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1 Introduction
Fixed point theory for nonlinear mappings is an important subject of nonlinear functional
analysis. One of the basic and the most widely applied fixed point theorem in all of analy-
sis is the ‘Banach (or Banach-Caccioppoli) contraction principle’ due to Banach []. This
Banach contraction principle [] is a simple and powerful result with a wide range of appli-
cations, including iterative methods for solving linear, nonlinear, differential, integral, and
difference equations. Due to its applications in mathematics and other related disciplines,
the Banach contraction principle has been generalized in many directions.
The existence of fixed points in ordered metric spaces has been discussed by Ran and

Reurings []. Recently, many researchers have obtained fixed point and common fixed
point results for single valued maps defined on partially ordered metric spaces (see, e.g.,
[, ]). Jachymski [] investigated a new approach inmetric fixed point theory by replacing
an order structure with graph structure on a metric space. In this way, the results proved
in ordered metric spaces are generalized (see for details [] and the references therein).
For further work in this direction, we refer to, e.g., [–].
In , Kannan [] proved a fixed point theorem for a map satisfying a contractive

condition that did not require continuity at each point. This paper led to the genesis for
a multitude of fixed point papers over the next two decades. Since then, there have been
many theorems dealing with mappings satisfying various types of contractive inequalities
involving linear and nonlinear expressions. For a thorough survey, we refer to [] and
the references therein. On the other hand, Branciari [] obtained a fixed point theorem
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for a single valued mapping satisfying an analog of Banach’s contraction principle for an
integral type inequality. Recently, Akram et al. [] introduced a new class of contraction
maps, called A-contractions, which is a proper generalization of Kannan’s mappings [],
Bianchini’s mappings [], and Reich type mappings [].
The theory ofmodular spaceswas initiated byNakano [] in connectionwith the theory

of ordered spaces which was further generalized by Musielak and Orlicz [] (see also
[–]). The study of fixed point theory in the context of modular function spaces was
initiated by Khamsi et al. [] (see also [–]). Also, some fixed point theorems have
been proved for mappings satisfying contractive conditions of integral type in modular
space [, ].
In this paper, we introduce three new classes of mappings satisfying integral type con-

tractive conditions in the setup of modular space endowed with graphs. We study the ex-
istence, uniqueness, and iterative approximations of fixed points for such mappings. Our
results extend, unify, and generalize the comparable results in [, , ].

2 Preliminaries
A mapping T from a metric space (X,d) into (X,d) is called a Picard operator (PO) if T
has a unique fixed point z ∈ X and limn→∞ Tnx = z for all x ∈ X.
Define � = {ϕ : R+ → R+: ϕ is a Lebesgue integral mapping which is summable, non-

negative and satisfies
∫ ε

 ϕ(t)dt > , for each ε > }.
Let A = {α : R

+ → R+: α is continuous and a ≤ kb for some k ∈ [, ) whenever a ≤
α(a,b,b) or a≤ α(b,a,b) or a≤ α(b,b,a) for all a, b}.
Let ψ :R+ → R+ be a nondecreasing mapping which satisfies the following conditions:

(ψ) ψ(x) =  if and only if x = ;
(ψ) for a sequence {xn} in R+, we have ψ(xn) →  if and only if xn →  as n→ ∞;
(ψ) for every x, y ∈R+, we have ψ(x + y)≤ ψ(x) +ψ(y).

The collection of all such mappings will be denoted by � .
Define

� =
{
φ :R+ →R+ : φ is increasing, upper semi-continuous and φ(t) < t,∀t > 

}
.

Theorem . [] Let (X,d) be a complete metric space, η ∈ [, ), and T : X → X a map-
ping. Suppose that

∫ d(Tx,Ty)


ϕ(t)dt ≤ η

∫ d(x,y)


ϕ(t)dt

is satisfied for every x, y ∈ X, where ϕ ∈ �. Then T has a unique fixed point z ∈ X and for
each x ∈ X, we have limn→∞ Tnx = z.

Lemma . [] Let (X,d) be a metric space, ϕ ∈ �, and {xn} a nonnegative sequence.
Then
(a) limn→∞ xn = x implies that limn→∞

∫ xn
 ϕ(t)dt =

∫ x
 ϕ(t)dt;

(b) limn→∞
∫ xn
 ϕ(t)dt = if and only if limn→∞ xn = .
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Definition . [] A selfmap T on a metric space X is called an A-contraction if for any
x, y ∈ X and for some α ∈ A, the following condition holds:

d(Tx,Ty) ≤ α
(
d(x, y),d(x,Tx),d(y,Ty)

)
.

Now, we recall some basic facts and notations as regards modular spaces. For more de-
tails the reader may consult [].

Definition . Let X be an arbitrary vector space. A functional ρ : X → [,∞] is called
modular if for any arbitrary x, y in X:

(m) ρ(x) =  if and only if x = ;
(m) ρ(αx) = ρ(x) for every scalar α with |α| = ;
(m) ρ(αx + βy) ≤ ρ(x) + ρ(y) if α + β = , α ≥ , β ≥ .

If (m) is replaced by ρ(αx + βy) ≤ αsρ(x) + βsρ(y) if αs + βs = , where s ∈ (, ], α ≥ ,
β ≥  then we say that ρ is s-convex modular. If s = , then ρ is called convex modular.

ρ : R→ [,∞] defined by ρ(x) =
√|x| is a simple example of a modular functional.

The vector space Xρ given by

Xρ =
{
x ∈ X;ρ(λx)→  as λ → 

}
is called a modular space. In general the modular ρ is not sub-additive and therefore does
not behave as a norm or a distance. One can associate to a modular an x-norm.

Remark . [] The following are immediate consequences of condition (m):

(r) if a,b ∈ R (set of all real numbers) with |a| < |b|, then ρ(ax) < ρ(bx) for all x ∈ X ;
(r) if a, . . . ,an are nonnegative real numbers with

∑n
i= ai = , then we have

ρ

( n∑
i=

aixi

)
≤

n∑
i=

ρ(xi) (x, . . . ,xn ∈ X).

Define the ρ-ball, Bρ(x, r), centered at x ∈ Xρ with radius r as

Bρ(x, r) =
{
h ∈ Xρ;ρ(x – h)≤ r

}
.

A point x ∈ Xρ is called a fixed point of T : Xρ → Xρ if T(x) = x.
A function modular is said to satisfy the -type condition if there exists K >  such

that for any x ∈ Xρ we have ρ(x)≤ Kρ(x). Amodular ρ is said to satisfy the -condition
if ρ(xn) →  as n→ ∞, whenever ρ(xn) →  as n→ ∞.

Definition . Let Xρ be a modular space. The sequence {xn} ⊂ Xρ is said to be:

(t) ρ-convergent to x ∈ Xρ if ρ(xn – x) →  as n → ∞;
(t) ρ-Cauchy if ρ(xn – xm) →  as n and m → ∞.

Xρ is ρ-complete if any ρ-Cauchy sequence is ρ-convergent. Note that ρ-convergence
does not imply ρ-Cauchy since ρ does not satisfy the triangle inequality. In fact, one can
show that this will happen if and only if ρ satisfies the -condition.
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Proposition . [] Let Xρ be a modular space. If a,b ∈ R+ with b ≥ a, then ρ(ax) ≤
ρ(bx).

Proposition . [] Suppose that Xρ is amodular space, ρ satisfies the-condition and
{xn}n∈N is a sequence in Xρ . If ρ(c(xn – xn–)) → , then ρ(αl(xn – xn–)) → , as n → ∞,
where c, l,α ∈ R+ with c > l and l

c +

α
= . Now we give some basic definitions from graph

theory needed in the sequel.

Throughout this paper, = {(x,x) : x ∈ X} denotes the diagonal of X×X, where X is any
nonempty set. Let G be a directed graph such that the set V (G) of its vertices coincides
with X and E(G) be the set of edges of the graph such that  ⊆ E(G). Further assume that
G has no parallel edge and G is a weighted graph in the sense that each edge is assigned
a distance d(x, y) between their vertices x and y and each vertex x is assigned a weight
d(x,x). The graph G is identified by the pair (V (G),E(G)).
If x and y are vertices of G, then a path in G from x to y of length k ∈ N is a finite

sequence {xn}, n ∈ {, , , . . . ,k} of vertices such that x = x, . . . ,xk = y and (xi–,xi) ∈ E(G)
for i ∈ {, , . . . ,k}.
Recall that a graph G is connected if there is a path between any two vertices and it

is weakly connected if G̃ is connected, where G̃ denotes the undirected graph obtained
from G by ignoring the direction of edges. Denote by G– the graph obtained from G by
reversing the direction of the edges. Thus

E
(
G–) = {

(x, y) ∈ X ×X : (y,x) ∈ E(G)
}
. ()

Since it is more convenient to treat G̃ as a directed graph for which the set of its edges is
symmetric, under this convention we have

E(G̃) = E(G)∪ E
(
G–). ()

LetGx be the component ofG consisting of all the edges and vertices which are contained
in some path in G beginning at x. If G is such that E(G) is symmetric, then for x ∈ V (G),
the equivalence class [x]G defined on V (G) by the rule R (xRy if there is a path in G from
x to y) is such that V (Gx) = [x]G.

Definition . [, Definition .] A mapping T : X → X is called a BanachG-contraction
if and only if:
(a) for each x, y in X with (x, y) ∈ E(G), we have (T(x),T(y)) ∈ E(G), that is, T preserves

edges of G;
(b) there exists α in (, ) such that for each x, y ∈ X with (x, y) ∈ E(G) implies

d
(
T(x),T(y)

) ≤ αd(x, y). ()

That is, T decreases weights of edges of G.
For any x, y ∈ V ′, (x, y) ∈ E′ such that V ′ ⊆ V (G), E′ ⊆ E(G), (V ′,E′) is called a subgraph

of G.

3 Main results
In this section, we obtain several fixed point results in the setup of a modular space en-
dowed with a graph. We start with the following definitions. Let Xρ be a modular space
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endowed with a graph G and let T : Xρ → Xρ be a mapping. Denote

XT =
{
x ∈ X : (x,Tx) ∈ E(G)

}
.

Definition . Let {Tnx} be a sequence, there exists C >  such that

ρ
(
C

(
Tnx – x∗)) →  for x∗ ∈ Xρ

and

(
Tnx,Tn+x

) ∈ E(G) for all n ∈N.

Then a graph G is called a Cρ-graph if there exists a subsequence {Tnpx} of {Tnx} such
that (Tnpx,x∗) ∈ E(G) for p ∈N.

Definition . A mapping T : Xρ → Xρ is called orbitally Gρ-continuous for all x, y ∈ Xρ

and any sequence (np)p∈N of positive integers, if there exists C >  such that

ρ
(
C

(
Tnpx – y

)) → ,
(
Tnpx,Tnp+x

) ∈ E(G) imply

ρ
(
C

(
T

(
Tnpx

)
– T(y)

)) → ,

as p→ ∞.

Definition . A mapping T is called a (G,A)ρ-contraction if it satisfies the following
conditions:

(A) T preserves edges of G;
(A) there exist nonnegative numbers l, c with l < c such that

∫ ρ(c(Tx–Ty))


ϕ(t)dt

≤ α

(∫ ρ(l(x–y))


ϕ(t)dt,

∫ ρ(l(x–Tx))


ϕ(t)dt,

∫ ρ(l(y–Ty))


ϕ(t)dt

)

holds for each (x, y) ∈ E(G), and some α ∈ A and ϕ ∈ �.

Remark . Let T : Xρ → Xρ be a (G,A)ρ-contraction. If there exists x ∈ Xρ such that
Tx ∈ [x]G̃, then

(i) T is both a (G–,A)ρ-contraction and a (G̃,A)ρ-contraction,
(ii) [x]G̃ is T-invariant and T |[x]G̃ is a (G̃x ,A)ρ-contraction.

Lemma. Let T : Xρ → Xρ be a (G,A)ρ-contraction. If x ∈ XT , then there exists r(x,Tx) ≥
 such that

∫ ρ(c(Tnx–Tn+x))


ϕ(t)dt ≤ knr(x,Tx)

holds for all n ∈N, where r(x,Tx) =
∫ ρ(c(x–Tx))
 ϕ(t)dt.
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Proof Let x ∈ XT , that is, (x,Tx) ∈ E(G). Then by induction, we have (Tnx,Tn+x) ∈ E(G)
for all n ∈N. Now, we have

∫ ρ(c(Tnx–Tn+x))


ϕ(t)dt

≤ α

(∫ ρ(l(Tn–x–Tnx))


ϕ(t)dt,

∫ ρ(l(Tn–x–Tnx))


ϕ(t)dt,

∫ ρ(l(Tnx–Tn+x))


ϕ(t)dt

)

≤ α

(∫ ρ(l(Tn–x–Tnx))


ϕ(t)dt,

∫ ρ(l(Tn–x–Tnx))


ϕ(t)dt,

∫ ρ(c(Tnx–Tn+x))


ϕ(t)dt

)
.

By the definition of α, we obtain

∫ ρ(c(Tnx–Tn+x))


ϕ(t)dt ≤ k

∫ ρ(l(Tn–x–Tnx))


ϕ(t)dt ≤ k

∫ ρ(c(Tn–x–Tnx))


ϕ(t)dt

for some k ∈ (, ). Thus we have

∫ ρ(c(Tnx–Tn+x))


ϕ(t)dt ≤ k

∫ ρ(l(Tn–x–Tnx))


ϕ(t)dt

≤ k
∫ ρ(c(Tn–x–Tnx))


ϕ(t)dt

≤ k · k
∫ ρ(l(Tn–x–Tn–x))


ϕ(t)dt

≤ k
∫ ρ(c(Tn–x–Tn–x))


ϕ(t)dt

...

≤ kn
∫ ρ(l(x–Tx))


ϕ(t)

≤ kn
∫ ρ(c(x–Tx))


ϕ(t).

That is,
∫ ρ(c(Tnx–Tn–x))
 ϕ(t)dt ≤ knr(x,Tx) for all n ∈ N, where r(x,Tx) =

∫ ρ(c(x–Tx))
 ϕ(t)dt.

�

Theorem . Let Xρ be a ρ-complete modular space endowed with a graph G, where ρ

satisfies the -condition and let T : Xρ → Xρ be a (G̃,A)ρ-contraction. If the set XT is
nonempty, the graph G is weakly connected and a Cρ-graph, then T is a PO.

Proof If x ∈ XT , then Tx ∈ [x]G̃ and (Tnx,Tn+x) ∈ E(G) for all n ∈ N. Let m,n ∈ N with
m > n. Note that

ρ

(
c

m – n
(
Tnx – Tmx

))

= ρ

(
c

m – n
(
Tnx – Tn+x

)
+

c
m – n

(
Tn+x – Tn+x

)
+ · · · + c

m – n
(
Tm–x – Tmx

))

≤ ρ
(
c
(
Tnx – Tn+x

))
+ ρ

(
c
(
Tn+x – Tn+x

))
+ · · · + ρ

(
c
(
Tm–x – Tmx

))
.
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Using Lemma ., we have

∫ ρ( c
m–n (T

nx–Tmx))


ϕ(t)dt ≤

∫ ρ(c(Tnx–Tn+x))


ϕ(t)dt +

∫ ρ(c(Tn+x–Tn+x))


ϕ(t)dt

+ · · · +
∫ ρ(c(Tm–x–Tmx))


ϕ(t)dt

≤ knr(x,Tx) + kn+r(x,Tx) + · · · + km–r(x,Tx)

≤ kn

 – k
r(x,Tx) → , as n → ∞.

It follows that { c
m–nT

nx} is a ρ-Cauchy sequence inXρ . SinceXρ is ρ-complete, there exists
a point x∗ ∈ Xρ such that ρ( c

m–n (T
nx – x∗)) → . Consequently, ρ(l(Tnx – x∗))→ .

Nowwe show that x∗ is a fixed point ofT . As ρ( c
m–n (T

nx – x∗))→ , (Tnx,Tn+x) ∈ E(G)
for all n ∈ N and G is a Cρ-graph, there exists a subsequence {Tnpx} of {Tnx} such that
(Tnpx,x∗) ∈ E(G) for each p ∈ N. Since (Tnpx,x∗) ∈ E(G̃) and T is a (G̃,A)ρ-contraction, it
follows that

∫ ρ(c(Tnp+x–Tx∗))


ϕ(t)dt

≤ α

(∫ ρ(l(Tnpx–x∗))


ϕ(t)dt,

∫ ρ(l(Tnpx–Tnp+x))


ϕ(t)dt,

∫ ρ(l(x∗–Tx∗))


ϕ(t)dt

)
,

which on taking the limit as p→ ∞ gives

∫ ρ(c(x∗–Tx∗))


ϕ(t)dt ≤ α

(
,,

∫ ρ(l(x∗–Tx∗))


ϕ(t)dt

)
≤ α

(
,,

∫ ρ(c(x∗–Tx∗))


ϕ(t)dt

)
.

By the definition of function α, we have

∫ ρ(c(x∗–Tx∗))


ϕ(t)dt ≤ k ·  = .

From Lemma ., it follows that ρ(c(x∗ – Tx∗)) =  and Tx∗ = x∗.
Next, we prove that x∗ is a unique fixed point. Suppose that T has another fixed point

y∗ ∈ Xρ – {x∗}. Since G is a Cρ-graph, there exists a subsequence {Tnpx} of {Tnx} such
that (Tnpx,x∗) ∈ E(G) and (Tnpx, y∗) ∈ E(G) for each p ∈N. Furthermore,G is weakly con-
nected, (x∗, y∗) ∈ E(G̃), and we have

∫ ρ(c(x∗–y∗))


ϕ(t)dt =

∫ ρ(c(Tx∗–Ty∗))


ϕ(t)dt

≤ α

(∫ ρ(l(x∗–y∗))


ϕ(t)dt,

∫ ρ(l(x∗–Tx∗))


ϕ(t)dt,

∫ ρ(l(y∗–Ty∗))


ϕ(t)dt

)

≤ α

(∫ ρ(l(x∗–y∗))


ϕ(t)dt, , 

)

≤ α

(∫ ρ(c(x∗–y∗))


ϕ(t)dt, , 

)
.
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By the definition of α and Lemma ., we have
∫ ρ(c(x∗–y∗))
 ϕ(t)dt ≤ k · = , ρ(c(x∗ – y∗)) =

, and x∗ = y∗. �

In Theorem ., if we replace the condition thatG is aCρ-graph with orbitallyGρ-conti-
nuity of T , then we have the following theorem.

Theorem . Let Xρ be a ρ-complete modular space endowed with a graph G, where ρ

satisfies the -condition and let T : Xρ → Xρ be a (G̃,A)ρ-contraction and orbitally Gρ-
continuous. If the set XT is nonempty and the graph G is weakly connected, then T is a
PO.

Proof If x ∈ XT , then Theorem . implies that { c
m–nT

nx} is a ρ-Cauchy sequence
in Xρ . Owing to ρ-completeness of Xρ , there exists x∗ ∈ Xρ such that ρ( c

m–n (T
nx –

x∗)) → . As (Tnx,Tn+x) ∈ E(G) for all n ∈ N and T is orbitally Gρ-continuous, we have
ρ( c

m–n (T(T
nx) – T(x∗)))→ , as n → ∞. That is, Tx∗ = x∗. Assume that y∗ is another fixed

point of T . Following arguments similar to those in the proof of Theorem ., we obtain
y∗ = x∗. �

Corollary . Let Xρ be a ρ-complete modular space endowed with a graph G, where ρ

satisfies the -condition and let T : Xρ → Xρ be edge-preserving, the set XT nonempty
and graph G be weakly connected and a Cρ-graph. If there exist nonnegative numbers l, c
with l < c such that

ρ
(
c(Tx – Ty)

) ≤ α
(
ρ
(
l(x – y)

)
,ρ

(
l(x – Tx)

)
,ρ

(
l(y – Ty)

))
holds for all (x, y) ∈ E(G̃) and some α ∈ A, then T is a PO.

Now, we introduce Hardy-Rogers type (G)ρ-contraction and obtain related fixed point
results.

Definition . Let Xρ be a modular space. A mapping T : Xρ → Xρ is called a Hardy-
Rogers type (G)ρ-contraction if the following conditions hold:

(H) T preserves edges of G;
(H) there exist nonnegative numbers li, c with li < c for i = , . . . ,  such that

∫ ρ(c(Tx–Ty))


ϕ(t)dt ≤ η

∫ ρ(l(x–y))


ϕ(t)dt + β

∫ [ρ(l(x–Tx))+ρ(l(y–Ty))]


ϕ(t)dt

+ γ

∫ [ρ( l (x–Ty))+ρ( l (y–Tx))]


ϕ(t)dt

holds for each (x, y) ∈ E(G)with nonnegative numbers η, β , γ such that η+β+γ < 
and ϕ ∈ �.

Remark . Let Xρ be a modular space endowed with a graph G and let T : Xρ → Xρ be
a Hardy-Rogers type (G)ρ-contraction. If there exists x ∈ Xρ such that Tx ∈ [x]G̃, then

(i) T is both a Hardy-Rogers type (G–)ρ-contraction and a Hardy-Rogers type
(G̃)ρ-contraction,

(ii) [x]G̃ is T-invariant and T |[x]G̃ is a Hardy-Rogers type (G̃x )ρ-contraction.

http://www.fixedpointtheoryandapplications.com/content/2014/1/220
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Theorem . Let Xρ be a ρ-complete modular space endowed with a graph G, where ρ

satisfies the -condition and let T : Xρ → Xρ be a Hardy-Rogers type (G̃)ρ-contraction.
Assume that the set XT is nonempty and the Cρ-graph G is weakly connected. Then T is a
PO.

Proof If x ∈ XT , then Tx ∈ [x]G̃ and (Tnx,Tn+x) ∈ E(G) for all n ∈N. Note that

∫ ρ(c(Tnx–Tn+x))


ϕ(t)dt

≤ η

∫ ρ(l(Tn–x–Tnx))


ϕ(t)dt + β

∫ [ρ(l(Tn–x–Tnx))+ρ(l(Tnx–Tn+x))]


ϕ(t)dt

+ γ

∫ [ρ( l (Tn–x–Tn+x))+ρ( l (Tnx–Tnx))]


ϕ(t)dt

≤ η

∫ ρ(c(Tn–x–Tnx))


ϕ(t)dt + β

∫ [ρ(c(Tn–x–Tnx))+ρ(c(Tnx–Tn+x))]


ϕ(t)dt

+ γ

∫ [ρ(c(Tn–x–Tnx))+ρ(c(Tnx–Tn+x))]


ϕ(t)dt.

It follows that

∫ ρ(c(Tnx–Tn+x))


ϕ(t)dt ≤ h

∫ ρ(c(Tn–x–Tnx))


ϕ(t)dt,

where h = η+β+γ

–β–γ
< . Also,

∫ ρ(c(Tnx–Tn+x))


ϕ(t)dt ≤ hn

∫ ρ(c(x–Tx))


ϕ(t)dt. ()

Taking the limit as n→ ∞, and using Lemma ., we get

lim
n

∫ ρ(c(Tnx–Tn+x))


ϕ(t)dt = ,

which implies that limn ρ(c(Tnx – Tn+x)) = .
Let m,n ∈N with m > n. By () and Remark ., we get

∫ ρ( c
m–n (T

nx–Tmx))


ϕ(t)dt ≤

∫ ρ(c(Tnx–Tn+x))


ϕ(t)dt +

∫ ρ(c(Tn+x–Tn+x))


ϕ(t)dt

+ · · · +
∫ ρ(c(Tm–x–Tmx))


ϕ(t)dt

≤ hn
∫ ρ(c(x–Tx))


ϕ(t)dt + hn+

∫ ρ(c(x–Tx))


ϕ(t)dt

+ · · · + hm–
∫ ρ(c(x–Tx))


ϕ(t)dt

≤ hn

 – h

∫ ρ(c(x–Tx))


ϕ(t)dt → , as n→ ∞.
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Thus, { c
m–nT

nx} is a ρ-Cauchy sequence in Xρ . Since Xρ is ρ-complete, there exists a point
x∗ ∈ Xρ such that ρ( c

m–n (T
nx – x∗)) → . As G is a Cρ-graph, there exists a subsequence

{Tnpx} such that (Tnpx,x∗) ∈ E(G) for all p ∈ N. Also, (Tnpx,x∗) ∈ E(G) for all p ∈ N. Now
we have

∫ ρ(c(Tnp+x–Tx∗))


ϕ(t)dt ≤ η

∫ ρ(l(Tnpx–x∗))


ϕ(t)dt

+ β

∫ [ρ(l(Tnpx–Tnp+x))+ρ(l(x∗–Tx∗))]


ϕ(t)dt

+ γ

∫ [ρ( l (Tnpx–Tx∗))+ρ( l (x∗–Tnp+x))]


ϕ(t)dt.

Taking the limit as n→ ∞, we have

∫ ρ(c(x∗–Tx∗))


ϕ(t)dt ≤ (β + γ )

∫ ρ(c(x∗–Tx∗))


ϕ(t)dt.

As (β + γ ) < , so ρ(c(x∗ – Tx∗)) =  and x∗ = Tx∗.
Next, we prove that x∗ is a unique fixed point. Suppose that T has another fixed point

y∗ ∈ Xρ – {x∗}. SinceG is a Cρ-graph, there exists a subsequence {Tnpx} of {Tnx} such that
(Tnpx,x∗) ∈ E(G) and (Tnpx, y∗) ∈ E(G) for each p ∈ N. As G is weakly connected, we have
(x∗, y∗) ∈ E(G̃), and

∫ ρ(c(x∗–y∗))


ϕ(t)dt =

∫ ρ(c(Tx∗–Ty∗))


ϕ(t)dt

≤ η

∫ ρ(l(x∗–y∗))


ϕ(t)dt + β

∫ [ρ(l(x∗–Tx∗))+ρ(l(y∗–Ty∗))]


ϕ(t)dt

+ γ

∫ [ρ( l (x∗–Ty∗))+ρ( l (y∗–Tx∗))]


ϕ(t)dt,

which further implies that

∫ ρ(c(x∗–y∗))


ϕ(t)dt ≤ (η + γ )

∫ ρ(c(x∗–y∗))


ϕ(t)dt.

Since (η + γ ) < ,
∫ ρ(c(x∗–y∗))
 ϕ(t)dt = . The result follows. �

In Theorem ., if we replace the condition that G is a Cρ-graph with orbitally Gρ-
continuity of T , then we have the following theorem.

Theorem . Let Xρ be a ρ-complete modular space endowed with a graph G, where ρ

satisfies the -condition and let T : Xρ → Xρ be a Hardy-Rogers type (G̃)ρ-contraction,
which is orbitally Gρ-continuous. Assume that the set XT is nonempty and the graph G is
weakly connected. Then T is a PO.

In the following suppose that Xρ is a ρ-complete modular space endowed with a graph
G, where ρ satisfies the -condition and T : Xρ → Xρ is edge-preserving such that the
set XT is nonempty.
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Corollary . Assume
(i) the Cρ-graph G is weakly connected and
(ii) there exist nonnegative numbers l, c with l < c such that

∫ ρ(c(Tx–Ty))


ϕ(t)dt ≤ η

∫ ρ(l(x–y))


ϕ(t)dt

holds for each (x, y) ∈ E(G̃) with η ∈ (, ) and ϕ ∈ �. Then T is a PO.

Corollary . Assume
(i) the Cρ-graph G is weakly connected and
(ii) there exist nonnegative numbers l, l, c with l, l < c such that

∫ ρ(c(Tx–Ty))


ϕ(t)dt ≤ β

∫ [ρ(l(x–Tx))+ρ(l(y–Ty))]


ϕ(t)dt

holds for each (x, y) ∈ E(G̃) with β ∈ (,  ) and ϕ ∈ �. Then T is a PO.

Corollary . Assume
(i) the Cρ-graph G is weakly connected and
(ii) there exist nonnegative numbers l, l, c with l, l < c such that

∫ ρ(c(Tx–Ty))


ϕ(t)dt ≤ γ

∫ [ρ( l (x–Ty))+ρ( l (y–Tx))]


ϕ(t)dt

for each (x, y) ∈ E(G̃) with γ ∈ (,  ) and ϕ ∈ �. Then T is a PO.

Now we introduce the (G,φ,ψ)ρ-contraction and obtain some fixed point results.

Definition . AmappingT : Xρ → Xρ is called a (G,φ,ψ)ρ-contraction if the following
conditions hold:

(Q) T preserves edges of G;
(Q) there exist nonnegative numbers l, c with l < c such that

∫ ψ(ρ(c(Tx–Ty)))


ϕ(t)dt ≤ φ

(∫ ψ(ρ(l(x–y)))


ϕ(t)dt

)

holds for each (x, y) ∈ E(G), where ψ ∈ � , φ ∈ �, and ϕ ∈ �.

Remark . Let T : Xρ → Xρ be a (G,φ,ψ)ρ-contraction. If there exists x ∈ Xρ such
that Tx ∈ [x]G̃, then

(i) T is both a (G–,φ,ψ)ρ-contraction and a (G̃,φ,ψ)ρ-contraction,
(ii) [x]G̃ is T-invariant and T |[x]G̃ is a (G̃x ,φ,ψ)ρ-contraction.

Theorem . Let Xρ be a ρ-complete modular space endowed with a graph G, where
ρ satisfies the -condition and let T : Xρ → Xρ be a (G̃,φ,ψ)ρ-contraction. If XT is
nonempty and Cρ-graph G is weakly connected, then T is a PO.
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Proof If x ∈ XT , then (Tnx,Tn+x) ∈ E(G) for all n ∈ N. First, we show that the sequence
{ψ(ρ(c(Tnx – Tn+x)))} converges to . From Definition ., we have

∫ ψ(ρ(c(Tnx–Tn+x)))


ϕ(t)dt ≤ φ

(∫ ψ(ρ(l(Tn–x–Tnx)))


ϕ(t)dt

)

<
∫ ψ(ρ(l(Tn–x–Tnx)))


ϕ(t)dt

<
∫ ψ(ρ(c(Tn–x–Tnx)))


ϕ(t)dt.

Thus,

{∫ ψ(ρ(c(Tnx–Tn+x)))


ϕ(t)dt

}

is decreasing and bounded from below and so

{∫ ψ(ρ(c(Tnx–Tn+x)))


ϕ(t)dt

}

converges to a nonnegative number L. If L �= , we obtain

L = lim
n→∞

∫ ψ(ρ(c(Tnx–Tn+x)))


ϕ(t)dt ≤ lim

n→∞φ

(∫ ψ(ρ(l(Tn–x–Tnx)))


ϕ(t)dt

)

≤ lim
n→∞φ

(∫ ψ(ρ(c(Tn–x–Tnx)))


ϕ(t)dt

)
,

that is, L ≤ φ(L), a contradiction. Hence
∫ ψ(ρ(c(Tnx–Tn+x)))
 ϕ(t)dt →  as n→ ∞. It follows

that ψ(ρ(c(Tnx – Tn+x))) → . Suppose that

lim
n→∞ supψ

(
ρ
(
c
(
Tnx – Tn+x

)))
= ε > .

Then there exists a vε ∈N and a sequence {Tnvx}v≥vε such that

ψ
(
ρ
(
c
(
Tnvx – Tnv+x

))) → ε > , v→ ∞, ()

ψ
(
ρ
(
c
(
Tnvx – Tnv+x

))) ≥ ε


, ∀v≥ vε . ()

Hence we get the following:

 = lim
v→∞

∫ ψ(ρ(c(Tnv x–Tnv+x)))


ϕ(t)dt ≥

∫ ε



ϕ(t)dt > .

Assume that there is an ε >  and there exist mv,nv ∈ N such that mv > nv > v for each
v ∈N and

ψ
(
ρ
(
l
(
Tmvx – Tnvx

))) ≥ ε.

http://www.fixedpointtheoryandapplications.com/content/2014/1/220
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Then we choose the sequence (mv)v∈N and (nv)v∈N such that for each v ∈ N, mv is min-
imal in the sense that ψ(ρ(l(Tmvx – Tnvx))) ≥ ε but ψ(ρ(l(Tsx – Tnvx))) < ε, for all s ∈
{nv + , . . . ,mv – }. Now, let δ ∈R+ be such that l

c +

δ
= , then we have

∫ ε


ϕ(t)dt ≤

∫ ψ(ρ(l(Tmvx–Tnv x)))


ϕ(t)dt

≤
∫ ψ(ρ(c(Tmvx–Tnv+x)))


ϕ(t)dt +

∫ ψ(ρ(δl(Tnv+x–Tnv x)))


ϕ(t)dt

≤ φ

(∫ ψ(ρ(l(Tmv–x–Tnv x)))


ϕ(t)dt

)
+

∫ ψ(ρ(δl(Tnv+x–Tnv x)))


ϕ(t)dt

≤
∫ ψ(ρ(l(Tmv–x–Tnv x)))


ϕ(t)dt +

∫ ψ(ρ(δl(Tnv+x–Tnv x)))


ϕ(t)dt

≤
∫ ε


ϕ(t)dt +

∫ ψ(ρ(δl(Tnv+x–Tnv x)))


ϕ(t)dt.

Thus, taking the limit as v → ∞, and Proposition ., we have

∫ ψ(ρ(δl(Tnv+x–Tnv x)))


ϕ(t)dt → .

Therefore,

∫ ψ(ρ(l(Tmvx–Tnv x)))


ϕ(t)dt → ε, v → ∞.

Now,

∫ ψ(ρ(l(Tmvx–Tnv x)))


ϕ(t)dt

≤
∫ ψ(ρ(c(Tmv+x–Tnv+x)))


ϕ(t)dt +

∫ ψ(ρ(δl(Tnv+x–Tnv x)))


ϕ(t)dt

+
∫ ψ(ρ(δl(Tmv+x–Tmvx)))


ϕ(t)dt

≤ φ

(∫ ψ(ρ(l(Tmvx–Tnv x)))


ϕ(t)dt

)
+

∫ ψ(ρ(δl(Tnv+x–Tnv x)))


ϕ(t)dt

+
∫ ψ(ρ(δl(Tmv+x–Tmvx)))


ϕ(t)dt.

If v → ∞, then we have

∫ ε


ϕ(t)dt ≤ φ

(∫ ε


ϕ(t)dt

)
,

a contradiction for ε > . Hence, {lTnx} is a ρ-Cauchy sequence. By ρ-completeness of Xρ ,
there exists x∗ ∈ Xρ such that ρ(l(Tnx – x∗)) →  as n→ ∞ and (Tnx,Tn+x) ∈ E(G) for all
n ∈ N and G is a Cρ-graph, then there exists a subsequence {Tnpx} such that (Tnpx,x∗) ∈
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E(G) for each p ∈ N. Also, (Tnpx,x∗) ∈ E(G) for each p ∈ N. From Remark . and (ψ), it
follows that

ψ

(
ρ

(
c

(
x∗ – Tx∗)))

= ψ

(
ρ

(
c

(
x∗ – Tnp+x

)
+
c

(
Tnp+x – Tx∗)))

≤ ψ
(
ρ
(
c
(
x∗ – Tnp+x

))
+ ρ

(
c
(
Tnp+x – Tx∗)))

≤ ψ
(
ρ
(
c
(
x∗ – Tnp+x

)))
+ψ

(
ρ
(
c
(
Tnp+x – Tx∗))).

Taking the limit as p→ ∞, we have

∫ ψ(ρ(c(Tnp+x–Tx∗)))


ϕ(t)dt ≤ φ

(∫ ψ(ρ(l(Tnpx–x∗)))


ϕ(t)dt

)

≤
∫ ψ(ρ(l(Tnpx–x∗)))


ϕ(t)dt.

Since ρ(l(Tnpx – x∗)) →  (p→ ∞), we obtain

lim
p→∞

∫ ψ(ρ(l(Tnpx–x∗)))


ϕ(t)dt ≤ ,

which implies that ψ(ρ(c(Tnp+x – Tx∗)))→ , as p→ ∞. Thus,

ψ
(
ρ
(
c
(
x∗ – Tnp+x

)))
+ψ

(
ρ
(
c
(
Tnp+x – Tx∗))) → , as p→ ∞.

Hence limn→∞ ψ(ρ( c (x
∗ – Tx∗))) =  and x∗ = Tx∗.

Finally, we prove that x∗ is a unique fixed point. Suppose that T has another fixed point
y∗ ∈ Xρ – {x∗}. Since G is a Cρ-graph, there exists a subsequence {Tnpx} of {Tnx} such
that (Tnpx,x∗) ∈ E(G) and (Tnpx, y∗) ∈ E(G) for each p ∈ N. Furthermore, as G is weakly
connected, (x∗, y∗) ∈ E(G̃). We have

∫ ψ(ρ(c(x∗–y∗)))


ϕ(t)dt =

∫ ψ(ρ(c(Tx∗–Ty∗)))


ϕ(t)dt

≤ φ

(∫ ψ(ρ(l(x∗–y∗)))


ϕ(t)dt

)

<
∫ ψ(ρ(l(x∗–y∗)))


ϕ(t)dt

<
∫ ψ(ρ(c(x∗–y∗)))


ϕ(t)dt,

a contradiction. Hence, x∗ = y∗. �

In Theorem ., if we replace the condition that G is a Cρ-graph with orbitally Gρ-
continuity of T , then we have the following theorem.

Theorem . Let Xρ be a ρ-complete modular space endowed with a graph G, where
ρ satisfies the -condition and let T : Xρ → Xρ be a (G̃,φ,ψ)ρ-contraction, which is or-
bitally Gρ-continuous. Assume that the set XT is nonempty and the graph G is weakly con-
nected. Then T is a PO.
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In the following corollaries, suppose that Xρ is a ρ-complete modular space endowed
with a graphG, where ρ satisfies the-condition and letT : Xρ → Xρ be edge-preserving
and the set XT be nonempty.

Corollary . Assume
(i) the Cρ-graph G is weakly connected and
(ii) there exist nonnegative numbers l, c with l < c such that

∫ ρ(c(Tx–Ty))


ϕ(t)dt ≤ φ

(∫ ρ(l(x–y))


ϕ(t)dt

)

hold for each (x, y) ∈ E(G̃) with φ ∈ � and ϕ ∈ �. Then T is a PO.

Corollary . Assume
(i) the Cρ-graph G is weakly connected and
(ii) there exist nonnegative numbers l, c with l < c such that

∫ ψ(ρ(c(Tx–Ty)))


ϕ(t)dt ≤ η

∫ ψ(ρ(l(x–y)))


ϕ(t)dt

for each (x, y) ∈ E(G̃) with η ∈ (, ) and ϕ ∈ �. Then T is a PO.

Now we provide examples in support of our results.

Example . Let Xρ = {, , , , , } and ρ(x) = |x|, for all x ∈ Xρ . Consider

E(G̃) =
{
(, ), (, ), (, ), (, ), (, )

} ∪ {
(,x) : x ∈ Xρ

}
,

and Tx = , x ∈ Xρ . Then G is weakly connected and Cρ-graph, XT is nonempty and T is
a (G̃,A)ρ-contraction where c = 

 , l =

 , ϕ(t) = . Hence, T is a PO.

Example . Let Xρ = {, , , } and ρ(x) = |x|, for all x ∈ Xρ . Consider

E(G̃) =
{
(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )

}
.

Define T : Xρ → Xρ as follows:

Tx =

{
, x ∈ {, },
, x ∈ {, }.

ThenG is weakly connected and Cρ-graph, XT is nonempty, and T is a Hardy-Rogers type
(G̃)ρ-contraction where c = , l = l = l = , l = l = 

 , η = 
 , β = 

 , γ = , and ϕ(t) = .
Moreover,  is a unique fixed point of T .

Example . Let Xρ = [, ] and ρ(x) = |x|, for all x ∈ Xρ . Consider

E(G) =
{
(, )

} ∪ {
(,x) : x ≥ /

} ∪ {
(x, y) : x, y ∈ (, ]

}
,
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and Tx = x
 , x ∈ Xρ . Then G is weakly connected and a Cρ-graph, XT is nonempty and T

is a (G̃,φ,ψ)ρ-contraction where c = 
 , l =


 , ϕ(t) = , φ(ξ ) = ξ

+ξ
, and ψ(ω) = ω

 . Thus all
conditions of Theorem . are satisfied. Moreover, T is a PO.

Remark . In the above examples, if we use ρ(x) = x, the conclusions remain the same.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Sakarya University, Sakarya, 54187, Turkey. 2Department of Mathematics and Applied
Mathematics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa. 3Department of Mathematics, Lahore
University of Management Sciences (LUMS), Phase-II, Opposite sector U, DHA Lahore Cantt., Lahore, 54792, Pakistan.

Acknowledgements
The authors are thankful to the anonymous referees for their valuable comments and suggestions, which helped to
improve the presentation of this paper.

Received: 30 May 2014 Accepted: 14 October 2014 Published: 29 Oct 2014

References
1. Banach, S: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam.

Math. 3, 133-181 (1922)
2. Ran, ACM, Reuring, MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations.

Proc. Am. Math. Soc. 132, 1435-1443 (2004)
3. Abbas, M, Khamsi, MA, Khan, AR: Common fixed point and invariant approximation in hyperbolic ordered metric

spaces. Fixed Point Theory Appl. 2011, Article ID 25 (2011). doi:10.1186/1687-1812-2011-25
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