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1 Introduction

The Schauder Fixed-Point Theorem is one of the most celebrated results in Fixed-Point
Theory and it states that any compact convex nonempty subset of a normed space has the
fixed-point property (Schauder, 1930; Theorem 2.3.7 in [1]). It is also valid in locally con-
vex spaces (Tychonoff, 1935; Theorem 2.3.8 in [1]). Recently, this Schauder fixed-point
theorem has been generalized to semilinear spaces [2].

As explained in detail in many works in the field of fuzzy differential equations, un-
certainty has to be considered in the formulation of a mathematical model for a better
adequacy, due to the imprecision inherent to the information available or the behavior
of the dynamical system itself (see, for instance, [3]). For this reason, the construction of
models which try to be faithful to a certain real process involves, in many occasions, the
consideration of fuzzy differential equations.

On the other hand, the subject of fractional calculus is not a recent topic, since many
interesting questions concerning its main concepts and properties have been discussed
since the end of the seventeenth century, with the contribution of mathematicians such
as Leibnitz, Euler, Laplace, Lacroix, Fourier, Liouville or Riemann, among others (for de-
tails, see the introduction of [4] and other monographs on fractional calculus [5, 6]). The
main references on fractional calculus also point out the power and usefulness of this
topic to the modeling of phenomena in a wide range of scientific fields. The complexity
of some processes in the physical world can be reproduced more faithfully with the help
of fractional order models better than using classical integer order models, for instance,
in electromagnetism, astrophysics, diffusion, material theory, chemistry, control theory,
wave propagation, signal theory, electricity and thermodynamics [5]. Some theoretical
aspects on the existence and uniqueness results for fractional differential equations have
been considered by some authors [7-9].
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Agarwal et al. have proposed the concept of the solution of fuzzy fractional differential
equations in [10]. Arshad and Lupulescu [11] have deduced some existence and unique-
ness results for fuzzy fractional differential equations under Riemann-Liouville derivative.
Allahviranloo et al. have presented the explicit solutions of fuzzy fractional differential
equations and some related results in [12, 13]. Some existence and uniqueness results for
fuzzy fractional integral equations and fuzzy fractional integro-differential equations have
been proposed in [14, 15].

In this paper, we consider nonlinear fuzzy fractional differential equations of the form

Dl = f(t, u),

where 0 < g <1 and D7 is the Riemann-Liouville fractional derivative and u(¢) is a fuzzy
real number for each ¢ € (0,a], a > 0. We present some conditions to obtain a solution.

The paper is organized as follows. In Section 2, we recall the definitions of fuzzy frac-
tional integral and derivative and related properties used in the paper. In Section 3, we
present sufficient conditions to have at least a solution.

2 Preliminaries
In this section, we give some definitions and introduce the necessary notation which will
be used throughout the paper, see for example [16].
Let us denote by Rr the class of fuzzy subsets of the real axis, that is, maps u : R — [0,1]
satisfying the following properties:
(i) uisnormal, ie., there exists sq € R such that u(sp) =1,
(i) u is a convex fuzzy set (i.e. u(ts + (1 — £)r) > min{u(s), u(r)}, vVt € [0,1], 5,r € R),
(iii) u is upper semicontinuous on R,
(iv) cl{s € R | u(s) > 0} is compact where cl denotes the closure of a subset.
Then Ry is called the space of fuzzy numbers. For 0 < « <1denote [1]* = {s € R | u(s) > «}
and [#]° = cl{s € R | u(s) > 0}. Then from (i)-(iv), it follows that the a-level set [1]* is a

nonempty compact interval for all 0 < o <1 and any u# € Rr. The notation
[l = [u,5"]

denotes explicitly the a-level set of u. We refer to 1 and u as the lower and upper branches
of u, respectively.

For u,v € Rr and A € R, the sum u + v and the product Au are defined by [u + v]* =
[u]* + [v]9, [Au]® = A[u]¥, Va € [0,1] where [u]® + [v]* means the usual addition of two
intervals (subsets) of R and A[#]* means the usual product between a scalar and a subset
of R. This is a consequence of Zadeh’s Extension Principle [16].

The metric structure is given by the Hausdorff distance

D:RFXRI:%RJrU{O},

by

D(u,v) = sup dH([u]"‘, [v]"‘) = sup max{|g"‘ -~
a€l0,1] ae[0,1]

’
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The following properties are well known:

D(u+w,v+w)=D(u,v), Vu,v,we€Rp,
D(ku,kv) = |k|D(u,v), VkeR,u,veRE,
D(hu, pu) = |A — n|D(,0), VA, > 0,u € Rp,

D(u+v,w+e) <D(u,w)+D(v,e), Vu,v,w,eecRp,

and (Rg, D) is a complete metric space.

The concept of a semi-linear space and similar concepts were already considered, for
instance, in [17]. A semilinear metric space is a semilinear space S with a metricd : Sx S —
R, which is translation invariant and positively homogeneous, that is,

e dla+c,b+c)=d(a,b),

o d(Aa,\b) = Ad(a,b), for all L > 0,
forall a,b,c € S and A > 0. In this case, we can define a norm on S by ||x|| = d(x, 6), where
0 is the zero element in S. If S is a semilinear metric space, then addition and scalar mul-
tiplication on S are continuous. If S is a complete metric space, then we say that S is a
semilinear Banach space. For example, the set of fuzzy real numbers is not a vector space
and hence it cannot be Banach space. The set of continuous functions from the real com-
pact interval [0,1] into the set of fuzzy real numbers is a semilinear Banach space. We say
semilinear space S has cancellation property if a + b = ¢ + b implies a = c for a,b,c € S.

Let a > 0. We denote by C((0, 4], Rr) the space of all continuous fuzzy functions defined
on (0,a]. Now, let » > 0. We define

C.([0,al,R¢) = {u € C((0,a], R¢); ur € C([0,al, RF)},

where u,(¢) = t'u(t), t € (0,a]. Obviously, C,([0,a],Rr) is a complete metric space with
respect to the metric

h(u,v) = tg}g};} t’D(u(t), V(t)), u,v e Cr([O, al, RF).
We denote #,(u,0) by |||, which is not a norm in the classical sense, since C,([0, 4], Rf)
is not a vector space. We point out that Cy([0,a], Rr) = C([0, 4], Rr). We define R}, as the
space of fuzzy sets u € Ry with the property that the function « — [¢]* is continuous with
respect to the Hausdorff metric on [0, 1]. It is well known that (R%, D) is a complete metric
space [18]. If the functions take values in Rf, we get the sets C,([0,1],R%), r > 0.

Definition 2.1 ([18]) A subset A C R{. is said to be compact-supported if there exists a
compact set K C R such that [y]° C K forall y € A.

Definition 2.2 ([18]) A subset A C R{ is said to be level-equicontinuous at « € [0,1] if
for all € > 0, there exists § > 0 such that

lo —ag| <8 implies D([y]*,[y]*°) <&, forallye A.

A is level-equicontinuous on [0,1] if A is level-equicontinuous at « for all @ € [0,1].
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Theorem 2.3 ([18]) Let A be a compact-supported subset of R}.. Then the following asser-
tions are equivalent:

+ A is a relatively compact subset of (R%, D),

o A is level-equicontinuous on [0,1].

In fact, if A is relatively compact in (R%, D), then A is compact-supported and also
level-equicontinuous on [0,1]. Conversely, if A is compact-supported in Rf and level-
equicontinuous on [0,1], then A is relatively compact in (R, D).

Definition 2.4 ([18]) A continuous function f : [0;a] x R% — R¢ is said to be compact if
for every subinterval I C [0, 4] and every bounded subset A C R, then f(I x A) is relatively
compact in Rf.

Let P¢(R) denote the family of all nonempty compact convex subsets of R. P(R) is en-
dowed with the topology generated by the Hausdorff metric dy.

Definition 2.5 A mapping F : I — R is strongly measurable if, for all & € [0,1], the set-
valued mapping F, : I — Px(R") defined by the following:

F(t)=[FO]", tel
is Lebesgue measurable.

Definition 2.6 Let F : ] — Rp. The integral of F over I, denoted by [, F(¢)dt, is defined

level-wise by the following expression:

|:/F(t) dt:| = /Fa(t) dt = {/f(t) dt ‘f : I — R is a measurable selection for Fa}
1 I I

forall0<a <1.

A function F : I — R is called integrably bounded if there exists an integrable function
h:I— R, such that D(Fy(£),0) < (), forall t € I. A strongly measurable and integrably
bounded mapping F : ] — R is said to be integrable over I if [, F(t)dt € Rg.

Corollary 2.7 IfF:1 — Rp is continuous, then it is integrable.
We denote by L!(I,Rf) the space of Lebesgue integrable functions from I to Rp.

Theorem 2.8 ([19]) Let F,G:I — R be integrable and ) € R. Then
(i) [[(F+G)=[,F+[,G,
(ii) [;AF=21[F,
(i) D(F,G) is integrable on I,
(iv) D(f;F, [,G) < [,D(F,G).

Theorem 2.9 ([2], Schauder Fixed-Point Theorem for Semilinear Spaces) Let B be a
nonempty, closed, bounded and convex subset of a semilinear Banach space S having the
cancellation property and suppose P : B — B is a compact operator. Then P has at least
one fixed point in B.
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Definition 2.10 Let u € C((0,a], Rg) NL'((0,a)], Rr). The fuzzy fractional integral of order
q >0 of u is defined as

1Tu(t) = %q) /:(t -8 u(s)ds, te(0,a),

provided the integral in the right-hand side is defined for a.e. ¢ € (0, a). For g = 1 we obtain
Iu(t) = fot u(s) ds; that is, the classical integral operator.

Remark 2.11 ([11]) Let g € (0,1). If u € C,([0,a], Rr) with r < g, then I7u € C((0,a], Rf)
and I7u(0*) = 0. If u € C4([0,a],Rf), then [ is bounded at t = 0, whereas if u €
C,([0,a],Rr) with g < r < 1, then we may expect /74 to be unbounded at ¢ = 0. This is
similar to the crisp case [7].

Proposition 2.12 ([11]) Ifu € C((0,a],Rr) N L}((0,a],R¢) and p,q > 0, then
Py ="y,

Example 2.13 ([11]) Let u: [0,a] — R be a constant fuzzy function, u(t) = ¢ € R, for
t € [0,a]. Then

1
HTu(t) = NEE) tic.
q+

Example 2.14 ([11]) Let u: (0,a] — R be a fuzzy function given by u(¢) = ct", where
ceRrandr>-1. Then
r 1
Iqu(t) — Lct‘l”'

Cr+q+1)
Definition 2.15 ([2]) Let u € C((0,a], Rr) N L*((0,a], Rr) and g € (0,1). If the fuzzy func-
tion ¢ fot (t — s)™%u(s) ds is Hukuhara differentiable on (0, 4], then we define the fuzzy
fractional derivative of order g of u at ¢ by

1 d
r-gq)de

Du(t) =

t
/ (t — ) u(s)ds,
0

which defines a fuzzy number D7u(z) € Rg.

Remark 2.16 Obviously D7u(t) = %Il‘qu(t) for t € (0,a]. Also we have
D(cu)(t) = cDU(u)(t), VceRg,

and
D(u +v)(t) = DU (u)(t) + DI(W)(¢).

Proposition 2.17 ([11]) Ifu € C((0,a],Rr) NL}((0,a],R) and 0 < q < 1, then

D1y = u.
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Example 2.18 ([11]) Let u: (0,a4] — Rf be a constant fuzzy function, u(t) = ¢ € Rr for
t € (0,a]. Then

—q

rad-gq)

Diu(t) = C.

Example 2.19 ([11]) Let #: (0,a] — Rr be a fuzzy function given by u(t) = ct” where c €
Rrandr>-1,r#g—1. Then

B I'(r+1) .
un(t) = mct a,

We note that D7ct7! = 0.
According to Definition 2.15 and Example 2.19, we obtain the following lemma.

Lemma 2.20 Let u € C((0,a], Rr) N LY((0,a], RF) and 0 < q < 1. Then the solutions of the
fuzzy fractional differential equation

Diu=0
are u(t) = ct?, c € Ry.

3 Fuzzy fractional differential equations
Consider the fuzzy fractional differential equation

Dy = f(¢t,u), (1)
where 0 <g<1andf:[0,a] x Rr — Rp is a continuous fuzzy function on (0,4] x Rg.

Definition 3.1 A fuzzy function u € C((0,a], Rr) N L}((0,a], RF) with continuous frac-
tional derivative D7u on (0, 4] is a solution of the fuzzy fractional differential equation (1)
if

D7u(t) :f(t, u(t)), for all £ € (0,4].

Remark 3.2 We may apply the results in Section 2 to consider a fuzzy integral equation
which allows to obtain a solution to Eq. (1). Indeed, if # € C([0, a], Rf) is a solution to the
fuzzy integral equation

u(t) = I (£, u(?))
and £(t, u(t)) € C((0,a],Rg) N L}((0,a), Rg), then u is also a solution to Eq. (1).
Lemma 3.3 Ifu:[0,a] — R is continuous, then u is bounded.

Proof If u is continuous, the function #* : [0,1] — R and #* : [0,1] — R are continuous
functions on [0,1], and bounded. Then D(x, 0) < max{|u*|, |#*|} is bounded. O
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In the sequel, if u € C([0,1],Rf) and 0 < r < g < 1, we define the operator A :
C([0,1],R) — C([0,1], RE) by

[Aul(t) = %q) /Ot(t —8)1 Yy (s)ds = %q) /Ot(t — )T s u(s) ds.

Lemma 3.4 The operator A is well-defined and continuous on C([0,1], R$).

Proof First we show that A is well defined, i.e., for fixed u € C([0,1], R%), we check that
Au € C([0,1], R%). In fact we prove that Au is uniformly continuous on [0,1]. Let ¢, 1, €
[0,1], # < tp, and M such that

D(u(s),0) <M, Vse[0,1].
Then

D(Au(tr), Au(t))

- WJ)D( /0 tl(tl - )75 u(s) ds, /O tz(tz — T u(s) ds)

) %D</ N e ds /Otl(tZ - )75 u(s)ds + /tl % (g — s uls) ds)
zq [ (/ (0 =) "uls) ds, /0 (- 9Tl ds)
)

|:/tl D((t1 — )17 u(s), (ty — s)q_ls_’u(s)) ds
) LJo

‘ -

=

—

+
\Q

(
(& —5)T s _’D(u(s), 6) ds]

q)[/ (1 =)™ = (t2 = 9)"'s ™| D(uls), 0) ds

/ (t, — )17 Ls rD(u(s) O) :|

|:/ |(t1 —s)1 g — )il 1 r‘ ds + /fz " g ds]
- Fl |:/ (=9 - /0 1(tz —8)T s ds + /: (ty —5)0 15" ds:|

M i 12} 12}
= — (- s) T s ds - / (b —$)T s ds +2 / (t, — )T s ds
I'(q) Lo 0

5]

“\

_ |: I(-r+1) (@ 2 2

- _ -1 -r
C(-r+q+1)\ " 7 )+l"(q) " (t2—5)""s dS}.

Therefore D(Au(ty), Au(t,)) — 0 when |t — £5| — 0.
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Next, we prove continuity of A. Let v, — v as n — oo in C([0,1], R$), i.e., ho(v,,v) — 0
as n — 00. Then we have

ho(Av,, Av)
= sup D(Av,(2), Av(?))

te[0,1]

_tZE)pl]D<F(q)/(; (t—s)T"s v,,(s)ds,r(q)/o(t s)Ts V(S)ds)

< 5w [ D09, 6) i

1
< ——ho(vy,v) sup /( — )15 ds
I'(q) tef01]Jo
'(-r+1
=h0(vn’ ) sup #tq_r
tejoq T(=r+q+1)
'(-r+1)

- C(-r+qg+1) oV ¥)-

Therefore Av, — Avas n — oo in C([0,1], R§). O

Remark 3.5 If G € C([0,1],R%) is bounded, then A(G) is bounded in C([0,1], R%). Indeed,
for v € G we have
( - r) )

~ -~ I'd-7r) gr
D(Av(2),0) < t:}g)l]D(V(t), 0) Ta_r+0) I < rd_r+0) te[Opl D(v(t),0

Lemma 3.6 IfG C C([0,1],R%) is bounded, then A(G) is equicontinuous in C([0,1],R%).

Proof Let hy(u,0) <M, for all u € G and t;,¢, € [0,1], £, < t,. Then from the first part of
the proof of the Lemma 3.4, we have, for all u € G,

Pr+1) gr gny, 2 [ e
D(Au(tl),Au(tz))gM[#;D(tf 4 v /ﬁ (£ —5)11s ds:|,

which tends to 0 as |¢; — £;] — O uniformly in u € G. Hence A(G) is equicontinuous in
C([0,1], R§). O

Remark 3.7 If G € C([0,1],IR%) is such that {v(s) | v € G, s € [0,1]} is compact-supported
in R, then G is bounded. Indeed, there exists a compact set K in R such that {[v(s)]° | v €
G,s €[0,1]} C K. On the other hand, for v € G,

ho(v,0) = sup sup dy([v(6)]*,{0})
te[0,1] e[0,1]

= sup sup du([v*(©),7* (9], {0})

t€[0,1] «€[0,1]

= sup sup max{|v
te[0,1] «€[0,1]

}

< sup max{ | y
te[0,1]
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< sup dH(| [V(t)]0

te[0,1]

{0))

< +00.
Then G € C([0,1], R}) is bounded.
Lemma 3.8 If G C C([0,1],R}) is such that
{vis)IveG,se0,1]},

is compact-supported and level-equicontinuous, then A(G) is relatively compact in C([0, 1],
RS).

Proof By the Arzela-Ascoli Theorem, we show that A(G) is an equicontinuous subset of
C([0,1],R¢) and A(G)(2) is relatively compact in R. for each ¢ € [0,1]. Since by Remark 3.7,
G is bounded, using Lemma 3.6, it is sufficient to show A(G)(¢) is relatively compact for
each t € [0,1] in R%. By Theorem 2.3, it is equivalent to showing that A(G)(t) is a compact-
supported subset of R%. and level-equicontinuous on [0, 1] for each ¢ € [0,1]. Since {v(s) |
ve G,s e [0,1]} is compact-supported, there exists a compact set K C R such that [v(s)]° €
K for all s € [0,1] and v € G. Then, for all v € G and ¢ € [0,1],

t 0
[%&1) /0 (¢ —$)T 7 v(s) ds:|

= %q) /Ot(t - s)q’ls”[v(s)]0 ds

I< ! -1 _—r

Fq)/o (t—s)T"s"ds
[(-r+1)

I(-r+q+1)

[AV)®)]°

N

IN

Then A(G)(¢) is compact-supported for each ¢ € [0,1].
Now, to prove level-equicontinuity, take fixed ¢ € [0,1] and ¢ > 0. If w € A(G)(¢), then
w = A(v)(¢), for some v € G so that

a:L ‘ Y o P a
[w] F(q)/o(t s)T s [v(s)] ds, «o€[0,1].

Therefore

t

i (W), W]?) = %q) 9t (] [ ds

[ (-r+q+1)
200 (-r+1)

Since {v(s) | v € G,s € [0,1]} is level-equicontinuous, then for given ¢ > 0, there

exists § > 0 such that |« — 8| < §, then

el(-r+q+1)

, e G,se[0,1].
ey @ €G@sEl0l]

dy([vs)]", [v9]") <
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Hence

iy (w7, w?) < SEErrad D) TEred)

177" < th_' <e&.
2(-r+1) T[(-r+q+1) -2

Then A(G)(t) is level-equicontinuous in R¢ on [0, 1] for every ¢ € [0, 1]. O
In the following, we consider

N:Q— C([O,a],R;),
Nu(t) =t'f(t,ut)), tel0,al,

where
Q= {ueC((0,a],R}) | ho(u,0) < R}.

The operator N is well-defined if (¢, ) — ¢'f (¢, u) is a continuous function in [0,a] x RS
with values in Rf.

We define f, as f,(t,u) = t'f(t,u), t € [0,a]. Now, let S = {x € R} | D(x, 0) < R}. Then we
have the following result.

Lemma 3.9 Suppose that f, : [0,a] x Rt — R is uniformly continuous and bounded in
[0,a] x S. Then the operator N is continuous and bounded in C([0,a], R%).

Proof Let the sequence u, — u, as n — oo in C([0,a],R%) where u,,u € Q. Then for a
given ¢ > 0 by the uniform continuity of f; in [0,a4] x S, there exists § > 0 such that for
(t,%),(s,9) € [0,a] x S,

H((£,%),(s,9)) = [t —s| + D(x,y) <& implies D(£'f(t,%),5'f(s,y)) <&.

Now, given é > 0, since u,, — uas n — 00, there exists ny € N such that, for n > 1y, we have
ho(un, u) < 8, i.e., sup,c(o 1 D(un(t), u(t)) < 8. Then H((Z, u,(t)), (t, u(t))) = D(u,(2), u(t)) < 5,
Vt € [0,a], Vn > ny, so that D(f,.(¢t, u,(2)),f-(¢, u())) < &, Vt € [0,a], n > ny, and

hO(NumNu)

sup D(Nu,,(t),]\/u(t))

te[0,a]

sup D(fy (¢, un(t)). f; (2, u(®)))

te[0,a]

<e.

This proves that N'u,, — Nu in C([0,a], R%). On the other hand, if B is bounded in €2, then
ho(u,0) <M, Yu € B, i.e., SUP ;0,41 D(u(2),0) < M. Then hy(Nu,0) = SUP;e0,q) DN u(2),
0) = sup;(o,) DU (£, u(2)), 0), Yu € B. Since f, is bounded in [0,a] x S, then there exists a
K > 0 such that #y(Nu,0) < K, Vu € B. Then N (B) is bounded. O

Lemma 3.10 If{f.(s,x) | (s,x) € [0,a] x S} is compact-supported and level-equicontinuous,
then

{u(s) |ueN(Q),s e [O,a]}

is relatively compact.
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Proof Since

(s, u(s)) lu e Q,s€0,al} = {(Nu)s) | uec,se[0,al}
= {u(s) | u e N(R),5 € [0,a])

is compact-supported and level-equicontinuous, it is relatively compact. O

Lemma 3.11 Let f,(t,x) be a continuous mapping on [0,a] x S. Then it is compact on
[0,1] x S if and only if the set {t'f(t,x) | t € [0,al,x € S} is compact-supported and level-
equicontinuous.

Proof First, let f,(t,x) be continuous and compact on [0,4] x S. Then by Theorem 2.3,
{fi(t,x) | t € [0,a],x € S} is compact-supported and level-equicontinuous.

Now let {f,(¢,x) | t € [0,a],x € S} is compact-supported and level-equicontinuous. Again
by Theorem 2.3, it is relatively compact. Hence f, is compact on [0,a] x S. Since for any
bounded set B C [0,a] x S, the set {f.(¢,x) | (t,x) € B} is relatively compact. O

Definition 3.12 7 : C([0,1],Rr) — C([0,1],Rf) is a bounded operator if for every
bounded B in C([0,1],Rg), T (B) is bounded in C([0,1], Rf).

In the following, we present a local existence theorem for the fuzzy fractional differential
equation (1). For simplicity, in the rest of the paper, we shall often limit arguments to the
choice a =1.

Theorem 3.13 Let 0 <r<g<1andletf:(0,1] x Ri — R% be a given continuous fuzzy
function in (0,1] x Rg. If f, : [0,1] x RS — RS is compact and uniformly continuous on
[0,1] x RS, then the fuzzy integral equation has at least one continuous solution defined on

[0,8], for a suitable 0 < § <1.

Proof According to Remark 3.2, we need only consider the following fuzzy integral equa-
tion:

IR Y AP
u(t) ) /(; (t—s) f(s, u(s)) ds.
Define the set

Q= {ueC([0,1,R}) | ho(u,0) < R}.

It is easy to see that  is a closed, bounded and convex subset of the semilinear Banach
space C([0,1], R%). On the set 2, we define the operator 7 : @ — C([0,1],R%) by

(Tu)(e) = %q) /0 (= 5 (5,1(5) ds.

We claim that the operator 7 is continuous and compact. Indeed, the operator is the
composition of two continuous and bounded operators 7 = A o N, where

Nu(t) =t'f(¢,u®), te[0,1],


http://www.fixedpointtheoryandapplications.com/content/2014/1/21

Khastan et al. Fixed Point Theory and Applications 2014, 2014:21 Page 12 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/21

and
Av(t) = 1 /t(t -5)Ts7v(s)ds, veC([0,1],RE).
I'(q) Jo £

The operator T is well defined since it is the composition of A and N. Since f; is con-
tinuous and compact, by Lemma 3.11, {f,(t,u) | ¢t € [0,1],u € S} is compact-supported
and level-equicontinuous. Then by Lemma 3.10, {v(s) | v € N(£2),s € [0,1]} is compact-
supported and level-equicontinuous. Therefore, by Lemma 3.8, A(N(R)) is relatively
compact in C([0,1],R%). Then operator 7 is compact on .

Moreover, from Example 2.14, we have, for 0 <t <§ <1,

D(Av(t), X{O}) < sup D(V(t), X{O})%q) /0 (t—95)Ts7"ds

te[0,8]
ra-
< W=D oy
Frl-r+gq)

Therefore, we have
lAvllo < ellvllo,

where we may assume ¢ > 0 to be as small as we want by shrinking § > 0. Now, fix B,, as
a domain of the operator T, where B, = {v € C([0,8],R§) : [|[v]lo < p}, which is a convex,
bounded, and closed subset of the complete metric space C([0, 5], Rf).

For 8 > 0 sufficiently small, we have
T(By) € B,.

Theorem 2.9 ensures that operator 7 has at least one fixed point. In consequence, Eq. (1)

has at least one continuous solution # defined on [0, 8], where § >0 and § <1. O

Corollary 3.14 Under the conditions of Theorem 3.13 and assuming that f(-,v(-)) €
LY((0,1),RS), for every v € C([0,1], RS, then the fuzzy fractional differential equation (1)
has at least a continuous solution defined on [0, 8], for a suitable 0 < § <1.

Proof If u € C([0,68],R%) is a solution to the fuzzy integral equation
u(t) = 1% (¢, u(?)),

using that f : (0,8] x R% — R is continuous and f(-,v(-)) € L}((0,8), R%), for every v €
C([0,8],RS), then it is clear that (¢, u(£)) € C((0,8], Re) N L'((0,8), Rr) and u is a solution
to Eq. (1) in [0, 8]. a

Remark 3.15 If f is Lipchitz continuous in the second variable u, then in Theorem 3.13,
one has uniqueness of the solution by using the classical Banach contraction fixed-point

theorem. Note that Lipchitz continuity implies uniform continuity.
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Theorem 3.16 Letf : (0,1] x Rp —> Rp be a given continuous fuzzy function in (0,1] x Rp.

Iff is a Lipschitz continuous function in the second variable on [0,1] x R, that is,
D(f(t,u),f(t,v)) <KD(u,v), t€[0,1],u,veRy,

then the fuzzy fractional integral equation u(t) = 1/ (¢, u(t)) has a unique solution defined
on [0,8], for a suitable 0 < § < 1.

Proof Similar to proof of Theorem 3.13, we define 7 = Ao N. Then T is Lipschitz con-

tinuous and for § > 0 small, 7 is a contraction map. d

Corollary 3.17 Under the conditions of Theorem 3.16 and assuming that f(-,v(-)) €
LY((0,1),Rg), for every v € C([0,1], Rf), the fuzzy fractional differential equation (1) has

at least a continuous solution defined on [0, 8], for a suitable 0 < § < 1.

Remark 3.18 As indicated in results of [11], we cannot expect uniqueness for such solu-

tions in general. Consider the equation
Dy =,
with 0 < ,g < 1, which admits two solutions % = 0 and
a
u(t) = kt1-r,

where

() )
k: 7 )
<F(M—q)

with u =1+ & as we see from Example 2.19. It is easy to check that u(¢) = [0, k] - 5 s

also a solution to this problem.
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