〈
f (yk) – f (z), yk – z

〉
+ α

k
∥∥f (yk)∥∥

≤ ‖xk – z‖ + αk
〈
f (z), z – yk

〉
+ α

k
∥∥f (yk)∥∥, (.)

and then


〈
f (z), yk – z

〉 ≤ 
αk

(‖xk – z‖ – ‖xk+ – z‖) + αk
∥∥f (yk)∥∥

≤ 
αk

(‖xk – z‖ + ‖xk+ – z‖)(‖xk – z‖ – ‖xk+ – z‖) + αk
∥∥f (yk)∥∥

≤ ‖xk – xk+‖
αk

M + αk
∥∥f (yk)∥∥,

whereM := sup{‖xk – z‖+ ‖xk+ – z‖ : k ≥ } < ∞. Since xkj ⇀ q, αk → , and ‖xk+ – xk‖ =
o(αk), by (.), we have 〈f (z),q – z〉 ≤  for all z ∈ Fix(T) which means that q ∈ Fix(T)
solves (.).
Next, byAxkj ⇀ Aq ∈H together with (iii) and the demiclosedness of the nonexpansive

operator S, we know that Aq ∈ Fix(S). We show that such Aq ∈ Fix(S) solves (.).
Since αk = o(β

k ), we may assume that αk ≤ β
k for all k ≥ k. From (.), for all k ≥ k,

we have

γ
(
 – γ ‖A‖)‖Axk – Szk‖ ≤ ‖xk – xk+‖M + αk

∥∥f (yk)∥∥ + αk
∥∥f (yk)∥∥‖yk – z‖,

whereM := sup{‖xk – z‖ + ‖xk+ – z‖ : k ≥ k}. This implies that, for k ≥ k,

γ
(
 – γ ‖A‖)‖Axk – Szk‖

β
k

≤ ‖xk – xk+‖
β
k

M +
αk

β
k
M ≤ ‖xk – xk+‖

αk
M +

αk

β
k
M,

where M := max{M, supk≥{‖f (yk)‖ + ‖f (yk)‖‖yk – z‖}}. Subsequently, since ‖xk+ –
xk‖ = o(αk), αk = o(β

k ), and γ ( – γ ‖A‖) > , we have

lim
k→∞

‖Axk – Szk‖
βk

= . (.)

For k ≥ k, we compute

‖Szk – SAz‖ ≤ ∥∥Axk – βkh(Axk) –Az
∥∥

≤ ‖Axk –Az‖ + βk
〈
h(Axk),Az – zk

〉
= ‖Axk –Az‖ + βk

〈
h(Axk),Az –Axk

〉
+ β

k
∥∥h(Axk)∥∥

= ‖Axk –Az‖ – βk
〈
Axk –Az,h(Axk) – h(Az)

〉
+ βk

〈
h(Az),Az –Axk

〉
+ β

k
∥∥h(Axk)∥∥

≤ ‖Axk –Az‖ + β
k
∥∥h(Axk) – h(Az)

∥∥ + βk
〈
h(Az),Az –Axk

〉
+ β

k
∥∥h(Axk)∥∥. (.)
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This gives


〈
h(Az),Axk –Az

〉 ≤ 
βk

(‖Axk –Az‖ – ‖Szk – SAz‖) + βk
∥∥h(Axk) – h(Az)

∥∥

+ βk
∥∥h(Axk)∥∥

≤ ‖Axk – Szk‖
βk

M + βk
∥∥h(Axk) – h(Az)

∥∥ + βk
∥∥h(Axk)∥∥,

where M := sup{‖Axk –Az‖ + ‖Szk – SAz‖ : k ≥ } < ∞. Using this together with Axkj ⇀
Aq ∈ Fix(S) and (.), we obtain 〈h(Az),Aq–Az〉 ≤  for allAz ∈ Fix(S). Thus,Aq ∈ Fix(S)
solves (.), and therefore, q ∈ �.
Finally, it remains to show that xk ⇀ q ∈ �. By the boundedness of {xk}∞k=, it suffices to

show that there is no subsequence {xki}∞i= of {xk}∞k= such that xki ⇀ p ∈H and p 
= q.
Indeed, if this is not true, the well-known Opial theorem would imply

lim
k→∞

‖xk – p‖ = lim
j→∞‖xkj – q‖

< lim
j→∞‖xkj – p‖

= lim
k→∞

‖xk – p‖
= lim

i→∞‖xki – p‖
< lim

i→∞‖xki – q‖
= lim

k→∞
‖xk – p‖,

which leads to a contradiction. Therefore, the sequence {xk}∞k= convergesweakly to a point
q ∈ �. �

3.2 Split hierarchical variational inequality problems
We consider another kind of split hierarchical variational inequality problem (in short,
SHVIP) in which we consider a variational inequality formulation instead of the Minty
variational inequality. More precisely, we consider the following split hierarchical varia-
tional inequality problem: find a point x∗ ∈ Fix(T) such that

〈
f
(
x∗),x – x∗〉 ≥ , for all x ∈ Fix(T), (.)

such that Ax∗ ∈ Fix(S) and it satisfies

〈
h
(
Ax∗), y –Ax∗〉 ≥ , for all y ∈ Fix(S). (.)

The solution set of the SHVIP is denoted by 	. Since Fix(T) and Fix(S) are nonempty
closed convex and f and h are monotone and continuous, by the Minty lemma [,
Lemma ], SHVIP (.)-(.) and SHMVIP (.)-(.) are equivalent. Hence, Algo-
rithm . and Theorem . are also applicable for SHVIP (.)-(.).
When Fix(T) = C a closed convex subset of a Hilbert space H and Fix(S) = Q a closed

convex subset of a Hilbert space H, then SHVIP (.)-(.) is considered and studied
by Censor et al. [].
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Remark . It is worth to note that, in the context of SHVIP (.)-(.), if we assume
either the finite dimensional settings of H and H or the compactness of spaces H and
H, then the monotonicity assumptions of operators f and h can be omitted.
In fact, as in the statement and the proof of Theorem ., since we know that xkj ⇀ q ∈

Fix(T), we also have xkj → q ∈ Fix(T). Recalling the inequality (.), we have, for k ≥ k,

‖xk+ – z‖ ≤ ‖xk – z‖ + αk
〈
f (yk), z – yk

〉
+ α

k
∥∥f (yk)∥∥,

which is equivalent to


〈
f (yk), yk – z

〉 ≤ ‖xk – xk+‖
αk

M + αk
∥∥f (yk)∥∥,

whereM := sup{‖xk – z‖+‖xk+ – z‖ : k ≥ } < ∞. Since we know that ykj → q ∈ Fix(T) and
f is continuous, by approaching j to infinity, we obtain 〈f (q),q – z〉 ≤ , for all z ∈ Fix(T),
which means that q ∈ Fix(T) solves (.). Similarly, from the inequality (.), we note
that, for k ≥ k,

‖Szk – SAz‖ ≤ ‖Axk –Az‖ + βk
〈
h(Axk),Az –Axk

〉
+ β

k
∥∥h(Axk)∥∥,

which is equivalent to


〈
h(Axk),Axk –Az

〉 ≤ ‖Axk – Szk‖
βk

M + βk
∥∥h(Axk)∥∥,

where M := sup{‖Axk – Az‖ + ‖Szk – SAz‖ : k ≥ } < ∞. Since Axkj → Aq ∈ Fix(S) and
h is continuous, we also get 〈h(Aq),Aq – Az〉 ≤ , for all Az ∈ Fix(S), which means that
Aq ∈ Fix(S) solves (.), and subsequently, q ∈ 	.

Remark . The strong nonexpansiveness of operators T and S in Theorem . can be
applied to the cases when the operators T and S are not only firmly nonexpansive, but
with relaxation of being firmly nonexpansive and averaged nonexpansive but also strictly
nonexpansive, that is, ‖Tx – Ty‖ < ‖x – y‖ or x – y = Tx – Ty for all x, y; regarding the
compactness of the spaces H and H, for more details, see [, Remark ..].

4 Some related problems
In this section, we present some split-type problemswhich are special cases of SHVIP (.)
and (.) and can be solved by using Algorithm ..

4.1 A split convex minimization problem
Let φ : H → R and ϕ : H → R be convex continuously differentiable functions and A :
H →H be a bounded linear operator such thatA(H)∩Fix(S) 
= ∅. Consider the following
split convex minimization problem (in short, SCMP): find

x∗ ∈ Fix(T) such that x∗ = argmin
x∈Fix(T)

φ(x), (.)

and such that

Ax∗ ∈ Fix(S) such that Ax∗ = argmin
y∈Fix(S)

ϕ(y). (.)
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We know that the SCMP (.)-(.) can be formulated as the following split hierarchical
variational inequality problem: find a point

x∗ ∈ Fix(T) such that
〈∇φ

(
x∗),x – x∗〉 ≥ , for all x ∈ Fix(T),

and such that the point

Ax∗ ∈ Fix(S) such that
〈∇ϕ

(
Ax∗), y –Ax∗〉 ≥ , for all y ∈ Fix(S),

where ∇φ and ∇ϕ denote the gradient of φ and ϕ, respectively. Since ∇φ and ∇ϕ are
monotone [, Proposition .] and continuous, we can apply Algorithm . to obtain
the solution of SCMP (.)-(.), and Theorem . will provide the convergence of the
sequence {xk}∞k= to a solution of SCMP (.)-(.). Furthermore, in the context of finite-
dimensional cases, we can remove the convexity of φ and ϕ.

4.2 A split variational inequality problem over the solution set of monotone
variational inclusion problem

Let H and H be two real Hilbert spaces, φ : H → H, ϕ : H → H be L, (respectively,
L)-inverse strongly monotone operators, B : H → H , B : H → H are set-valued
maximal monotone operators. Let us consider the followingmonotone variational inclu-
sion problem (in short, MVIP): find

x∗ ∈H such that  ∈ φ
(
x∗) + B

(
x∗).

We denote the solution set of MVIP by SOL(φ,B).
For σ > , λ ∈ (, L), we know that the operator JBσ (I–λφ) is an averaged nonexpansive

operator and

Fix
(
JBσ (I – λφ)

)
= SOL(φ,B),

where JBσ represents the resolvent of B with parameter σ .
We consider the following split variational inequality problem: find x∗ ∈ SOL(φ,B) such

that

〈
f (x),x – x∗〉 ≥ , for all x ∈ SOL(φ,B), (.)

and such that Ax∗ ∈ SOL(ϕ,B) satisfies

〈
h(y), y –Ax∗〉 ≥ , for all y ∈ SOL(ϕ,B). (.)

By using these facts and adding the assumption that JBσ (I – λϕ) is cutter, we can apply
Algorithm . and Theorem . to obtain the solution of SVIP (.)-(.).

4.3 A split variational inequality problem over the solution set of equilibrium
problem

LetH andH be real Hilbert spaces,C ⊆H andQ⊂H be nonempty closed convex sets,
φ : C ×C →R and ϕ :Q×Q →R be bifunctions. The equilibrium problem defined by C

http://www.fixedpointtheoryandapplications.com/content/2014/1/208
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and φ is the problem of finding x∗ ∈ C such that

φ
(
x∗,x

) ≥ , for all x ∈ C,

and we denote the solution set of equilibrium problem of C and φ by EP(C,φ).
Recall that Blum and Oettli [] showed that the bifunction φ satisfies the following

conditions:
(A) φ(x,x) =  for all x ∈ C;
(A) φ is monotone, that is, φ(x, y) + φ(y,x)≤  for all x, y ∈ C;
(A) for all x, y, z ∈ C,

lim sup
t↓

φ
(
tz + ( – t)x, y

) ≤ φ(x, y);

(A) for all x ∈ C, φ(x, ·) is a convex and lower semicontinuous function,
and let r >  and z ∈H, then the set

Tr(z) :=
{
x∗ ∈ C : φ

(
x∗,x

)
+

r
〈
x – x∗,x∗ – x

〉 ≥  for all x ∈ C
}


= ∅.

Moreover, from [], we know that
(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive;
(iii) Fix(Tr) = EP(C;φ).
We now consider the following split variational inequality problem: find x∗ ∈ EP(C,φ)

such that

〈
f (x),x – x∗〉 ≥ , for all x ∈ EP(C,φ), (.)

and such that Ax∗ ∈ EP(Q,ϕ) satisfies

〈
h(y), y –Ax∗〉 ≥ , for all y ∈ EP(Q,ϕ). (.)

Similarly, by assuming that conditions (A)-(A) in the context of the equilibriumproblem
defined by Q and ϕ hold, we see that, for all u ∈H and s > , the set

Ts(u) :=
{
y∗ ∈Q : ϕ

(
y∗, y

)
+

s
〈
y – y∗, y∗ – u

〉 ≥  for all y ∈Q
}

is a nonempty set. Moreover, we also see that Ts is single-valued and firmly nonexpansive;
and Fix(Ts) = EP(Q;ϕ).
By using these facts, we obtain the result that the problem (.)-(.) forms a special

case of the SHVIP (.)-(.).
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