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Abstract
In this paper, we introduce a new concept of generalized cyclic (κh,ϕL)S-weak
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1 Introduction and preliminaries
Fixed point theory is a very useful tool in many fields such as nonlinear operator theory,
control theory, game theory, dynamics and economic theory. One of the most fundamen-
tal fixed point theorems is the Banach contractionmapping principle. Due to its simplicity
and importance, this classical result has been generalized by many authors in different di-
rections (see [–]).
In , Ran andReurings [] established a fixed point theorem for Banach’s contraction

mappings in partially orderedmetric spaces. In , Harjani and Sadarangani [] proved
some fixed point theorems for weakly contractive mappings in complete metric spaces
endowed with a partial order. In , Nashine [] presented some fixed point results
for cyclic generalized ψ-weakly contractive mappings in complete metric spaces. Other
authors also obtained some important results in this area (see [–]). On the other hand,
in , Samet et al. [] introduced the concept of α-ψ-contractive and α-admissible
mappings in metric spaces. In , Berzig and Karapinar [] proved some fixed point
results for (αψ ,βϕ)-contractive mappings for a generalized altering distance in complete
metric spaces.
In , Menger [] introduced the concept of a probabilistic metric space, and a large

number of authors have done considerable work in such field (see, e.g. [–]). Recently,
the extension of fixed point theory to generalized structures as partially ordered proba-
bilistic metric spaces has attracted much attention (see, e.g. [–]). Gopal et al. []
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established some fixed point results for α-ψ-type contractive mappings and generalized
β-type contractive mappings in Menger PM-spaces.
In this paper, we introduce the notion of generalized cyclic (κh,ϕL)S-weak contraction

mappings to establish some corresponding coincidence point theorems in complete par-
tially ordered Menger PM-spaces. Also, an application is given to show the validity of our
results. It is worth pointing out that our results extend and generalize the main results of
[] and [].
First, we recall some notions, lemmas and examples which will be used in the sequel.
Let R denote the set of reals and R+ the nonnegative reals. A mapping F : R → R+ is

called a distribution function if it is nondecreasing and left continuous with inft∈R F(t) = 
and supt∈R F(t) = .We will denote byD the set of all distribution functions andD+ = {F ∈
D : F(t) = , t ≤ }.
Let H denote the specific distribution function defined by

H(x) =

{
, x≤ ,
, x > .

Definition . ([]) The mapping � : [, ] × [, ] → [, ] is called a triangular norm
(for short, a t-norm) if the following conditions are satisfied:

(�-) �(a, ) = a, for all a ∈ [, ];
(�-) �(a,b) = �(b,a);
(�-) �(a,b)≤ �(c,d), for c≥ a, d ≥ b;
(�-) �(a,�(b, c)) =�(�(a,b), c).

Three typical examples of continuous t-norms are�(a,b) =max{a+b–, },�(a,b) =
ab and �M(a,b) =min{a,b}, for all a,b ∈ [, ].

Definition . ([]) A triplet (X,F ,�) is called a Menger probabilistic metric space
(shortly, a Menger PM-space), if X is a nonempty set, � is a t-norm and F is a mapping
from X × X → D+ satisfying the following conditions (for x, y ∈ X, we denote F (x, y) by
Fx,y):

(MS-) Fx,y(t) =H(t), for all t ∈ R, if and only if x = y;
(MS-) Fx,y(t) = Fy,x(t), for all x, y ∈ X and t ∈ R;
(MS-) Fx,z(s + t) ≥ �(Fx,y(s),Fy,z(t)), for all x, y, z ∈ X and s, t ≥ .

Definition . ([]) (X,F ,�) is called a non-Archimedean Menger PM-space (shortly,
a N.AMenger PM-space), if (X,F ,�) is a Menger PM-space and � satisfies the following
condition: for all x, y, z ∈ X and t, t ≥ ,

Fx,z
(
max{t, t}

) ≥ �
(
Fx,y(t),Fy,z(t)

)
. (.)

Definition . ([]) A non-Archimedean Menger PM-space (X,F ,�) is said to be type
of (D)g , if there exists a g ∈ �, such that

g
(
�(s, t)

) ≤ g(s) + g(t),
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for all s, t ∈ [, ], where � = {g : g : [, ] → [, +∞) is continuous, strictly decreasing,
g() = }. In fact, we obtain g(Fx,z(t))≤ g(Fx,y(t)) + g(Fy,z(t)), for all x, y, z ∈ X and t ∈ R+.

Example . Let (X,F ,�) be a N.AMenger PM-space, and � ≥ � (or �(s, t)≥ ts
t+s–ts for

all s, t ∈ [, ]). Then (X,F ,�) is of (D)g-type for g ∈ � defined by g(t) = – t (or g(t) = 
t –

for  < t ≤  and g() = +∞).

Remark . Schweizer and Sklar [] point out that if (X,F ,�) is a Menger probabilistic
metric space and � is continuous, then (X,F ,�) is a Hausdorff topological space in the
(ε,λ)-topology T , i.e., the family of sets {Ux(ε,λ) : ε > ,λ ∈ (, ]} (x ∈ X) is a basis of
neighborhoods of a point x for T , where Ux(ε,λ) = {y ∈ X : Fx,y(ε) >  – λ}.

Definition . ([]) The function h : [,∞) → [,∞) is called an altering distance func-
tion, if the following properties are satisfied: (a) h is continuous and nondecreasing;
(b) h(t) =  if and only if t = .

Definition . ([]) A function ψ : R+ → R+ is said to be a �-function, if it is nonde-
creasing and continuous in R+, ψ(t) → ∞ as t → ∞, ψ(t) =  if and only if t = .

In the sequel, the class of all � functions will be denoted by � . Any altering distance
function h with the additional property limt→+∞ h(t) = +∞ generalizes a �-function ψ

through ψ() =  and ψ(t) = sup{s : h(s) < t} whenever t > .

Lemma . ([]) Let {xn} be a sequence in (X,F ,�) such that limn→∞ Fxn ,xn+ (t) =  for
all t > . If the sequence {xn} is not a Cauchy sequence in X, then there exist ε > , t > 
and two sequences {k(i)}, {m(i)} of positive integers such that
() m(i) > k(i), andm(i) → ∞ as i→ ∞;
() Fxm(i),xk(i) (t) <  – ε and Fxm(i)–,xk(i) (t) ≥  – ε, for i = , , . . . .

2 Main results
In this section, we first introduce the new notions of generalized κ-admissible mappings,
weakly comparable mappings and generalized cyclic (κh,ϕL)S-weak contraction map-
pings in Menger PM-spaces.

Definition . Let X be a nonempty set, S,T : X → X be two self-maps and κ : X × X ×
(,∞) → R+ be a function. S and T are called generalized κ-admissible, if for all x, y ∈ X,
t > , and κ(Sx,Sy, t) ≤ , we have κ(Tx,Ty, t) ≤ . κ is called m-transitive on X, if for all
t > , x,x, . . . ,xm,xm+ ∈ X, κ(x,x, t) ≤ , κ(x,x, t) ≤ , . . . ,κ(xm,xm+, t) ≤ , we have
κ(x,xm+, t) ≤ .

Example . Let X = [,∞), Sx = ln( + x) for all x ∈ X,

Tx =

{
x
 +


 , x ∈ [, ],

x, x ∈ (,∞)
and κ(x, y, t) =

{
, x, y ∈ [, ],
, otherwise.

In fact, if x, y ∈ X, for all t > , κ(Sx,Sy, t) = κ(ln( + x), ln( + y), t) ≤ , then x, y ∈
[,

√
e – ] ⊂ [, ]. Hence, Tx,Ty ∈ [, ], and so κ(Tx,Ty, t) ≤ . Thus, S and T are gen-

eralized κ-admissible. Also, we can verify that κ ism-transitive.
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Let (X,≤) be a partially ordered set, we will write x 	 ywhenever x and y are comparable
(that is, x ≤ y or y≤ x holds).

Definition . Let (X,≤) be a partially ordered set, S,T : X → X be two self-maps and
T(X) ⊂ S(X). T is called weakly comparable with respect to S, if x, y ∈ X such that Sx 	
Tx = Sy implies Tx and Ty are comparable (that is, Tx 	 Ty). 	 is calledm-transitive on X,
if x,x, . . . ,xm+ ∈ X such that xi 	 xi+ for all i ∈ {, , , . . . ,m} implies x 	 xm+.

Example . Let X = {, , , , }, 
= {〈, 〉, 〈,〉, 〈,〉, 〈, 〉, 〈, 〉, 〈, 〉, 〈, 〉,
〈, 〉, 〈, 〉}, and

S :

(
    
    

)
, T :

(
    
    

)
.

Since S() =  	 T() =  = S(), we haveT() =  	 T() = . Since S() =  	 T() =  =
S(), we have T()	 T() = . Since S()	 T() =  = S(), we have T()	 T(). Since
S()	 T() = S(), we haveT()	 T(). Note that S() and T() are not comparable.
Hence, T is weakly comparable with respect to S.

Definition . Let X be a nonempty set, m be a positive integer, A,A, . . . ,Am be sub-
sets of X, Y =

⋃m
i=Ai and S,T : Y → Y be two self-maps. Then Y is said to be a cyclic

representation of Y with respect to S and T , if the following two conditions are satisfied:
(i) S(Ai), i = , , . . . ,m, are nonempty closed sets;
(ii) T(A)⊆ S(A),T(A) ⊆ S(A), . . . ,T(Am)⊆ S(A).

Example . Let X = R+, A = [, ], A = [,  ], A = [, ], and Y =
⋃

i=Ai. Define S,T :
Y → Y by Sx = 

 +

x andTx = + 

x, for all x ∈ Y . Then it is easy to verify that Y =
⋃

i=Ai

is a cyclic representation of Y with respect to S and T .

Definition . Let (X,≤) be a partially ordered set and (X,F ,�) be a N.A Menger PM-
space of type (D)g . Let κ : X × X × (,∞) → [,∞) be a function and φ : X → [,∞) be
a lower semi-continuous function. Let m be a positive integer, A,A, . . . ,Am be subsets
of X, Y =

⋃m
i=Ai, and S,T : Y → Y be two self-maps. T is said to be a generalized cyclic

(κh,ϕL)S-weak contraction, if Y is a cyclic representation of Y with respect to S and T ,
Am+ = A, and for k ∈ {, , . . . ,m} and for all x, y ∈ X, Sx ∈ S(Ak) and Sy ∈ S(Ak+) are
comparable such that

h
[
g
(
FTx,Ty(t)

)
+ φ(Tx) + φ(Ty)

]
≤ κ(Sx,Sy, t)

[
h
(
Mt(Sx,Sy)

)
– ϕ

(
Mt(Sx,Sy)

)]
+ L

(
Nt(Sx,Sy)

)
, (.)

for all t >  and β ∈ (, ], where h is an altering distance function, ϕ,L : [,∞) → [,∞)
are two continuous functions such that L() = , ϕ(s) =  if and only if s = , ϕ(s)≤ h(s) for
all s ∈ R+, Nt(Sx,Sy) =min{g(FSx,Tx(t)), g(FSx,Ty(( – β)t)), g(FSy,Tx(βt))}, and

Mt(Sx,Sy) = max

{
g
(
FSx,Sy(t)

)
+ φ(Sx) + φ(Sy), g

(
FSx,Tx(t)

)
+ φ(Sx) + φ(Tx), g

(
FSy,Ty(t)

)
+ φ(Sy) + φ(Ty),
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[
g
(
FSx,Ty

(
( – β)t

))
+ g

(
FSy,Tx(βt)

)
+ φ(Sx) + φ(Sy) + φ(Tx) + φ(Ty)

]}
.

Now we are ready to state our main results.

Theorem. Let (X,≤) be a partially ordered set and (X,F ,�) be a complete N.AMenger
PM-space of type (D)g .Letm be a positive integer,A,A, . . . ,Am be subsets of X ,Y =

⋃m
i=Ai,

T : Y → Y be a generalized cyclic (κh,ϕL)S-weak contraction satisfying (.). Suppose that
the following conditions hold:

(i) S and T are generalized κ-admissible;
(ii) κ and 	 are m-transitive;
(iii) T is weakly comparable with respect to S;
(iv) there exists x ∈ A such that Sx 	 Tx and κ(Sx,Tx, t) ≤  for all t > ;
(v) if a sequence {yn} ⊂ Y satisfies yn 	 yn+, κ(yn, yn+, t) ≤  for all n ∈ N , and t > 

and yn → y as n→ ∞, then yn 	 y and κ(yn, y, t) ≤  for n sufficiently large and for
all t > .

Then S and T have a coincidence point in X, that is, there exists x ∈ X such that Sx =
Tx.

Proof Since T(A) ⊂ S(A) and x ∈ A, there exists an x ∈ A, such that Sx = Tx. Since
T(A) ⊂ S(A) and x ∈ A, there exists an x ∈ A, such that Sx = Tx. Continuing this
process, we can construct two sequences {xn} and {yn} defined by yn+ = Sxn+ = Txn, for
all n ∈N , and there exists in ∈ {, , . . . ,m} such that xn ∈ Ain and xn+ ∈ Ain+.
By condition (iv), we get Sx 	 Tx = Sx and κ(Sx,Sx, t) ≤  for all t > . It follows

from (i) and (iii) that Sx = Tx 	 Tx = Sx and κ(Sx,Sx, t) ≤  for all t > . By induction,
we obtain

yn = Sxn 	 Sxn+ = yn+ and κ(yn, yn+, t) ≤ , for all t > . (.)

We will complete the proof by the following three steps.
Step . We prove that

lim
n→∞ g

(
Fyn ,yn+ (t)

)
=  and lim

n→∞φ(yn) = , for all t > . (.)

Without loss of generality, assume that yn+ �= yn, for all n ∈ N (otherwise, Txn = Sxn+ =
yn+ = yn = Sxn for some n ∈ N , then xn is the coincidence point of S and T . Hence,
the conclusion holds).
Since xn ∈ Ain , xn+ ∈ Ain+, yn ∈ S(Ain ), and yn+ ∈ S(Ain+) are comparable, for in ∈

{, , . . . ,m}, by (.) and (.), we get

h
[
g
(
Fyn ,yn+ (t)

)
+ φ(yn) + φ(yn+)

]
≤ κ(yn–, yn, t)

[
h
(
Mt(yn–, yn)

)
– ϕ

(
Mt(yn–, yn)

)]
+ L

(
Nt(yn–, yn)

)
≤ h

(
Mt(yn–, yn)

)
– ϕ

(
Mt(yn–, yn)

)
+ L

(
Nt(yn–, yn)

)
, (.)
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for all t > , where Nt(yn–, yn) =min{g(Fyn–,yn (t)), g(Fyn–,yn+ (( – β)t)), } =  and

Mt(yn–, yn) = max

{
g
(
Fyn–,yn (t)

)
+ φ(yn–) + φ(yn), g

(
Fyn–,yn (t)

)
+ φ(yn–) + φ(yn), g

(
Fyn ,yn+ (t)

)
+ φ(yn) + φ(yn+),



[
g
(
Fyn–,yn+

(
( – β)t

))
+ φ(yn–) + φ(yn) + φ(yn+)

]}

≤ max

{
g
(
Fyn–,yn (t)

)
+ φ(yn–) + φ(yn), g

(
Fyn ,yn+ (t)

)
+ φ(yn) + φ(yn+),



[
g
(
Fyn–,yn

(
( – β)t

))
+ g

(
Fyn ,yn+

(
( – β)t

))
+ φ(yn–) + φ(yn) + φ(yn+)

]}
.

For all β ∈ (, ], we have  – β ≥ . Since Fx,y is nondecreasing and g is strictly de-
creasing, we have g(Fyn–,yn (( – β)t)) ≤ g(Fyn–,yn (t)) for all n ∈ N . Hence, Mt(yn–, yn) ≤
max{g(Fyn–,yn (t)) + φ(yn–) + φ(yn), g(Fyn ,yn+ (t)) + φ(yn) + φ(yn+)}. On the other hand, it
is obvious that Mt(yn–, yn) ≥ max{g(Fyn–,yn (t)) + φ(yn–) + φ(yn), g(Fyn ,yn+ (t)) + φ(yn) +
φ(yn+)}. Thus, Mt(yn–, yn) = max{g(Fyn–,yn (t)) + φ(yn–) + φ(yn), g(Fyn ,yn+ (t)) + φ(yn) +
φ(yn+)}.
Suppose thatMt(yn–, yn) = g(Fyn ,yn+ (t)) + φ(yn) + φ(yn+), by (.), we have

h
[
Mt(yn–, yn)

] ≤ h
[
Mt(yn–, yn)

]
– ϕ

(
Mt(yn–, yn)

)
, for all t > ,

which implies that ϕ(g(Fyn ,yn+ (t))) + φ(yn) + φ(yn+) = . Thus, g(Fyn ,yn+ (t)) = , that is,
Fyn ,yn+ (t) =  for all t > . Then yn = yn+, which is in contradiction to yn �= yn+ for all n ∈N .
Hence, Mt(yn–, yn) = g(Fyn–,yn (t)) + φ(yn–) + φ(yn). Let Qn(t) = g(Fyn–,yn (t)) + φ(yn–) +

φ(yn). By (.), we get

h
[
Qn+(t)

] ≤ h
[
Qn(t)

]
– ϕ

(
Qn(t)

) ≤ h
[
Qn(t)

]
, for all t > . (.)

Since h is nondecreasing, it follows from (.) that {Qn(t)} is a decreasing sequence and
bounded from below, for every t > . Hence, there exists rt ≥ , such that limn→∞ Qn(t) =
rt .
By using the continuities of h and ϕ, letting n → ∞ in (.), we get h(rt) ≤ h(rt) – ϕ(rt),

which implies that ϕ(rt) = . Thus rt = , that is, limn→∞ g(Fyn–,yn (t)) + φ(yn–) + φ(yn) = 
for all t > . Hence, (.) holds.
Step . We prove that {yn} is a Cauchy sequence. To prove this fact, we first prove the

following claim.
Claim: for every t >  and ε > , there exists n ∈ N , such that p,q ≥ n with p – q ≡ 

mod m then Fyp ,yq (t) >  – ε, that is, g(Fyp ,yq (t)) < g( – ε).
In fact, suppose this is not true, then there exist t >  and ε > , such that for any n ∈N ,

we can find p(n) > q(n) ≥ n with p(n) – q(n) ≡  mod m satisfying Fyp(n),yq(n) (t) ≤  – ε,
that is, g(Fyp(n),yq(n) (t)) ≥ g( – ε).
Now, take n > m. Then corresponding to q(n) ≥ n, we can choose p(n) in such a

way that it is the smallest integer with p(n) > q(n) satisfying p(n) – q(n) ≡  mod m

http://www.fixedpointtheoryandapplications.com/content/2014/1/214
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and g(Fyp(n),yq(n) (t)) ≥ g( – ε). Therefore, g(Fyp(n)–m ,yq(n) (t)) < g( – ε). Using the non-
Archimedean Menger triangular inequality and Definition ., we have

g( – ε) ≤ g
(
Fyq(n),yp(n) (t)

) ≤ g
(
�

(
Fyq(n),yq(n)+ (t),Fyq(n)+,yp(n) (t)

))
≤ g

(
Fyq(n),yq(n)+ (t)

)
+ g

(
Fyq(n)+,yp(n) (t)

)
≤ g

(
Fyq(n),yq(n)+ (t)

)
+ g

(
Fyq(n)+,yp(n)+ (t)

)
+ g

(
Fyp(n)+,yp(n) (t)

)
≤ g

(
Fyq(n),yq(n)+ (t)

)
+ g

(
Fyq(n),yp(n)+ (t)

)
+ g

(
Fyp(n)+,yp(n) (t)

)
≤ g

(
Fyq(n),yq(n)+ (t)

)
+ g

(
Fyq(n),yp(n) (t)

)
+ g

(
Fyp(n)+,yp(n) (t)

)
≤ g

(
Fyq(n),yq(n)+ (t)

)
+ g

(
Fyq(n),yp(n)–m (t)

)
+ g

(
Fyp(n)–m ,yp(n) (t)

)
+ g

(
Fxp(n)+,xp(n) (t)

)
≤ g

(
Fyq(n),yq(n)+ (t)

)
+ g( – ε)

+
m∑
i=

g
(
Fyp(n)–i ,yp(n)–i+ (t)

)
+ g

(
Fyp(n)+yp(n) (t)

)
. (.)

Since limn→∞ g(Fyn ,yn+ (t)) =  for all t > , letting n→ ∞ in (.), we obtain

g( – ε) = lim
n→∞ g

(
Fyq(n),yp(n) (t)

)
= lim

n→∞ g
(
Fyq(n),yp(n)+ (t)

)
= lim

n→∞ g
(
Fyq(n)+,xp(n) (t)

)
= lim

n→∞ g
(
Fyq(n)+,yp(n)+ (t)

)
. (.)

By p(n) – q(n)≡  mod m, we know that yq(n) and yp(n) lie in different adjacently labeled
sets S(Ai) and S(Ai+), for ≤ i≤m. Since 	 and κ arem-transitive, we obtain yp(n) 	 yq(n)
and κ(yp(n), yq(n), t) ≤  for all t > . Using the fact that T is a generalized cyclic (κh,ϕL)S-
weak contraction and letting β = , we have

h
[
g
(
Fyq(n)+,yp(n)+ (t)

)
+ φ(yq(n)+) + φ(yp(n)+)

]
≤ κ(yq(n), yp(n), t)

[
h
(
Mt (yq(n), yp(n))

)
– ϕ

(
Mt (yq(n), yp(n))

)]
+ L

(
Nt (yq(n), yp(n))

)
≤ h

(
Mt (yq(n), yp(n))

)
– ϕ

(
Mt (yq(n), yp(n))

)
+ L

(
Nt (yq(n), yp(n))

)
, (.)

where Nt (yq(n), yp(n)) =min{g(Fyq(n),yq(n)+ (t)), g(Fyq(n),yp(n)+ (t)), g(Fyp(n),yq(n)+ (t))} and

Mt (yq(n), yp(n)) = max

{
g
(
Fyq(n),yp(n) (t)

)
+ φ(yq(n)) + φ(yp(n)), g

(
Fyq(n),yq(n)+ (t)

)
+ φ(yq(n)) + φ(yq(n)+), g

(
Fyp(n),yp(n)+ (t)

)
+ φ(yp(n)) + φ(yp(n)+),



[
g
(
Fyq(n),yp(n)+ (t)

)
+ g

(
Fyp(n),yq(n)+ (t)

)
+ φ(yq(n)) + φ(yp(n)) + φ(yq(n)+) + φ(yp(n)+)

]}
.

By (.) and (.), we have limn→∞ Mt (xq(n),xp(n)) =max{g( – ε), , ,  [g( – ε) + g( –
ε)]} = g( – ε) and limn→∞ Nt (yq(n), yp(n)) =min{, g( – ε), g( – ε)} = . According to
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the continuities of h and ϕ, letting n→ ∞ in (.), we get

h
[
g( – ε)

] ≤ h
[
g( – ε)

]
– ϕ

(
g( – ε)

)
.

Thus, ϕ(g(–ε)) = , that is, g(–ε) = . Then ε = , which is in contradiction to ε > .
Therefore, our claim is proved. Next, we will prove that {yn} is a Cauchy sequence.
By the continuity of g and g() = , we have lima→+ g( – aε) = , for any given ε > .

Since g is strictly decreasing, there exists a > , such that g( – aε) ≤ g(–ε)
 .

For any given t >  and ε > , there exists a > , such that g( – aε) ≤ g(–ε)
 . By the claim,

we can find n ∈N , such that if p,q ≥ n with p – q ≡  mod m, then

Fyp ,yq (t) >  – aε and g
(
Fyp ,yq (t)

)
< g( – aε) ≤ g( – ε)


. (.)

Since limn→∞ g(Fyn ,yn+ (t)) = , we can also find n ∈ N , such that

g
(
Fyn ,yn+ (t)

) ≤ g( – ε)
m

, (.)

for any n > n.
Suppose that r, s ≥ max{n,n} and s > r. Then there exists k ∈ {, , . . . ,m} such that

s – r ≡ k mod m. Therefore, s – r + j ≡  mod m, for j = m – k + , j ∈ {, , . . . ,m – }.
Thus we have

g
(
Fyr ,ys (t)

) ≤ g
(
Fyr ,ys+j (t)

)
+ g

(
Fys+j ,ys+j– (t)

)
+ · · · + g

(
Fys+,ys (t)

)
. (.)

By (.), (.), and (.), we get

g
(
Fyr ,ys (t)

)
<
g( – ε)


+ j · g( – ε)

m
≤ g( – ε)


+
g( – ε)


= g( – ε). (.)

Since g is strictly decreasing, by (.), we have Fyr ,ys (t) >  – ε. This proves that {yn} is a
Cauchy sequence.
Step . We show that S and T have a coincidence point in X.
Since {yn} ⊂ X is a Cauchy sequence and (X,F ,�) is a completeMenger PM-space, there

exists y∗ ∈ X, such that yn → y∗. Since S(Y ) = S(
⋃m

i=Ai) =
⋃m

i= S(Ai) is closed and {yn} ⊂
S(Y ), we know that y∗ ∈ S(Y ). Hence, there exists z ∈ Y , such that y∗ = Sz. As Y =

⋃m
i=Ai

is a cyclic representation of Y with respect to S and T , the sequence {yn} has infinite terms
in each S(Ai) for i ∈ {, , . . . ,m}.
First, suppose that y∗ ∈ S(Ai), then Tz ∈ S(Ai+), and we can choose a subsequence {ynk }

of {yn} with ynk ∈ S(Ai–) (the existence of this subsequence is guaranteed by the above
discussion). Since yn 	 yn+ and yn → y∗ = Sz, by (v), we obtain the result that ynk ∈ S(Ai–)
and y∗ ∈ S(Ai) are comparable, κ(ynk , y

∗, t) ≤  for all t >  and k sufficiently large. Letting
β = , by (.), we have

h
[
g
(
Fynk+,Tz(t)

)
+ φ(ynk+) + φ(Tz)

]
≤ κ

(
ynk , y

∗, t
)[
h
(
Mt

(
ynk , y

∗)) – ϕ
(
Mt

(
ynk , y

∗))] + L
(
Nt

(
ynk , y

∗))
≤ h

[
Mt

(
ynk , y

∗)] – ϕ
(
Mt

(
ynk , y

∗)) + L
(
Nt

(
ynk , y

∗)), (.)
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where Nt(ynk , y
∗) =min{g(Fynk ,ynk+ (t)), g(Fynk ,Tz(t)), g(Fynk+,y∗ (t))} and

Mt
(
ynk , y

∗) = max

{
g
(
Fynk ,y∗ (t)

)
+ φ(ynk ) + φ

(
y∗), g(Fynk ,ynk+ (t)) + φ(ynk ) + φ(ynk+),

g
(
Fy∗ ,Tz(t)

)
+ φ

(
y∗) + φ(Tz),



[
g
(
Fynk ,Tz(t)

)
+ g

(
Fynk+,y∗ (t)

)
+ φ(ynk )

+ φ(ynk+) + φ
(
y∗) + φ(Tz)

]}
.

Since φ is lower semi-continuous and yn → y∗, by (.), we have

φ
(
y∗) ≤ lim inf

n→∞ φ(yn) = .

Let G be the set of all discontinuous points of Fx∗ ,Tx∗ (·). Since g , h, ϕ, and L are
continuous, we find that G is also the set of all discontinuous points of g(Fx∗ ,Tx∗ (·)),
h[g(Fx∗ ,Tx∗ (·))+φ(Tz)], ϕ(g(Fx∗ ,Tx∗ (·))+φ(Tz)), and L(g(Fx∗ ,Tx∗ (·))). Moreover, we know that
G is a countable set. Let G = R+\G. If t ∈ G\{} (t is a continuous point of Fx∗ ,Tx∗ (·)), by
(.), we have limk→∞ Nt(ynk , y

∗) =min{, g(Fy∗ ,Tz(t)), } =  and

lim
k→∞

Mt
(
ynk , y

∗) = max

{
,, g

(
Fy∗ ,Tz(t)

)
+ φ(Tz),



[
g
(
Fy∗ ,Tz(t)

)
+ φ(Tz)

]}

= g
(
Fy∗ ,Tz(t)

)
+ φ(Tz).

Letting n → ∞ in (.), we get

h
[
g
(
Fy∗ ,Tz(t)

)
+ φ(Tz)

] ≤ h
[
g
(
Fy∗ ,Tz(t)

)
+ φ(Tz)

]
– ϕ

(
g
(
Fy∗ ,Tz(t)

)
+ φ(Tz)

)
,

which implies that ϕ(g(Fy∗ ,Tz(t)) + φ(Tz)) = . Hence, g(Fy∗ ,Tz(t)) =  and φ(Tz) = . Then

Fy∗ ,Tz(t) = , for all t ∈G\{}. (.)

If t ∈ G with t > , by the density of real numbers, there exist t, t ∈ G, such that  <
t < t < t. Since the distribution is nondecreasing, we have

 =H(t) = Fy∗ ,Tz(t) ≤ Fy∗ ,Tz(t) ≤ Fy∗ ,Tz(t) = . (.)

Hence, from (.) and (.), we have Fy∗ ,Tz(t) =  for any t > . Thus, Sz = y∗ = Tz, that is,
z is the coincidence point of S and T . �

Corollary . Let (X,≤) be a partially ordered set and (X,F ,�) be a complete N.AMenger
PM-space of type (D)g , κ : X×X× (,∞) → [,∞) be a function, S,T : X → X be two self-
maps and T(X) ⊂ S(X). Suppose that for x, y ∈ X, Sx and Sy are comparable, we have

g
(
FTx,Ty(t)

) ≤ κ(Sx,Sy, t)
(
Mt(Sx,Sy)

)
+ L

(
Nt(Sx,Sy)

)
, (.)

for all t > , where  : [,∞) → [,∞) is a continuous function, (t) < t for t >  and
() = , L is the same as the one in Theorem .,

Mt(Sx,Sy) =max

{
g
(
FSx,Sy(t)

)
, g

(
FSx,Tx(t)

)
, g

(
FSy,Ty(t)

)
,


[
g
(
FSx,Ty(t)

)
+ g

(
FSy,Tx(t)

)]}
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and

Nt(Sx,Sy) =min
{
g
(
FSx,Tx(t)

)
, g

(
FSx,Ty(t)

)
, g

(
FSy,Tx(t)

)}
.

Also, assume that the conditions (i)-(v) of Theorem . are satisfied, where m = .
Then S and T have a coincidence point in X, that is, there exists x ∈ X, such that Sx = Tx.

Proof Letting h(x) = x, φ(x) ≡ , β ≡ , and ϕ(t) = t –(t) in Theorem ., the conclusion
follows immediately. �

Definition . Let X be a nonempty set, S,T : X → X be two self-maps and α : X × X ×
(,∞)→ (,∞) be a function. S and T are called generalized α-admissible, if for all x, y ∈
X, t > , α(Sx,Sy, t)≥  implies α(Tx,Ty, t)≥ . α is called -transitive on X, if for all t > ,
x,x,x ∈ X, α(x,x, t) ≥ , α(x,x, t) ≥  implies α(x,x, t) ≥ .

Theorem. Let (X,≤) be a partially ordered set and (X,F ,�) be a complete N.AMenger
PM-space, � be a continuous t-norm and � = �M , α : X × X × (,∞) → (,∞) be a
function, S,T : X → X be two self-maps and T(X)⊂ S(X). Suppose that for x, y ∈ X, Sx and
Sy are comparable, we have

α(Sx,Sy, t)
[(


FTx,Ty(ψ(ct))

– 
)
– L

(
Nψ(t)(Sx,Sy)

)] ≤ 
(
Mψ(t)(Sx,Sy)

)
, (.)

for all t > , such that min{FSx,Sy(ψ(t)),FSx,Tx(ψ(t)),FSy,Ty(ψ(t)),FSx,Ty(ψ(t)),FSy,Tx(ψ(t))} >
, where c ∈ (, ), ψ ∈ � , L and  are the same as the ones in Corollary .,

Mψ(t)(Sx,Sy) = max

{


FSx,Sy(ψ(t))
– ,


FSx,Tx(ψ(t))

– ,


FSy,Ty(ψ(t))
– ,




[


FSx,Ty(ψ(t))
+


FSy,Tx(ψ(t))

– 
]}

and

Nψ(t)(Sx,Sy) =min

{


FSx,Tx(ψ(t))
– ,


FSx,Ty(ψ(t))

– ,


FSy,Tx(ψ(t))
– 

}
.

Also assume that the following conditions hold:
(i) S and T are generalized α-admissible;
(ii) α and 	 are -transitive;
(iii) T is weakly comparable with respect to S;
(iv) there exists x ∈ A such that Sx 	 Tx and α(Sx,Tx, t) ≥  for all t > ;
(v) if a sequence {yn} ⊂ Y satisfies yn 	 yn+, α(yn, yn+, t)≥  for all n ∈N and t > ,

and yn → y as n→ ∞, then yn 	 y and α(yn, y, t) ≥  for n sufficiently large and for
all t > .

Then S and T have a coincidence point in X.

Proof Let g : [, ] → [, +∞) be a function defined by g(t) = 
t –  for t >  and g() =

+∞. Then g ∈ �. Since � = �M , we have g(�(s, t)) ≤ g(s) + g(t) for all s, t ∈ [, ]. Hence,

http://www.fixedpointtheoryandapplications.com/content/2014/1/214
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(X,F ,�) is a N.AMenger PM-space of (D)g . Let κ : X×X× (,∞) → [,∞) be a function
and κ(x, y, t) = 

α(x,y,t) for all x, y ∈ X and t > .
Since ψ and Fx,y are both nondecreasing, we have FTx,Ty(ψ(ct)) ≤ FTx,Ty(ψ(t)). Hence,


FTx,Ty(ψ(ct)) –  ≥ 

FTx,Ty(ψ(t)) – . By the definition of g , we have

g
(
FTx,Ty

(
ψ(t)

)) ≤ g
(
FTx,Ty

(
ψ(ct)

))
. (.)

For x, y ∈ X, Sx and Sy are comparable, by (.) and (.), we get

g
(
FTx,Ty

(
ψ(t)

)) ≤ κ
(
Sx,Sy,ψ(t)

)


(
Mψ(t)(Sx,Sy)

)
+ L

(
Nψ(t)(Sx,Sy)

)
. (.)

Since ψ is continuous and ψ(t) → +∞ as t → +∞, it follows from (.) that (.)
holds. Also, S and T also satisfy (i)-(v) of Theorem ..
Thus, all the conditions of Corollary . are satisfied. Therefore, S and T have a coinci-

dence point in X. �

3 Coincidence point results in partially orderedmetric spaces
In this section, we will apply the results obtained in Section  to establish the correspond-
ing coincidence point theorems for generalized cyclic (κh,ϕL)S-weak contractions in par-
tially ordered metric spaces. We first introduce a new notion in metric spaces that we will
use in Theorem ..

Definition . Let S and T be two self-maps of a metric space (X,d), κ : X × X → R+

be a function. S and T are called generalized κ-admissible, if for all x, y ∈ X, κ(Sx,Sy) ≤ 
implies κ(Tx,Ty) ≤ . κ is called m-transitive on X, if x,x, . . . ,xm,xm+ ∈ X, κ(x,x) ≤
,κ(x,x) ≤ , . . . ,κ(xm,xm+) ≤  implies κ(x,xm+) ≤ .

Theorem . Let (X,d,≤) be an ordered complete metric space and κ : X ×X × (,∞) →
[,∞) be a function. Let m be a positive integer, A,A, . . . ,Am be subsets of X, Y =

⋃m
i=Ai,

S and T : Y → Y be two self-maps, Y be a cyclic representation of Y with respect to S
and T . Suppose that Am+ = A, and for k ∈ {, , . . . ,m} and for all x, y ∈ X, Sx ∈ S(Ak) and
Sy ∈ S(Ak+) are comparable, we have

h
(
d(Tx,Ty)

) ≤ κ(Sx,Sy)
[
h
(
M(Sx,Sy)

)
– ϕ

(
M(Sx,Sy)

)]
+ L

(
N(Sx,Sy)

)
, (.)

for all t > , where h is a continuous and nondecreasing linear function, h(s) =  if and only
if s = , ϕ,L : [,∞) → [,∞) are two continuous functions such that L() = , ϕ(t) =  if
and only if t = , ϕ(s)

t ≥ ϕ( st ) and
L(s)
t ≤ L( st ) for all t > , ϕ(t) ≤ h(t) for all t ∈ R+,

N(Sx,Sy) =min
{
d(Sx,Tx),d(Sx,Ty),d(Sy,Tx)

}
and

M(Sx,Sy) =max

{
d(Sx,Sy),d(Sx,Tx),d(Sy,Ty),



[
d(Sx,Ty) + d(Sy,Tx)

]}
.

Also, assume that the following conditions hold:
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(i) S and T are generalized κ-admissible;
(ii) κ and 	 are m-transitive;
(iii) T is weakly comparable with respect to S;
(iv) there exists x ∈ A such that Sx 	 Tx and κ(Sx,Tx) ≤ ;
(v) if a sequence {yn} ⊂ Y satisfies yn 	 yn+, κ(yn, yn+) ≤  for all n ∈ N , and yn → y as

n→ ∞, then yn 	 y and κ(yn, y) ≤  for n sufficiently large.
Then S and T have a coincidence point in X, that is, there exists x ∈ X such that Sx = Tx.

Proof Let (X,F ,�) be the induced PM-space, where F is defined by F (x, y)(t) = Fx,y(t) =
t

t+d(x,y) , for all t >  and x, y ∈ X.

In fact, for  < t ≤ t, Fx,z(max{t, t}) = Fx,z(t) = t
t+d(x,z)

and Fx,y(t)Fy,z(t)
Fx,y(t)+Fy,z(t)–Fx,y(t)Fy,z(t)

=
tt

tt+td(y,z)+td(x,y)
, by d(x, z)≤ d(x, y) + d(y, z), we have

tt + td(y, z) + td(x, y)
tt

=  +
d(x, y)
t

+
d(y, z)
t

≥  +
d(x, z)
t

=
t + d(x, z)

t
,

which implies that (.) holds and �(s, t) ≥ ts
t+s–ts . Hence, by Example ., we know that

(X,F ,�) is a N.A Menger PM-space of (D)g-type for g ∈ � defined by g(t) = 
t –  for

 < t ≤  and g() = +∞. It is not difficult to prove that a sequence {xn} in (X,d) converges
to a point x∗ ∈ X if and if only {xn} in (X,F ,�) τ -converges to x∗. Since (X,d) is a complete
metric space, (X,F ,�) is a τ -complete N.A Menger PM-space of type (D)g .
For x, y ∈ X, Sx ∈ S(Ai) and Sy ∈ S(Ai+) are comparable, by (.) and the properties of h,

ϕ, L, for t > , we have

h
(
d(Tx,Ty)

t

)
=

h(d(Tx,Ty))
t

≤ κ(Sx,Sy)
[
h(M(Sx,Sy))

t
–

ϕ(M(Sx,Sy))
t

]
+
L(N(Sx,Sy))

t

≤ κ(Sx,Sy)
[
h
(
M(Sx,Sy)

t

)
– ϕ

(
M(Sx,Sy)

t

)]
+ L

(
N(Sx,Sy)

t

)
. (.)

Since Fx,y(t) = t
t+d(x,y) for t > , we have g(Fx,y(t)) = d(x,y)

t for t > . It follows from (.) that
(.) holds. In fact, S and T also satisfy (i)-(v) of Theorem ..
Thus, all the conditions of Theorem . are satisfied when φ(x)≡ . Therefore, the con-

clusion holds. �

4 An illustration
In this section, we give an example to demonstrate Theorem ..

Example . Let X = R+, �(s, t) = ts
t+s–ts for all s, t ∈ [, ], g(t) = 

t –  for all  < t ≤  and
g() = +∞. Define F : X ×X →D+ by

F (x, y)(t) = Fx,y(t) =

{
t

t+|x–y| , t > ,
, t ≤ ,

for all x, y ∈ X. Then (X,F ,�) is a complete N.AMenger PM-space of (D)g-type. Suppose
that A = [, ], A = [, ], A = [,

√
], and Y =

⋃
i=Ai = [, ]. Define S,T : Y → Y and

http://www.fixedpointtheoryandapplications.com/content/2014/1/214
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κ : X ×X × (,∞) → (,∞) by

Sx = x, Tx =

{
x
 , x ∈ [, ),√
x, x ∈ [, ],

κ(x, y, t) =

{
, x, y ∈ [, ) or x, y ∈ [, ],
, otherwise.

Then S and T are generalized κ-admissible and Y is a cyclic representation of Y with
respect to S and T , and T is weakly comparable with respect to S, and κ and 	 are
-transitive.
Let φ : X → [,∞), φ(x) ≡  for all x ∈ X, β ≡ , L(t) = , ϕ(t) = t

 , h(t) = t, for all t ∈
[,∞). Now, we verify inequality (.) in Theorem .. By the definitions of F , g , φ, h, ϕ,
and L, we only need to prove that

|Tx – Ty|
t

≤ 


· κ(x, y, t) ·max

{ |x – y|
t

,
|Tx – x|

t
,
|Ty – y|

t
,



[ |Tx – y|
t

+
|Ty – x|

t

]}
,

for all t > , that is,

|Tx – Ty| ≤ 


· κ(x, y, t) ·max

{
|x – y|, |Tx – x|, |Ty – y|, 


[|Tx – y| + |Ty – x|]}, (.)

where κ(x, y, t) =  if x, y ∈ [, ) or x, y ∈ [, ], and κ(x, y, t) =  if otherwise.
We consider the following cases:
Case . If x, y ∈ [, ), then 

 · κ(x, y, t) = 
 . By the definition of T , we have

|Tx – Ty| = 

|x – y| ≤ 


· κ(x, y, t) · |x – y|,

which implies that (.) holds.
Case . If x ∈ [, ) and y ∈ [, ], then 

 · κ(x, y, t) =  and x < √y ≤ y. By the definition
of T , we have

|Tx – Ty| = √
y –



x ≤ y – x +

√
y –



x = |y – 


x| + |√y – x|

=



· κ(x, y, t) ·
(


[|Tx – y| + |Ty – x|]),

which implies that (.) holds. Similarly, if x ∈ [, ] and y ∈ [, ), we also have (.) holds.
Case . If x, y ∈ [, ], then 

 · κ(x, y, t) = 
 and

√
x + √y ≥ . By the definition of T , we

have

|Tx – Ty| = |√x –
√
y| ≤

√
x +√y


|√x –
√
y| = 


|x – y|,

which implies that (.) holds.
Thus, all the conditions of Theorem . are satisfied. Therefore, S and T have a coinci-

dence point in X, indeed, x =  and x =  are coincidence points of S and T .
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