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Abstract
The purpose of this paper is first to introduce and study the general split equality
variational inclusion problems and the general split equality optimization problems in the
setting of infinite-dimensional Hilbert spaces and then propose a new simultaneous
iterative algorithm. Under suitable conditions, some strong convergence theorems
for the sequences generated by the proposed algorithm converging strongly to a
solution for these two kinds of problems are proved. As special cases, we shall utilize
our results to study the split feasibility problems, the split equality equilibrium
problems, and the split optimization problems. The results presented in the paper not
only extend and improve the corresponding recent results announced by many
authors, but they also provide an affirmative answer to an open question raised by
Moudafi in his recent work.
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1 Introduction
Let C and Q be nonempty closed convex subsets of real Hilbert spaces H andH, respec-
tively. The split feasibility problem (SFP) is formulated as

to finding x∗ ∈ C and Ax∗ ∈Q, (.)

where A : H → H is a bounded linear operator. In , Censor and Elfving [] first
introduced the (SFP) in finite-dimensional Hilbert spaces for modeling inverse problems
which arise from phase retrievals and in medical image reconstruction []. It has been
found that the (SFP) can also be used in various disciplines such as image restoration, and
computer tomograph and radiation therapy treatment planning [–]. The (SFP) in an
infinite-dimensional real Hilbert space can be found in [, , –].
Assuming that the (SFP) is consistent, it is not hard to see that x∗ ∈ C solves (SFP) if and

only if it solves the fixed-point equation

x∗ = PC
(
I – γA∗(I – PQ)A

)
x∗,
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where PC and PQ are the metric projection from H onto C and from H onto Q, respec-
tively, γ >  is a positive constant and A∗ is the adjoint of A.
A popular algorithm to be used to solves the SFP (.) is due to Byrne’s CQ-algorithm

[]:

xk+ = PC
(
I – γA∗(I – PQ)A

)
xk , k ≥ , (.)

where γ ∈ (, /λ) with λ being the spectral radius of the operator A∗A.
Recently, Moudafi [, ] introduced the following split equality feasibility problem

(SEFP):

to find x ∈ C, y ∈Q such that Ax = By, (.)

where A :H →H and B :H →H are two bounded linear operators. Obviously, if B = I
(identity mapping on H) and H =H, then (.) reduces to (.). The kind of split equal-
ity problems (.) allows asymmetric and partial relations between the variables x and y.
The interest is to cover many situations, such as decomposition methods for PDEs, and
applications in game theory and intensity-modulated radiation therapy.
In order to solve the split equality feasibility problem (.), Moudafi [] introduced the

following simultaneous iterative method:

{
xk+ = PC(xk – γA∗(Axk – Byk)),
yk+ = PQ(yk + βB∗(Axk+ – Byk)),

(.)

and under suitable conditions he proved the weak convergence of the sequence {(xn, yn)}
to a solution of (.) in Hilbert spaces.
At the same time, he raised the following open question.

Moudafi’s OpenQuestion . Is there any strong convergence theorem of an alternating
algorithm for the split equality feasibility problem (.) in real Hilbert spaces?

More recently, Eslamian and Latif [], Chen et al. [], Chuang [] and Chang and
Wang [] introduced and studied some kinds of general split feasibility problem, general
split equality problem, and split variational inclusion problem in realHilbert spaces. Under
suitable conditions some strong convergence theorems are proved. Also a comprehensive
survey and update bibliography on split feasibility problems are given in Ansari and Rehan
[].
Motivated by the above works and related literature, in this paper, we continue to con-

sider the problem (.). We obtain some strongly convergent theorems to a solution of the
problem (.) which provide an affirmative answer to Moudafi’s open question.
For the purpose we first introduce and consider the following more general problems.
(I) General split equality variational inclusion problem:

(GSEVIP) to find x∗ ∈H and y∗ ∈H such that

 ∈
∞⋂
i=

Ui
(
x∗),  ∈

∞⋂
i=

Ki
(
y∗) and Ax∗ = By∗, (.)
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where H, H and H are three real Hilbert spaces, Ui : H → H and Ki : H → H, i =
, , . . . are two families of set-valued maximal monotone mappings, A : H → H and B :
H →H are two linear and bounded operators.
(II) General split equality optimization problem:

(GSEOP) to find x∗ ∈H and y∗ ∈H such that for each i≥ 

hi
(
x∗) = min

x∈H
hi(x), gi

(
y∗) = min

y∈H
gi(y) and Ax∗ = By∗, (.)

where H, H, and H are three real Hilbert spaces, A :H →H and B :H →H are two
linear and bounded operators, hi :H → R and gi :H → R are two countable families of
proper, convex, and lower semicontinuous functions.
The following problems are special cases of Problem I and II.
(III) Split equality feasibility problems.
Let C ⊂ H and Q ⊂ H be two nonempty closed convex subsets and A : H → H,

B : H → H be two bounded linear operators. As mentioned above the so-called ‘split
equality feasibility problem’ (SEFP) is to find

x∗ ∈ C, y∗ ∈ Q such that Ax∗ = By∗. (.)**

Let iC and iQ be the indicator functions of C and Q, respectively, i.e.,

iC(x) =

{
, if x ∈ C,
+∞, if x /∈ C;

iQ(y) =

{
, if y ∈ C,
+∞, if y /∈Q.

(.)

Denote by NC(x) and NQ(y) the normal cones of C and Q at x and y, respectively:

NC(x) =
{
z ∈H : 〈z, v – x〉 ≤ ,∀v ∈ C

}
,

NQ(y) =
{
z ∈H : 〈z, v – y〉 ≤ ,∀v ∈Q

}
.

It is easy to know that iC and iQ both are proper convex and lower semicontinuous func-
tions on H and H, respectively, and the sub-differentials ∂iC and ∂iQ both are maximal
monotone operators. We define the resolvent operator J∂iCβ of iC by

J∂iCβ (x) = (I + β∂iC)–(x), β > ,x ∈H.

Here

∂iC(x) =
{
z ∈H : iC(x) + 〈z,u – x〉 ≤ iC(u),∀u ∈H

}
=

{
z ∈H : 〈z,u – x〉 ≤ ,∀u ∈ C

}
=NC(x), x ∈ C.

Hence we have

u = J∂iCβ (x) ⇔ x – u ∈ βNC(u)

⇔ 〈x – u, y – u〉 ≤ , ∀y ∈ C ⇔ u = PC(x).

This implies that J∂iCβ = PC for any β > . Similarly, we also have ∂iQ(y) =NQ(y), and J∂iQβ =
PQ for any β > . Therefore the (SEFP) (.) is equivalent to the following split equality
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optimization problem, i.e., to find x∗ ∈H, and y∗ ∈H such that

iC
(
x∗) = min

x∈H
iC(x), iQ

(
y∗) = min

y∈H
iQ(y) and Ax∗ = By∗;

⇔  ∈ ∂iC
(
x∗),  ∈ ∂iQ

(
y∗) and Ax∗ = By∗.

(IV) Split equality equilibrium problem.
Let D be a nonempty closed and convex subset of a real Hilbert space H . A bifunction

g : D × D → (–∞, +∞) is said to be a equilibrium function, if it satisfies the following
conditions:
(A) g(x,x) = , for all x ∈ D;
(A) g is monotone, i.e., g(x, y) + g(y,x) ≤  for all x, y ∈D;
(A) lim supt↓ g(tz + ( – t)x, y)≤ g(x, y) for all x, y, z ∈D;
(A) for each x ∈D, y �→ g(x, y) is convex and lower semicontinuous.

The so-called equilibrium problem with respect to the equilibrium function g is

to find x∗ ∈D such that g
(
x∗, y

) ≥ , ∀y ∈D. (.)

Its solution set is denoted by EP(g).
For given λ >  and x ∈ H , the resolvent of the equilibrium function g is the operator

Rλ,g :H →D defined by

Rλ,g(x) :=
{
z ∈D : g(z, y) +


λ

〈y – z, z – x〉 ≥ ,∀y ∈D
}
. (.)

Proposition . [] The resolvent operator Rλ,g of the equilibrium function g has the fol-
lowing properties:
() Rλ,g is single-valued;
() F(Rλ,g) = EP(g) and EP(g) is a nonempty closed and convex subset of D;
() Rλ,g is a firmly nonexpansive mapping.

Let h, g :D×D → (–∞, +∞) be two equilibrium functions. For given λ > , let Rλ,h and
Rλ,g be the resolvent of h and g (defined by (.)), respectively.
The so-called split equality equilibrium problem with respective to h, g, and D

(SEEP(h, g,D)) is to find x∗ ∈D, y∗ ∈D such that

h
(
x∗,u

) ≥ , ∀u ∈D, g
(
y∗, v

) ≥ , ∀v ∈D and Ax∗ = By∗, (.)

where A,B :D →D are two linear and bounded operators.
By Proposition ., the (SEEP(h, g,D)) (.) is equivalent to find x∗ ∈D, y∗ ∈D such that

for each λ > 

x∗ ∈ EP(h,D), y∗ ∈ EP(g,D) and Ax∗ = By∗

⇔ x∗ ∈ F(Rλh), y∗ ∈ F(Rλg) and Ax∗ = By∗.

Letting C = F(Rλh),Q = F(Rλg), by Proposition ., C andQ both are nonempty closed and
convex subset of D. Hence the problem (.) is equivalent to the following split equality
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feasibility problem:

to find x∗ ∈ C, y∗ ∈Q such that Ax∗ = By∗. (.)

(V) Split optimization problem.
Let H and H be two real Hilbert spaces, A :H → H be a linear and bounded opera-

tors, h : H → R and g : H → R be two proper convex and lower semicontinuous func-
tions. The split optimization problem (SOP) is to find x∗ ∈H, Ax∗ ∈H such that

h
(
x∗) = min

x∈H
hi(x) and g

(
Ax∗) = min

z∈H
g(z). (.)

Denote by U = ∂h and K = ∂g , then the (SOP) (.) is equivalent to the following split
variational inclusion problem (SVIP): to find x∗ ∈ H such that

 ∈U
(
x∗),  ∈ K

(
Ax∗). (.)

For solving (GSEVIP) (.) and (GSEOP) (.), in Sections  and , we propose a new si-
multaneous type iterative algorithm. Under suitable conditions some strong convergence
theorems for the sequences generated by the algorithmare proved in the setting of infinite-
dimensional Hilbert spaces. As special cases, we shall utilize our results to study the split
feasibility problem, split equality equilibriumproblem and the split optimization problem.
By the way, we obtain a strongly convergent iterative sequence to a solution of the prob-
lem (.), which provides an affirmative answer to the open question raised by Moudafi
[]. The results presented in the paper extend and improve the corresponding results an-
nounced by Moudafi et al. [, , ], Eslamian and Latif [], Chen et al. [], Censor et
al. [, –, ], Chuang [], Naraghirad [], Chang and Wang [], Ansari and Rehan
[], and some others.

2 Preliminaries
We first recall some definitions, notations, and conclusions.
Throughout this paper, we assume that H is a real Hilbert space and C is a nonempty

closed convex subset of H . In the sequel, we denote by F(T) the set of fixed points of a
mapping T and by xn → x∗ and xn ⇀ x∗, the strong convergence, and weak convergence
of a sequence {xn} to a point x∗, respectively.
Recall that a mapping T : H → H is said to be nonexpansive, if ‖Tx – Ty‖ ≤ ‖x – y‖,

∀x, y ∈ H . A typical example of nonexpansive mapping is the metric projection PC from
H onto C ⊆ H defined by ‖x – PCx‖ = infy∈C ‖x – y‖. The metric projection PC is firmly
nonexpansive, if

‖PCx – PCy‖ ≤ 〈x – y,PCx – PCy〉 ∀x, y ∈H , (.)

and it can be characterized by the fact that

PC(x) ∈ C and
〈
y – PC(x),x – PC(x)

〉 ≤ , ∀x ∈ H , y ∈ C. (.)

A mapping T :H →H is said to be quasinonexpansive, if F(T) �= ∅, and

‖Tx – p‖ ≤ ‖x – p‖, for each x ∈ H and p ∈ F(T).

http://www.fixedpointtheoryandapplications.com/content/2014/1/215
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It is easy to see that if T is a quasi-nonexpansive mapping, then F(T) is a closed and
convex subset of C. Besides, T is said to be a firmly nonexpansive, if

‖Tx – Ty‖ ≤ 〈x – y,Tx – Ty〉 ∀x, y ∈ C

⇔ ‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(I – T)x – (I – T)y
∥∥ ∀x, y ∈ C.

Lemma . [] Let H be a real Hilbert space, and {xn} be a sequence in H . Then, for any
given sequence {λn} of positive numbers with

∑∞
i= λn =  for any positive integers i, j with

i < j the following holds:

∥∥∥∥∥
∞∑
i=

λnxn

∥∥∥∥∥


≤
∞∑
i=

λn‖xn‖ – λiλj‖xi – xj‖.

Lemma . [] Let H be a real Hilbert space. For any x, y ∈ H , the following inequality
holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉.

Lemma . [] Let {tn} be a sequence of real numbers. If there exists a subsequence {ni}
of {n} such that tni < tni+ for all i ≥ , then there exists a nondecreasing sequence {τ (n)}
with τ (n)→ ∞ such that for all (sufficiently large) positive integer number n, the following
holds:

tτ (n) ≤ tτ (n)+, tn ≤ tτ (n)+.

In fact,

τ (n) =max{k ≤ n : tk ≤ tk+}.

Definition . (Demiclosedness principle) Let C be a nonempty closed convex subset of
a real Hilbert spaceH , and T : C → C be a mapping with F(T) �= ∅. Then I –T is said to be
demiclosed at zero, if for any sequence {xn} ⊂ C with xn ⇀ x and ‖xn – Txn‖ → , x = Tx.

Remark . [] It is well known that if T : C → C is a nonexpansive mapping, then I –T
is demiclosed at zero.

Lemma . Let {an}, {bn} and {cn} be sequences of positive real numbers satisfying an+ ≤
( – bn)an + cn for all n ≥ . If the following conditions are satisfied:
() bn ∈ (, ) and

∑∞
n= bn =∞,

()
∑∞

n= cn < ∞, or lim supn→∞
cn
bn ≤ ,

then limn→∞ an = .

Lemma . [] Let H be a real Hilbert space, B : H → H be a set-valued maximal
monotone mapping, β > , and let JBβ be the resolvent mapping of B defined by JBβ := (I +
βB)–, then

(i) for each β > , JBβ is a single-valued and firmly nonexpansive mapping;

http://www.fixedpointtheoryandapplications.com/content/2014/1/215
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(ii) D(JBβ ) =H and F(JBβ ) = B–();
(iii) (I – JBβ ) is a firmly nonexpansive mapping for each β > ;
(iv) suppose that B–() �= ∅, then for each x ∈H , each x∗ ∈ B–() and each β > 

∥∥x – JBβ x
∥∥ +

∥∥JBβ x – x∗∥∥ ≤ ∥∥x – x∗∥∥;

(v) suppose that B–() �= ∅. Then 〈x – JBβ x, JBβ x –w〉 ≥  for each x ∈H , each w ∈ B–(),
and each β > .

Lemma . Let H, H be two real Hilbert spaces, A : H → H be a linear bounded op-
erator and A∗ be the adjoint of A. Let B : H → H be a set-valued maximal monotone
mapping, β > , and let JBβ be the resolvent mapping of B, then

(i) ‖(I – JBβ )Ax – (I – JBβ )Ay‖ ≤ 〈(I – JBβ )Ax – (I – JBβ )Ay,Ax –Ay〉;
(ii) ‖A∗(I – JBβ )Ax –A∗(I – JBβ )Ay‖ ≤ ‖A‖〈(I – JBβ )Ax – (I – JBβ )Ay,Ax –Ay〉;
(iii) if ρ ∈ (, 

‖A‖ ), then (I – ρA∗(I – JBβ )A) is a nonexpansive mapping.

Proof By Lemma .(iii), the mapping (I – JBβ ) is firmly nonexpansive, hence the conclu-
sions (i) and (ii) are obvious.
Now we prove the conclusion (iii).
In fact, for any x, y ∈H, it follows from the conclusions (i) and (ii) that

∥∥(
I – ρA∗(I – JBβ

)
A

)
x –

(
I – ρA∗(I – JBβ

)
A

)
y
∥∥

= ‖x – y‖ – ρ
〈
x – y,A∗(I – JBβ

)
Ax –A∗(I – JBβ

)
Ay

〉
+ ρ∥∥A∗(I – JBβ

)
Ax –A∗(I – JBβ

)
Ay

∥∥

≤ ‖x – y‖ – ρ
〈
Ax –Ay,

(
I – JBβ

)
Ax –

(
I – JBβ

)
Ay

〉
+ ρ‖A‖∥∥(

I – JBβ
)
Ax –

(
I – JBβ

)
Ay

∥∥

≤ ‖x – y‖ – ρ
(
 – ρ‖A‖)∥∥(

I – JBβ
)
Ax –

(
I – JBβ

)
Ay

∥∥

≤ ‖x – y‖ (
since ρ

(
 – ρ‖A‖) ≥ 

)
.

This completes the proof of Lemma .. �

3 General split equality variational inclusion problem and strong convergence
theorems

Throughout this section we assume that
() H, H, H are three real Hilbert spaces;
() {Ui}∞i= :H → H and {Ki}∞i= :H → H are two families of set-valued maximal

monotone mappings, β >  and γ >  are given positive numbers;
() A :H →H and B :H →H are two bounded linear operators and A∗, B∗ are the

adjoint of A and B, respectively;
() f =

[ f
f

]
, where fi, i = ,  is a k-contractive mapping on Hi with k ∈ (, );

() the set of solutions of (GSEVIP) (.) 	 �= ∅,

J (Ui ,Ki)
μi

:=

[
JUi
μi

JKi
μi

]
, G = [A –B], G∗ =

[
A∗

–B∗

]
, G∗G =

[
A∗A –A∗B
–B∗A B∗B

]
,

http://www.fixedpointtheoryandapplications.com/content/2014/1/215
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() for any given w ∈ H ×H, the iterative sequence {wn} ⊂H ×H is generated by

wn+ = αnwn + βnf (wn) +
∞∑
i=

γn,i
(
J (Ui ,Ki)
μi

(
I – λn,iG∗G

)
wn

)
, n ≥ , (.)

or its equivalent form:

{
xn+ = αnxn + βnf(xn) +

∑∞
i= γn,i(J

Ui
μi (xn – λn,i(A∗(Axn – Byn)))),

yn+ = αnyn + βnf(yn) +
∑∞

i= γn,i(J
Ki
μi (yn + λn,i(B∗(Axn – Byn)))),

(.)′

where {αn}, {βn}, {γn,i} are the sequences of nonnegative numbers satisfying

αn + βn +
∞∑
i=

γn,i = , for each n≥ .

We are now in a position to give the following results.

Lemma . Let H, H, H, A, B, A∗, B∗, {Ui}, {Ki}, J (Ui ,Ki)
μi , G, G∗ be the same as above.

If 	 �= ∅ (the solution set of (GSEVIP) (.)), then w∗ := (x∗, y∗) ∈ H × H is a solution of
(GSEVIP) (.) if and only if for each i ≥ , and for any given γ >  and μ > 

w∗ = J (Ui ,Ki)
μ

(
I – γG∗G

)
w∗. (.)

Proof Indeed, if w∗ = (x∗, y∗) ∈ H × H is a solution of (GSEVIP) (.), then by Lem-
ma .(ii), for each i≥ , and for any γ >  and μ >  we have

x∗ ∈U–
i () = F

(
JUi
μ

)
, y∗ ∈ K–

i () = F
(
JKi
μ

)
and Ax∗ = By∗

⇔ x∗ = JUi
μ x∗, y∗ = JKi

μ y∗ and Ax∗ = By∗.

Hence we have G(w∗) = Ax∗ – By∗ = , and so

J (Ui ,Ki)
μi

(
I – γG∗G

)(
w∗) = J (Ui ,Ki)

μ

(
w∗) = (

JUi
μ x∗, JKi

μ y∗) = w∗.

This implies that (.) is true.
Conversely, if w∗ = (x∗, y∗) ∈H ×H satisfies (.), then we have

{
x∗ = JUi

μ [x∗ – γA∗(Ax∗ – By∗)],
y∗ = JKi

μ [y∗ + γB∗(Ax∗ – By∗)].
(.)

We make the assumption that the solution set 	 of (GSEVIP) (.) is nonempty. Hence
the sets U–

i () and K–
i () both are nonempty. By Lemma .(v) and (.), we have

〈
x∗ –

(
x∗ – γA∗(Ax∗ – By∗)),x – x∗〉 ≥ , ∀x ∈U–

i (),

and so

〈
Ax∗ – By∗,Ax –Ax∗〉 ≥ , ∀x ∈ U–

i (). (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/215
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Similarly, by Lemma .(v) and (.) again, one gets

〈
Ax∗ – By∗,By∗ – By

〉 ≥ , ∀y ∈ K–
i (). (.)

Adding up (.) and (.), we have

〈
Ax∗ – By∗,Ax –Ax∗ + By∗ – By

〉 ≥ , ∀x ∈ U–
i () and y ∈ K–

i ().

Simplifying it, we have

∥∥Ax∗ – By∗∥∥ ≤ 〈
Ax∗ – By∗,Ax – By

〉
, ∀x ∈U–

i () and y ∈ K–
i (). (.)

Since 	 �= ∅, taking w̄ = (x̄, ȳ) ∈ 	, for each i ≥ , we have x̄ ∈ U–
i () and ȳ ∈ K–

i () and
Ax̄ = Bȳ. In (.), taking x = x̄ and y = ȳ, we have

∥∥Ax∗ – By∗∥∥ = , i.e., Ax∗ = By∗. (.)

Hence from (.) and (.)
{
x∗ = JUi

μ (x∗),
y∗ = JKi

μ (y∗),
⇔  ∈Ui

(
x∗),  ∈ Ki

(
y∗), ∀i≥ . (.)

It follows from (.) and (.) that w∗ is a solution of (GSEVIP) (.).
This completes the proof of Lemma .. �

Lemma . If λ ∈ (, L ), where L = ‖G‖, then (I – λG∗G) :H ×H → H ×H is a non-
expansive mapping.

Proof In fact, for any w,u ∈H ×H, we have

∥∥(
I – λG∗G

)
u –

(
I – λG∗G

)
w

∥∥

=
∥∥(u –w) – λG∗G(u –w)

∥∥

= ‖u –w‖ + λ∥∥G∗G(u –w)
∥∥ – λ

〈
u –w,G∗G(u –w)

〉
≤ ‖u –w‖ + λL

∥∥G(u –w)
∥∥ – λ

〈
G(u –w),G(u –w)

〉
= ‖u –w‖ + λL

∥∥G(u –w)
∥∥ – λ

∥∥G(u –w)
∥∥

= ‖u –w‖ – λ( – λL)
∥∥G(u –w)

∥∥

≤ ‖u –w‖.

This completes the proof. �

Theorem . Let H,H,H, A, B,A∗, B∗, {Ui}, {Ki}, J (Ui ,Ki)
μi ,G,G∗, f be the same as above.

Let {wn} be the sequence defined by (.). If the solution set	 of (GSEVIP) (.) is nonempty
and the following conditions are satisfied:

(i) αn + βn +
∑∞

i= γn,i = , for each n≥ ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;
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(iii) lim infn→∞ αnγn,i >  for each i≥ ;
(iv) {λn,i} ⊂ (, L ) for each i ≥ , where L = ‖G‖,

then the sequence {wn} converges strongly to w∗ = P	f (w∗), which is a solution of (GSEVIP)
(.).

Proof (I) First we prove that the sequence {wn} is bounded.
In fact, for any given z ∈ 	, it follows from Lemma ., Lemma ., and condition (iv)

that

z = J (Ui ,Ki)
μ

(
I – λn,iG∗G

)
z, for each i ≥ ,

and (I – λn,iG∗G) :H ×H → H ×H is a nonexpansive mapping. Also by Lemma .(i),
for each i ≥ , J (Ui ,Ki)

μi is a firmly nonexpansive mapping. Hence we have

‖wn+ – z‖ =
∥∥∥∥∥
(

αnwn + βnf (wn) +
∞∑
i=

γn,iJ (Ui ,Ki)
μi

(
I – λn,iG∗G

)
wn

)
– z

∥∥∥∥∥
≤ αn‖wn – z‖ + βn

∥∥f (wn) – z
∥∥ +

∞∑
i=

γn,i
∥∥J (Ui ,Ki)

μi

(
I – λn,iG∗G

)
wn – z

∥∥

≤ αn‖wn – z‖ + βn
∥∥f (wn) – z

∥∥ +
∞∑
i=

γn,i
∥∥(
I – λn,iG∗G

)
wn – z

∥∥
≤ αn‖wn – z‖ + βn

∥∥f (wn) – z
∥∥

+
∞∑
i=

γn,i
∥∥(
I – λn,iG∗G

)
wn –

(
I – λn,iG∗G

)
z
∥∥

≤ αn‖wn – z‖ + βn
∥∥f (wn) – z

∥∥ +
∞∑
i=

γn,i‖wn – z‖

= ( – βn)‖wn – z‖ + βn
∥∥f (wn) – z

∥∥
≤ ( – βn)‖wn – z‖ + βn

∥∥f (wn) – f (z)
∥∥ + βn

∥∥f (z) – z
∥∥

≤ ( – βn)‖wn – z‖ + kβn‖wn – z‖ + βn
∥∥f (z) – z

∥∥
=

(
 – ( – k)βn

)‖wn – z‖ + ( – k)βn


 – k
∥∥f (z) – z

∥∥
≤ max

{
‖wn – z‖, 

 – k
∥∥f (z) – z

∥∥}
.

By induction, we can prove that

‖wn – z‖ ≤max

{
‖w – z‖, 

 – k
∥∥f (z) – z

∥∥}
, ∀n≥ .

This shows that {wn} is bounded, and so is {f (wn)}.
(II) Now we prove that the following inequality holds:

αnγn,i
∥∥wn – J (Ui ,Ki)

μi

(
I – λn,iG∗G

)
wn

∥∥

≤ ‖wn – z‖ – ‖wn+ – z‖ + βn
∥∥f (wn) – z

∥∥ for each i≥ . (.)
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Indeed, it follows from (.) and Lemma . that for each i≥ 

‖wn+ – z‖ =
∥∥∥∥∥αn(wn – z) + βn

(
f (wn) – z

)
+

∞∑
j=

γn,j
(
J (Uj ,Kj)
μj

(
I – λn,jG∗G

)
wn – z

)∥∥∥∥∥


≤ αn‖wn – z‖ + βn
∥∥f (wn) – z

∥∥ +
∞∑
j=

γn,j
∥∥J (Uj ,Kj)

μj

(
I – λn,jG∗G

)
wn – z

∥∥

– αnγn,i
∥∥wn – J (Ui ,Ki)

μi

(
I – λn,iG∗G

)
wn

∥∥

≤ αn‖wn – z‖ + βn
∥∥f (wn) – z

∥∥ +
∞∑
j=

γn,j‖wn – z‖

– αnγn,i
∥∥wn – J (Ui ,Ki)

μi

(
I – λn,iG∗G

)
wn

∥∥

= ( – βn)‖wn – z‖ + βn
∥∥f (wn) – z

∥∥

– αnγn,i
∥∥wn – J (Ui ,Ki)

μi

(
I – λn,iG∗G

)
wn

∥∥.

This implies that for each i≥ 

αnγn,i
∥∥wn – J (Ui ,Ki)

μi

(
I – λn,iG∗G

)
wn

∥∥ ≤ ‖wn – z‖ – ‖wn+ – z‖ + βn
∥∥f (wn) – z

∥∥.

Inequality (.) is proved.
It is easy to see that the solution set 	 of (GSEVIP) (.) is a closed and convex subset

in H ×H. By the assumption that 	 is nonempty, so it is a nonempty closed and convex
subset in H ×H. Hence the metric projection P	 is well defined. In addition, since P	f :
H ×H → 	 is a contractive mapping, there exists a unique w∗ ∈ 	 such that

w∗ = P	f
(
w∗). (.)

(III) Now we prove that {wn} converges strongly to w∗.
For the purpose, we consider two cases.
Case I. Suppose that the sequence {‖wn – w∗‖} is monotone. Since {‖wn – w∗‖} is

bounded, {‖wn – w∗‖} is convergent. Since w∗ ∈ 	, in (.) taking z = w∗ and letting
n→ ∞, in view of conditions (ii) and (iii), we have

lim
n→∞

∥∥wn – J (Ui ,Ki)
μi

(
I – λn,iG∗G

)
wn

∥∥ = , for each i ≥ . (.)

On the other hand, by Lemma . and (.), we have

∥∥wn+ –w∗∥∥ =

∥∥∥∥∥
(

αnwn + βnf (wn) +
∞∑
i=

γn,iJ (Ui ,Ki)
μi

(
I – λn,iG∗G

)
wn

)
–w∗

∥∥∥∥∥


=

∥∥∥∥∥αn
(
wn –w∗) + βn

(
f (wn) –w∗)

+
∞∑
i=

γn,i
(
J (Ui ,Ki)
μi

(
I – λn,iG∗G

)
wn –w∗)∥∥∥∥∥
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≤
∥∥∥∥∥αn

(
wn –w∗) + ∞∑

i=

γn,i
(
J (Ui ,Ki)
μi

(
I – λn,iG∗G

)
wn –w∗)∥∥∥∥∥



+ βn
〈
f (wn) –w∗,wn+ –w∗〉 (by Lemma .)

≤
{

αn
∥∥wn –w∗∥∥ +

∞∑
i=

γn,i
∥∥wn –w∗∥∥}

+ βn
〈
f (wn) – f

(
w∗),wn+ –w∗〉 + βn

〈
f
(
w∗) –w∗,wn+ –w∗〉

= ( – βn)
∥∥wn –w∗∥∥ + βnk

∥∥wn –w∗∥∥∥∥wn+ –w∗∥∥
+ βn

〈
f
(
w∗) –w∗,wn+ –w∗〉

≤ ( – βn)
∥∥wn –w∗∥∥ + βnk

{∥∥wn –w∗∥∥ +
∥∥wn+ –w∗∥∥}

+ βn
〈
f
(
w∗) –w∗,wn+ –w∗〉.

Simplifying it we have

∥∥wn+ –w∗∥∥ ≤ ( – βn) + βnk
 – βnk

∥∥wn –w∗∥∥ +
βn

 – βnk
〈
f
(
w∗) –w∗,wn+ –w∗〉

=
 – βn + βnk

 – βnk
∥∥wn –w∗∥∥ +

β
n

 – βnk
∥∥wn –w∗∥∥

+
βn

 – βnk
〈
f
(
w∗) –w∗,wn+ –w∗〉

=
(
 –

( – k)βn

 – βnk

)∥∥wn –w∗∥∥

+
( – k)βn

 – βnk

{
βnM

( – k)
+


 – k

〈
f
(
w∗) –w∗,wn+ –w∗〉}

= ( – ηn)
∥∥wn –w∗∥∥ + ηnδn, (.)

where

ηn =
( – k)βn

 – βnk
, δn =

βnM
( – k)

+


 – k
〈
f
(
w∗) –w∗,wn+ –w∗〉,

M = sup
n≥

∥∥wn –w∗∥∥.

By condition (ii), limn→∞ βn =  and
∑∞

n= βn =∞, and so is
∑∞

n= ηn =∞.
Next we prove that

lim sup
n→∞

δn ≤ . (.)

In fact, since {wn} is bounded in H ×H, there exists a subsequence {wnk } ⊂ {wn} with
wnk ⇀ v∗ (some point in C ×Q), and λnk ,i → λi ∈ (, L ) such that

lim
n→∞

〈
f
(
w∗) –w∗,wnk –w∗〉 = lim sup

n→∞

〈
f
(
w∗) –w∗,wn –w∗〉.
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Since

∥∥wnk – J (Ui ,Ki)
μi

(
I – λnk ,iG

∗G
)
wnk

∥∥ → , for each i≥ 

and J (Ui ,Ki)
μi (I –λnk ,iG

∗G) is a nonexpansive mapping, by Remark ., I – J (Bi ,Ki)
μi (I –λn,iG∗G)

is demiclosed at zero, hence we have

v∗ = J (Ui ,Ki)
μi

(
I – λn,iG∗G

)
v∗, ∀i≥ . (.)

By Lemma ., this implies that v∗ ∈ 	. In addition, since w∗ = P	f (w∗), we have

lim sup
n→∞

〈
f
(
w∗) –w∗,wn –w∗〉 = lim

n→∞
〈
f
(
w∗) –w∗,wnk –w∗〉

=
〈
f
(
w∗) –w∗, v∗ –w∗〉 ≤ .

This shows that (.) is true. Taking an = ‖wn–w∗‖, bn = ηn, and cn = δnηn in Lemma .,
therefore all conditions in Lemma . are satisfied. We have wn → w∗.
Case II. If the sequence {‖wn – w∗‖} is not monotone, by Lemma ., there exists a se-

quence of positive integers: {τ (n)}, n≥ n (where n large enough) such that

τ (n) =max
{
k ≤ n :

∥∥wk –w∗∥∥ ≤ ∥∥wk+ –w∗∥∥}
. (.)

Clearly {τ (n)} is a nondecreasing, τ (n)→ ∞ as n→ ∞, and for all n≥ n

∥∥wτ (n) –w∗∥∥ ≤ ∥∥wτ (n)+ –w∗∥∥; ∥∥wn –w∗∥∥ ≤ ∥∥wτ (n)+ –w∗∥∥. (.)

Therefore {‖wτ (n) –w∗‖} is a nondecreasing sequence.According toCase I, limn→∞ ‖wτ (n) –
w∗‖ =  and limn→∞ ‖wτ (n)+ –w∗‖ = . Hence we have

 ≤ ∥∥wn –w∗∥∥ ≤max
{∥∥wn –w∗∥∥,∥∥wτ (n) –w∗∥∥} ≤ ∥∥wτ (n)+ –w∗∥∥ → , as n→ ∞.

This implies that wn → w∗ and w∗ = P	f (w∗) is a solution of (GSEVIP) (.).
This completes the proof of Theorem .. �

Remark . Theorem . extends and improves the main results inMoudafi et al. [, ,
], Eslamian and Latif [], Chen et al. [], Chuang [], Naraghirad [] and Ansari and
Rehan [].

4 General split equality optimization problem and strong convergence
theorems

Let H, H, and H be three real Hilbert spaces. Let A :H → H and B :H → H be two
linear and bounded operators. The so-called general split equality optimization problem
(GSEOP) is to find x∗ ∈H, and y∗ ∈H such that for each i≥ 

hi
(
x∗) = min

x∈H
hi(x), gi

(
y∗) = min

z∈H
gi(z) and Ax∗ = By∗, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/215
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where hi :H →R and gi :H →R are two families of proper, lower semicontinuous, and
convex functions.
For each i ≥  denote by ∂hi = Ui and ∂gi = Ki. Then the mappings Ui : H → H and

Ki :H → H , i = , , . . . both are set-valued maximal monotone mappings, and

hi
(
x∗) = min

x∈H
hi(x) ⇔  ∈ ∂hi

(
x∗) =Ui

(
x∗),

gi
(
y∗) = min

z∈H
gi(z) ⇔  ∈ ∂gi

(
y∗) = Ki

(
y∗).

Therefore (GSEOP) (.) is equivalent to the following general split equality variational
inclusion problem (GSEVIP): to find x∗ ∈H and y∗ ∈ H such that

 ∈
∞⋂
i=

Ui
(
x∗),  ∈

∞⋂
i=

Ki
(
y∗) and Ax∗ = By∗. (.)

Therefore, the following theorem can be obtained from Theorem . immediately.

Theorem . Let H, H, H, A, B, A∗, B∗, {Ui}, {Ki} be the same as above. Let J (Ui ,Ki)
μi , G,

G∗, f be the same as in Theorem .. Let {wn} be the sequence defined by (.). If the solution
set 	 of (GSEVIP) (.) is nonempty and the following conditions are satisfied:

(i) αn + βn +
∑∞

i= γn,i = , for each n≥ ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii) lim infn→∞ αnγn,i >  for each i≥ ;
(iv) {λn,i} ⊂ (, L ) for each i ≥ , where L = ‖G‖,

then the sequence {wn} converges strongly to w∗ = P	 f (w∗), which is a solution of (GSEOP)
(.).

By using Theorem. andTheorem., nowwe give some corollaries for the split equal-
ity feasibility problem, the split equality equilibrium problem, and the split optimization
problem.
Let H, H, H, C, Q, A, B be the same as in the split equality feasibility problem (.).

Let iC and iQ be the indicator function of C and Q, respectively, defined by (.). In The-
orem ., take {U} = {∂iC}, {K} = {∂iQ}, and J (U ,K )

μ = PC×Q :=
[ PC
PQ

]
, therefore we have the

following.

Corollary . Let H, H, H, A, B, A∗, B∗, PC×Q be the same as above. Let G, G∗, f be the
same as in Theorem .. Let {wn} be the sequence generated by w ∈H ×H

wn+ = αnwn + βnf (wn) + γn
(
PC×Q

(
I – λnG∗G

)
wn

)
, n≥ , (.)

or its equivalent form

{
xn+ = αnxn + βnf(xn) + γn(PC(xn – λn(A∗(Axn – Byn)))),
yn+ = αnyn + βnf(yn) + γn(PQ(yn + λn(B∗(Axn – Byn)))).

(.)

If the solution set  of (SEFP) (.) is nonempty and the following conditions are satisfied:
(i) αn + βn + γn = , for each n≥ ;
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(ii) limn→∞ βn = , and
∑∞

n= βn =∞;
(iii) lim infn→∞ αnγn > ;
(iv) {λn} ⊂ (, L ) for each i≥ , where L = ‖G‖,

then the sequence {wn} converges strongly to w∗ = P f (w∗), which is a solution of (SEFP)
(.).

Remark . Since the simultaneous iterative sequence {(xn, yn)} (.) converges strongly
to a solution of (SEFP) (.). Therefore it provides an affirmative answer toMoudafi’s open
question . [].

Let h, g :D×D → (–∞, +∞) be two equilibrium functions. For given λ > , let Rλ,h and
Rλ,g be the resolvents of h and g (defined by (.)), respectively.
The so-called split equality equilibrium problem with respective to h, g, and D (SEEP(h,

g,D)) is to find x∗ ∈D, y∗ ∈D such that

h
(
x∗,u

) ≥ , ∀u ∈D, g
(
y∗, v

) ≥ , ∀v ∈D and Ax∗ = By∗, (.)

where A,B :D →D are two linear and bounded operators.
By Proposition ., the (SEEP(h, g,D)) (.) is equivalent to find x∗ ∈ D, y∗ ∈D such that

for each λ > 

x∗ ∈ EP(h,D), y∗ ∈ EP(g,D) and Ax∗ = By∗

⇔ x∗ ∈ F(Rλh), y∗ ∈ F(Rλg) and Ax∗ = By∗.
(.)

Letting C = F(Rλh),Q = F(Rλg), by Proposition ., C andQ both are nonempty closed and
convex subset of D. Hence the problem (.) (and so the problem (.)) is equivalent to
the following split equality feasibility problem:

to find x∗ ∈ C, y∗ ∈Q such that Ax∗ = By∗. (.)

In Corollary . taking H =H =H =D, from Corollary . we have the following.

Corollary . Let D, C, Q be the same as above. Let A, B, A∗, B∗, PC×Q, G, G∗, f be the
same as in Corollary .. For any given w ∈D×D, let {wn} be the sequence generated by

wn+ = αnwn + βnf (wn) + γn
(
PC×Q

(
I – λnG∗G

)
wn

)
, n≥ . (.)

If the solution set  of (SEEP(h, g,D)) (.) is nonempty and the following conditions are
satisfied:

(i) αn + βn + γn = , for each n≥ ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii) lim infn→∞ αnγn > ;
(iv) {λn} ⊂ (, L ) for each i≥ , where L = ‖G‖,

then the sequence {wn} converges strongly to w∗ = P f (w∗), which is a solution of (SEEP(h,
g,D)) (.).
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Let H and H be two real Hilbert spaces, A :H → H be a linear and bounded opera-
tors, h : H → R and g : H → R be two proper convex and lower semicontinuous func-
tions. The split optimization problem (SOP) is to find x∗ ∈H, Ax∗ ∈H such that

h
(
x∗) = min

x∈H
hi(x) and g

(
Ax∗) = min

z∈H
g(z). (.)

DenoteU = ∂h and K = ∂g , then the (SOP) (.) is equivalent to the following split vari-
ational inclusion problem (SVIP): to find x∗ ∈H such that

 ∈U
(
x∗),  ∈ K

(
Ax∗). (.)

In Theorem . taking H =H, B = I (the identity mapping on H) and

G̃ = [A –I], G̃∗ =

[
A∗

–I

]
, G̃∗G̃ =

[
A∗A –A∗

–A I

]
,

then from Theorem . we have the following.

Corollary . Let H, H, A, I , G̃, G̃∗, U , K , be the same as above. Let J (U ,K )
μ , f be the same

as in Theorem .. For any given w = (x, y) ∈H ×H, let {wn = (xn, yn)} be the sequence
defined by

{
xn+ = αnxn + βnf(xn) + γnJUμ (xn – λnA∗(Axn – yn)),
yn+ = αnyn + βnf(yn) + γnJKμ (yn + λn(Axn – yn)),

(.)

or its equivalent form:

wn+ = αnwn + βnf (wn) + γn
(
J (U ,K )
μ

(
I – λnG̃∗G̃

)
wn

)
, n≥ , (.)

If  := {x∗ ∈ U–() ∩ A–K–()}, the solution set of (SOP) (.) is nonempty, and the
following conditions are satisfied:

(i) αn + βn + γn = , for each n≥ ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii) lim infn→∞ αnγn > ;
(iv) {λn} ⊂ (, L ), where L = ‖G̃‖,

then the sequence {wn} converges strongly to w∗ = P f (w∗), which is a solution of (SOP)
(.).
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