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Abstract
In this paper, we consider a hierarchical variational inequality problem (HVIP) defined
over a common set of solutions of finitely many generalized mixed equilibrium
problems, finitely many variational inclusions, a general system of variational
inequalities, and the fixed point problem of a strictly pseudocontractive mapping. By
combining Korpelevich’s extragradient method, the viscosity approximation method,
the hybrid steepest-descent method and Mann’s iteration method, we introduce and
analyze a multistep hybrid extragradient algorithm for finding a solution of our HVIP.
It is proven that under appropriate assumptions, the proposed algorithm converges
strongly to a solution of a general system of variational inequalities defined over a
common set of solutions of finitely many generalized mixed equilibrium problems
(GMEPs), finitely many variational inclusions, and the fixed point problem of a strictly
pseudocontractive mapping. In the meantime, we also prove the strong convergence
of the proposed algorithm to a unique solution of our HVIP. The results obtained in
this paper improve and extend the corresponding results announced by many others.
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1 Introduction and formulations
1.1 Variational inequalities and equilibrium problems
Let C be a nonempty closed convex subset of a real Hilbert space H and A : C → H be a
nonlinear mapping. A variational inequality problem (VIP) is to find a point x ∈ C such
that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

The solution set of the VIP (.) defined by C and A is denoted by VI(C,A). The theory
of variational inequalities is a well established subject in nonlinear analysis and optimiza-
tion. For different aspects of variational inequalities and their generalizations, we refer to
[–] and the references therein. Several solution methods for solving different kinds of
variational inequality have appeared in literature. Korpelevich’s extragradient method []
is one of them. It is further studied in [].
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Let Θ : C ×C → R be a bifunction. The equilibrium problem (EP) is to find x ∈ C such
that

Θ(x, y) ≥ , ∀y ∈ C. (.)

The set of solutions of EP is denoted by EP(Θ). It is a unified model of several problems,
namely, variational inequalities, Nash equilibrium problems, optimization problems, sad-
dle point problems, etc. For further details of EP, we refer to [, ] and the references
therein.
Let ϕ : C → R be a real-valued function and A : H → H be a nonlinear mapping. The

generalized mixed equilibrium problem (GMEP) [] is to find x ∈ C such that

Θ(x, y) + ϕ(y) – ϕ(x) + 〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

We denote the set of solutions of GMEP (.) by GMEP(Θ ,ϕ,A). The GMEP (.) is very
general in the sense that it includes, as special cases, optimization problems, variational
inequalities, minimax problems, Nash equilibrium problems in noncooperative games,
and others. The GMEP is further considered and studied in [, ] and the references
therein.
When A ≡ , then GMEP (.) reduces to the following mixed equilibrium problem

(MEP): find x ∈ C such that

Θ(x, y) + ϕ(y) – ϕ(x) ≥ , ∀y ∈ C.

The set of solutions of MEP is denoted byMEP(Θ ,ϕ).
The common assumptions on the bifunction Θ : C ×C → R to study GMEP (.) or EP

(.) are the following:
(A) Θ(x,x) =  for all x ∈ C;
(A) Θ is monotone, i.e., Θ(x, y) +Θ(y,x) ≤  for any x, y ∈ C;
(A) Θ is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→+

Θ
(
tz + ( – t)x, y

)≤ Θ(x, y);

(A) Θ(x, ·) is convex and lower semicontinuous for each x ∈ C;
We use the assumption that the function ϕ : C → R is a lower semicontinuous and convex
function with restriction (B) or (B), where
(B) for each x ∈H and r > , there exists a bounded subset Dx ⊂ C and yx ∈ C such

that for any z ∈ C \Dx,

Θ(z, yx) + ϕ(yx) – ϕ(z) +

r
〈yx – z, z – x〉 < ;

(B) C is a bounded set.
Given a positive number r > . LetT (Θ ,ϕ)

r :H → C be the solution set of the auxiliarymixed
equilibrium problem, that is, for each x ∈H ,

T (Θ ,ϕ)
r (x) :=

{
y ∈ C :Θ(y, z) + ϕ(z) – ϕ(y) +


r
〈y – x, z – y〉 ≥ ,∀z ∈ C

}
.
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Some elementary conclusions related to MEP are given in the following result.

Proposition . [] Let Θ : C × C → R satisfy conditions (A)-(A) and ϕ : C → R be a
proper lower semicontinuous and convex function such that either (B) or (B) holds. For
r >  and x ∈H , define a mapping T (Θ ,ϕ)

r :H → C by

T (Θ ,ϕ)
r (x) =

{
z ∈ C :Θ(z, y) + ϕ(y) – ϕ(z) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
, ∀x ∈H .

Then the following conclusions hold:
(i) For each x ∈ H , T (Θ ,ϕ)

r (x) is nonempty and single-valued;
(ii) T (Θ ,ϕ)

r is firmly nonexpansive, that is, for any x, y ∈ H ,∥∥T (Θ ,ϕ)
r x – T (Θ ,ϕ)

r y
∥∥ ≤ 〈

T (Θ ,ϕ)
r x – T (Θ ,ϕ)

r y,x – y
〉
;

(iii) Fix(T (Θ ,ϕ)
r ) =MEP(Θ ,ϕ);

(iv) MEP(Θ ,ϕ) is closed and convex;
(v) ‖T (Θ ,ϕ)

s x – T (Θ ,ϕ)
t x‖ ≤ s–t

s 〈T (Θ ,ϕ)
s x – T (Θ ,ϕ)

t x,T (Θ ,ϕ)
s x – x〉, ∀s, t >  and x ∈ H .

Recently, Cai and Bu [] considered a problem of finding a common element of the
set of solutions of finitely many generalized mixed equilibrium problems, the set of solu-
tions of finitely many variational inequalities mappings and the set of fixed points of an
asymptotically k-strict pseudocontractive mapping in the intermediate sense [] in a real
Hilbert space. They proposed and analyzed an algorithm for finding such a solution. The
weak convergence result for the proposed algorithm is also presented.

1.2 General system of variational inequalities
Let F,F : C → H be two mappings. We consider the general system of variational in-
equalities (GSVI) of finding (x∗, y∗) ∈ C ×C such that{

〈νFy∗ + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ C,
〈νFx∗ + y∗ – x∗,x – y∗〉 ≥ , ∀x ∈ C,

(.)

where ν >  and ν >  are two constants. It was considered and studied in [, , ]. In
particular, if F = F = A, then the GSVI (.) reduces to the problem of finding (x∗, y∗) ∈
C ×C such that{

〈νAy∗ + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ C,
〈νAx∗ + y∗ – x∗,x – y∗〉 ≥ , ∀x ∈ C.

(.)

It is called a new system of variational inequalities (NSVI) []. It is worth to mention
that the above system of two variational inequalities could be used to solve Nash equilib-
rium problem. For applications of system of variational inequalities to Nash equilibrium
problems, we refer to [–] and the references therein. Further, if x∗ = y∗ additionally,
then the NSVI reduces to the classical VIP (.). Putting G := PC(I – νF)PC(I – νF) and
y∗ = PC(I – νF)x∗, Ceng et al. [] transformed the GSVI (.) into the following fixed
point equation:

Gx∗ = x∗. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/222
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1.3 Hierarchical variational inequalities
A variational inequality problem defined over the set of fixed points of a nonexpansive
mapping, is called a hierarchical variational inequality problem. Let S,T :H →H be non-
expansive mappings. We denote by Fix(T) and Fix(T) the set of fixed points of T and S,
respectively. If we replace C by Fix(T) in the formulation of VIP (.), then VIP (.) is
defined by Fix(T) and A and it is called a hierarchical variational inequality problem.
Yao et al. [] considered the hierarchical variational inequality problem (HVIP) in

which the mapping A is replaced by the monotone mapping I – S. They considered the
following form of HVIP: find x̃ ∈ Fix(T) such that

〈
(I – S)x̃,p – x̃

〉≥ , ∀p ∈ Fix(T). (.)

The solution set of HVIP (.) is denoted by Λ. It is not hard to check that solving HVIP
(.) is equivalent to the fixed point problem of the composite mapping PFix(T) ◦ S, that
is, find x̃ ∈ C such that x̃ = PFix(T)Sx̃. They proposed and analyzed an iterative method for
solving this kind of HTVI. For further details and a comprehensive survey on HVIP, we
refer to [] and the references therein.

1.4 Variational inclusions
Let B : C → H be a single-valued mapping and R : C → H be a set-valued mapping with
D(R) = C. We consider the variational inclusion problem of finding a point x ∈ C such that

 ∈ Bx + Rx. (.)

We denote by I(B,R) the solution set of the variational inclusion (.). In particular, if
B ≡ R ≡ , then I(B,R) = C. If B = , then problem (.) becomes the inclusion problem
introduced by Rockafellar []. It is well known that problem (.) provides a convenient
framework for the unified study of optimal solutions in many optimization related areas
including mathematical programming, complementarity problems, variational inequali-
ties, optimal control, mathematical economics, equilibria and game theory, etc.

1.5 Problem to be considered
In this paper, we introduce and study the following hierarchical variational inequality
problem (HVIP) defined over a common set of solutions of finitely many GMEPs, finitely
many variational inclusions, a general system of variational inequalities, and a fixed point
of a strictly pseudocontractive mapping. Throughout the paper, we denote by M and N
set of the positive integers.

Problem . Assume that
(i) for j = , , Fj : C →H and F :H →H are mappings;
(ii) for each k ∈ {, , . . . ,M}, Θk : C ×C → R is a bifunction satisfying conditions

(A)-(A) and ϕk : C → R∪ {+∞} is a proper lower semicontinuous and convex
function with restriction (B) or (B);

(iii) for each k ∈ {, , . . . ,M} and i ∈ {, , . . . ,N}, Ri : C → H is a maximal monotone
mapping, and Ak :H →H and Bi : C →H are mappings;

(iv) T : C → C is a mapping and S :H →H is a nonexpansive mapping;
(v) Ω :=

⋂M
k=GMEP(Θk ,ϕk ,Ak)∩⋂N

i= I(Bi,Ri)∩GSVI(G)∩ Fix(T) �= ∅.

http://www.fixedpointtheoryandapplications.com/content/2014/1/222
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Then the objective is to find x∗ ∈ Ω such that

〈
(μF – γ S)x∗,x – x∗〉≥ , ∀x ∈ Ω . (.)

By combiningKorpelevich’s extragradientmethod, the viscosity approximationmethod,
the hybrid steepest-descent method [], and Mann’s iteration method, we introduce and
analyze a multistep hybrid extragradient algorithm for finding a solution of Problem .. It
is proven that under appropriate assumptions, the proposed algorithm converges strongly
to a solution of GSVI (.) defined over a common set of solutions of finitely many gener-
alized mixed equilibrium problems (GMEPs), finitely many variational inclusions and the
fixed point problem of a strictly pseudocontractive mapping. In the meantime, we also
prove the strong convergence of the proposed algorithm to a unique solution of Prob-
lem .. The results obtained in this paper improve and extend the corresponding results
announced by many others.

2 Preliminaries
Throughout this paper, we assume that H is a real Hilbert space whose inner product
and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex
subset of H . We write xn ⇀ x to indicate that the sequence {xn} converges weakly to x
and xn → x to indicate that the sequence {xn} converges strongly to x. Moreover, we use
ωw(xn) to denote the weak ω-limit set of the sequence {xn}, i.e.,

ωw(xn) :=
{
x ∈H : xni ⇀ x for some subsequence {xni} of {xn}

}
.

Definition . A mapping A : C →H is called
(i) η-strongly monotone if there exists a constant η >  such that

〈Ax –Ay,x – y〉 ≥ η‖x – y‖, ∀x, y ∈ C;

(ii) ζ -inverse-strongly monotone if there exists a constant ζ >  such that

〈Ax –Ay,x – y〉 ≥ ζ‖Ax –Ay‖, ∀x, y ∈ C.

It is easy to see that the projection PC is -inverse-strongly monotone. Inverse-strongly
monotone (also referred to as co-coercive) operators have been applied widely in solving
practical problems in various fields. It is obvious that if A is ζ -inverse-strongly monotone,
then A is monotone and 

ζ
-Lipschitz continuous. Moreover, we also have, for all u, v ∈ C

and λ > ,

∥∥(I – λA)u – (I – λA)v
∥∥ =

∥∥(u – v) – λ(Au –Av)
∥∥

= ‖u – v‖ – λ〈Au –Av,u – v〉 + λ‖Au –Av‖

≤ ‖u – v‖ + λ(λ – ζ )‖Au –Av‖. (.)

So, if λ ≤ ζ , then I – λA is a nonexpansive mapping from C to H .

http://www.fixedpointtheoryandapplications.com/content/2014/1/222
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Definition . A mapping T :H → H is said to be firmly nonexpansive if T – I is non-
expansive, or equivalently, if T is -inverse-strongly monotone (-ism),

〈x – y,Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈H ;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =


(I + S),

where S :H →H is nonexpansive; projections are firmly nonexpansive.

It can easily be seen that if T is nonexpansive, then I – T is monotone.
It is clear that, in a real Hilbert spaceH , T : C → C is ξ -strictly pseudocontractive if and

only if the following inequality holds:

〈Tx – Ty,x – y〉 ≤ ‖x – y‖ –  – ξ


∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

This immediately implies that if T is a ξ -strictly pseudocontractive mapping, then I – T
is –ξ

 -inverse-strongly monotone; for further details, we refer to [] and the references
therein. It is well known that the class of strict pseudocontractions strictly includes the
class of nonexpansive mappings and that the class of pseudocontractions strictly includes
the class of strict pseudocontractions.

Lemma. [, Proposition .] Let C be a nonempty closed convex subset of a real Hilbert
space H and T : C → C be a mapping.

(i) If T is a ξ -strictly pseudocontractive mapping, then T satisfies the Lipschitzian
condition

‖Tx – Ty‖ ≤  + ξ

 – ξ
‖x – y‖, ∀x, y ∈ C.

(ii) If T is a ξ -strictly pseudocontractive mapping, then the mapping I – T is semiclosed
at , that is, if {xn} is a sequence in C such that xn ⇀ x̃ and (I – T)xn → , then
(I – T)x̃ = .

(iii) If T is a ξ -(quasi-)strict pseudocontraction, then the fixed-point set Fix(T) of T is
closed and convex so that the projection PFix(T) is well defined.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T : C → C be a ξ -strictly pseudocontractive mapping. Let γ and δ be two nonnegative real
numbers such that (γ + δ)ξ ≤ γ . Then

∥∥γ (x – y) + δ(Tx – Ty)
∥∥≤ (γ + δ)‖x – y‖, ∀x, y ∈ C.

Let C be a nonempty closed convex subset of a real Hilbert spaceH . We introduce some
notations. Let λ be a number in (, ] and let μ > . Associated with a nonexpansive map-
ping T : C →H , we define the mapping Tλ : C →H by

Tλx := Tx – λμF(Tx), ∀x ∈ C,

http://www.fixedpointtheoryandapplications.com/content/2014/1/222
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where F : H → H is an operator such that, for some positive constants κ ,η > , F is κ-
Lipschitzian and η-strongly monotone on H , that is, F satisfies the conditions

‖Fx – Fy‖ ≤ κ‖x – y‖ and 〈Fx – Fy,x – y〉 ≥ η‖x – y‖

for all x, y ∈ H .

Remark . Since F is κ-Lipschitzian and η-strongly monotone on H , we get  < η ≤ κ .
Hence, whenever  < μ < η

κ
, we have

 ≤ ( –μη) =  – μη +μη

≤  – μη +μκ <  – μη +
η
κ μκ = ,

which implies

 <  –
√
 – μη +μκ ≤ .

So, τ =  –
√
 –μ(η –μκ) ∈ (, ].

Finally, recall that a set-valued mapping T :D(T)⊂H → H is called monotone if for all
x, y ∈D(T), f ∈ Tx and g ∈ Ty imply

〈f – g,x – y〉 ≥ .

A set-valuedmapping T is calledmaximal monotone if T is monotone and (I +λT)D(T) =
H for each λ > , where I is the identity mapping ofH . We denote by G(T) the graph of T .
It is well known that a monotone mapping T is maximal if and only if, for (x, f ) ∈ H ×H ,
〈f – g,x – y〉 ≥  for every (y, g) ∈ G(T) implies f ∈ Tx. Next we provide an example to
illustrate the concept of a maximal monotone mapping.
Let A : C → H be a monotone, k-Lipschitz-continuous mapping and let NCv be the

normal cone to C at v ∈ C, i.e.,

NCv =
{
u ∈H : 〈v – p,u〉 ≥ ,∀p ∈ C

}
.

Define

T̃v =

{
Av +NCv, if v ∈ C,
∅, if v /∈ C.

Then T̃ is maximal monotone (see []) such that

 ∈ T̃v ⇐⇒ v ∈VI(C,A). (.)

Let R : D(R) ⊂ H → H be a maximal monotone mapping. Let λ,μ >  be two positive
numbers. Associated with R and λ, we define the resolvent operator JR,λ :H → D(R) by

JR,λ = (I + λR)–, ∀x ∈H ,

where λ is a positive number.

http://www.fixedpointtheoryandapplications.com/content/2014/1/222
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The lemma shows that the resolvent operator JR,λ :H → D(R) is nonexpansive.

Lemma . [] JR,λ is single-valued and firmly nonexpansive, i.e.,

〈JR,λx – JR,λy,x – y〉 ≥ ‖JR,λx – JR,λy‖, ∀x, y ∈H .

Consequently, JR,λ is nonexpansive and monotone.

Lemma . [] Let R be a maximal monotone mapping with D(R) = C. Then for any
given λ > , u ∈ C is a solution of problem (.) if and only if u ∈ C satisfies

u = JR,λ(u – λBu).

Lemma . [] Let R be a maximal monotone mapping with D(R) = C and let B : C →H
be a strongly monotone, continuous, and single-valued mapping. Then for each z ∈ H , the
equation z ∈ (B + λR)x has a unique solution xλ for λ > .

Lemma . [] Let R be a maximal monotone mapping with D(R) = C and B : C → H
be a monotone, continuous and single-valued mapping. Then (I + λ(R + B))C =H for each
λ > . In this case, R + B is maximal monotone.

Lemma . [] We have the resolvent identity

JR,λx = JR,μ
(

μ

λ
x +

(
 –

μ

λ

)
JR,λx

)
, ∀x ∈H .

Remark . For λ,μ > , we have the following relation:

‖JR,λx – JR,μy‖ ≤ ‖x – y‖ + |λ –μ|
(

λ

‖JR,λx – y‖ + 
μ

‖x – JR,μy‖
)
, ∀x, y ∈H . (.)

Indeed, whenever λ ≥ μ, utilizing Lemma . we deduce that

‖JR,λx – JR,μy‖ =
∥∥∥∥JR,μ(μ

λ
x +

(
 –

μ

λ

)
JR,λx

)
– JR,μy

∥∥∥∥
≤
∥∥∥∥μ

λ
x +

(
 –

μ

λ

)
JR,λx – y

∥∥∥∥
≤ μ

λ
‖x – y‖ +

(
 –

μ

λ

)
‖JR,λx – y‖

≤ ‖x – y‖ + |λ –μ|
λ

‖JR,λx – y‖.

Similarly, whenever λ < μ, we get

‖JR,λx – JR,μy‖ ≤ ‖x – y‖ + |λ –μ|
μ

‖x – JR,μy‖.

Combining the above two cases we conclude that (.) holds.

http://www.fixedpointtheoryandapplications.com/content/2014/1/222
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Weneed following fact and lemmas to establish the strong convergence of the sequences
generated by the proposed algorithm.

Lemma . Let X be a real inner product space. Then

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈ X.

Lemma . Let H be a real Hilbert space. Then:
(a) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉 for all x, y ∈H ;
(b) ‖λx +μy‖ = λ‖x‖ +μ‖y‖ – λμ‖x – y‖ for all x, y ∈H and λ,μ ∈ [, ] with

λ +μ = ;
(c) If {xn} is a sequence in H such that xn ⇀ x, it follows that

lim sup
n→∞

‖xn – y‖ = lim sup
n→∞

‖xn – x‖ + ‖x – y‖, ∀y ∈H .

Lemma . (Demiclosedness principle []) Let C be a nonempty closed convex subset
of a real Hilbert space H . Let S be a nonexpansive self-mapping on C with Fix(S) �= ∅. Then
I – S is demiclosed, that is, whenever {xn} is a sequence in C weakly converging to some
x ∈ C and the sequence {(I – S)xn} strongly converges to some y, it follows that (I – S)x = y,
where I is the identity operator of H .

Lemma . [, Lemma .] Tλ is a contraction provided  < μ < η
κ
; that is,

∥∥Tλx – Tλy
∥∥≤ ( – λτ )‖x – y‖, ∀x, y ∈ C,

where τ =  –
√
 –μ(η –μκ) ∈ (, ].

Remark . (a) Since F is κ-Lipschitzian and η-strongly monotone on H , we get  <
η ≤ κ . Hence, whenever  < μ < η

κ
, we have

 ≤ ( –μη) =  – μη +μη

≤  – μη +μκ

<  – μη +
η
κ μκ = ,

which implies

 <  –
√
 – μη +μκ ≤ .

Therefore, τ =  –
√
 –μ(η –μκ) ∈ (, ].

(b) In Lemma ., put F = 
 I andμ = . Thenwe know that κ = η = 

 ,  < μ =  < η
κ

= 
and

τ =  –
√
 –μ

(
η –μκ

)
=  –

√
 – 

(
× 


– ×

(



))
= .

http://www.fixedpointtheoryandapplications.com/content/2014/1/222
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Lemma . [] Let {sn} be a sequence of nonnegative numbers satisfying the conditions

sn+ ≤ ( – αn)sn + αnβn, ∀n≥ ,

where {αn} and {βn} are sequences of real numbers such that
(a) {αn} ⊂ [, ] and

∑∞
n= αn =∞, or equivalently,

∞∏
n=

( – αn) := lim
n→∞

n∏
k=

( – αk) = ;

(b) lim supn→∞ βn ≤ , or
∑∞

n= |αnβn| < ∞.
Then limn→∞ sn = .

3 Algorithms and convergence results
In this section, we will introduce and analyze a multistep hybrid extragradient algorithm
for finding a solution of the HVIP (.) (over the fixed point set of a strictly pseudocon-
tractive mapping) with constraints of several problems: GSVI (.), finitely many GMEPs,
and finitely many variational inclusions in a real Hilbert space. This algorithm is based
on Korpelevich’s extragradient method, the viscosity approximation method, the hybrid
steepest-descent method [], and Mann’s iteration method. We prove the strong conver-
gence of the proposed algorithm to a unique solution of HVIP (.) under suitable condi-
tions.
We propose the following algorithm to compute the approximate solution of Prob-

lem ..

Algorithm . Let C be a nonempty closed convex subset of a real Hilbert space H . For
each k ∈ {, , . . . ,M}, let Θk : C × C → R be a bifunction satisfying conditions (A)-(A)
and ϕk : C → R ∪ {+∞} be a proper lower semicontinuous and convex function with
restriction (B) or (B). For each k ∈ {, , . . . ,M}, i ∈ {, , . . . ,N}, let Ri : C → H be a
maximal monotone mapping, and Ak : H → H and Bi : C → H be μk-inverse-strongly
monotone and ηi-inverse-strongly monotone, respectively. Let T : C → C be a ξ -strictly
pseudocontractive mapping, S : H → H is a nonexpansive mapping and V : H → H be
a ρ-contraction with coefficient ρ ∈ [, ). For each j = , , let Fj : C → H be ζj-inverse-
strongly monotone and F :H →H be κ-Lipschitzian and η-strongly monotone with pos-
itive constants κ ,η >  such that ≤ γ < τ and  < μ < η

κ
where τ = –

√
 –μ(η –μκ).

Assume that Ω :=
⋂M

k=GMEP(Θk ,ϕk ,Ak) ∩ ⋂N
i= I(Bi,Ri) ∩ GSVI(G) ∩ Fix(T) �= ∅. Let

{αn}, {λn} ⊂ (, ], {βn}, {γn}, {δn} ⊂ [, ], {ρn} ⊂ (, α], {λi,n} ⊂ [ai,bi] ⊂ (, ηi) and
{rk,n} ⊂ [ck ,dk] ⊂ (, μk) where i ∈ {, , . . . ,N} and k ∈ {, , . . . ,M}. For arbitrarily given
x ∈ H , let {xn} be a sequence generated by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
un = T (ΘM ,ϕM)

rM,n (I – rM,nAM)T (ΘM–,ϕM–)
rM–,n (I – rM–,nAM–) · · ·T (Θ,ϕ)

r,n (I – r,nA)xn,
vn = JRN ,λN ,n (I – λN ,nBN )JRN–,λN–,n (I – λN–,nBN–) · · · JR,λ,n (I – λ,nB)un,
yn = βnxn + γnGvn + δnTGvn,
xn+ = λnγ (αnVxn + ( – αn)Sxn) + (I – λnμF)yn, ∀n≥ ,

(.)

where G := PC(I – νF)PC(I – νF) with νj ∈ (, ζj) for j = , .
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Theorem . In addition to the assumption in Algorithm ., suppose that
(i) limn→∞ λn = ,

∑∞
n= λn =∞ and limn→∞ 

λn
| – αn–

αn
| = ;

(ii) lim supn→∞
αn
λn

< ∞, limn→∞ 
λn

| 
αn

– 
αn–

| =  and limn→∞ 
αn

| – λn–
λn

| = ;
(iii) limn→∞ |βn–βn–|

λnαn
=  and limn→∞ |γn–γn–|

λnαn
= ;

(iv) limn→∞
|λi,n–λi,n–|

λnαn
=  and limn→∞

|rk,n–rk,n–|
λnαn

=  for i = , , . . . ,N and
k = , , . . . ,M;

(v) βn + γn + δn =  and (γn + δn)ξ ≤ γn for all n≥ ;
(vi) {βn} ⊂ [a,b]⊂ (, ) and lim infn→∞ δn > .

Then
(a) limn→∞ ‖xn+–xn‖

αn
= ;

(b) ωw(xn) ⊂ Ω ;
(c) {xn} converges strongly to a point x∗ ∈ Ω , which is a unique solution of HVIP (.),

that is,

〈
(μF – γ S)x∗,p – x∗〉≥ , ∀p ∈ Ω .

Proof First of all, observe that

μη ≥ τ ⇐⇒ μη ≥  –
√
 –μ

(
η –μκ

)
⇐⇒

√
 –μ

(
η –μκ

)≥  –μη

⇐⇒  – μη +μκ ≥  – μη +μη

⇐⇒ κ ≥ η

⇐⇒ κ ≥ η

and

〈
(μF – γ S)x – (μF – γ S)y,x – y

〉
= μ〈Fx – Fy,x – y〉 – γ 〈Sx – Sy,x – y〉
≥ μη‖x – y‖ – γ ‖x – y‖

= (μη – γ )‖x – y‖, ∀x, y ∈ H .

Since  ≤ γ < τ and κ ≥ η, we know that μη ≥ τ > γ and hence the mapping μF – γ S is
(μη – γ )-strongly monotone. Moreover, it is clear that the mapping μF – γ S is (μκ + γ )-
Lipschitzian. Thus, there exists a unique solution x∗ in Ω to the VIP

〈
(μF – γ S)x∗,p – x∗〉≥ , ∀p ∈ Ω .

That is, {x∗} =VI(Ω ,μF – γ S). Now, we put

Δk
n = T (Θk ,ϕk )

rk,n (I – rk,nAk)T (Θk–,ϕk–)
rk–,n (I – rk–,nAk–) · · ·T (Θ,ϕ)

r,n (I – r,nA)xn

for all k ∈ {, , . . . ,M} and n≥ ,

Λi
n = JRi ,λi,n (I – λi,nBi)JRi–,λi–,n (I – λi–,nBi–) · · · JR,λ,n (I – λ,nB)

http://www.fixedpointtheoryandapplications.com/content/2014/1/222
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for all i ∈ {, , . . . ,N}, Δ
n = I and Λ

n = I , where I is the identity mapping on H . Then we
have un =ΔM

n xn and vn =ΛN
n un.

We divide the rest of the proof into several steps.
Step . We prove that {xn} is bounded.
Indeed, take a fixed p ∈ Ω arbitrarily. Utilizing (.) and Proposition .(ii), we have

‖un – p‖ =
∥∥T (ΘM ,ϕM)

rM,n
(I – rM,nBM)ΔM–

n xn – T (ΘM ,ϕM)
rM,n

(I – rM,nBM)ΔM–
n p

∥∥
≤ ∥∥(I – rM,nBM)ΔM–

n xn – (I – rM,nBM)ΔM–
n p

∥∥
≤ ∥∥ΔM–

n xn –ΔM–
n p

∥∥
· · ·

≤ ∥∥Δ
nxn –Δ

np
∥∥

= ‖xn – p‖. (.)

Utilizing (.) and Lemma ., we have

‖vn – p‖ =
∥∥JRN ,λN ,n (I – λN ,nAN )ΛN–

n un – JRN ,λN ,n (I – λN ,nAN )ΛN–
n p

∥∥
≤ ∥∥(I – λN ,nAN )ΛN–

n un – (I – λN ,nAN )ΛN–
n p

∥∥
≤ ∥∥ΛN–

n un –ΛN–
n p

∥∥
· · ·

≤ ∥∥Λ
nun –Λ

np
∥∥

= ‖un – p‖. (.)

Combining (.) and (.), we have

‖vn – p‖ ≤ ‖xn – p‖. (.)

Since p = Gp = PC(I – νF)PC(I – νF)p, Fj is ζj-inverse-strongly monotone for j = , ,
and  < νj ≤ ζj for j = , , we deduce that, for any n≥ ,

‖Gvn – p‖

=
∥∥PC(I – νF)PC(I – νF)vn – PC(I – νF)PC(I – νF)p

∥∥
≤ ∥∥(I – νF)PC(I – νF)vn – (I – νF)PC(I – νF)p

∥∥
=
∥∥[PC(I – νF)vn – PC(I – νF)p

]
– ν

[
FPC(I – νF)vn – FPC(I – νF)p

]∥∥
≤ ∥∥PC(I – νF)vn – PC(I – νF)p

∥∥
+ ν(ν – ζ)

∥∥FPC(I – νF)vn – FPC(I – νF)p
∥∥

≤ ∥∥PC(I – νF)vn – PC(I – νF)p
∥∥

≤ ∥∥(I – νF)vn – (I – νF)p
∥∥

=
∥∥(vn – p) – ν(Fvn – Fp)

∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/222
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≤ ‖vn – p‖ + ν(ν – ζ)‖Fvn – Fp‖

≤ ‖vn – p‖. (.)

(This shows thatG : C → C is a nonexpansive mapping.) Since (γn + δn)ξ ≤ γn for all n≥ 
and T is ξ -strictly pseudocontractive, utilizing Lemma ., we obtain from (.), (.), and
(.)

‖yn – p‖ = ‖βnxn + γnGvn + δnTGvn – p‖
=
∥∥βn(xn – p) + γn(Gvn – p) + δn(TGvn – p)

∥∥
≤ βn‖xn – p‖ + ∥∥γn(Gvn – p) + δn(TGvn – p)

∥∥
≤ βn‖xn – p‖ + (γn + δn)‖Gvn – p‖
≤ βn‖xn – p‖ + (γn + δn)‖vn – p‖
≤ βn‖xn – p‖ + (γn + δn)‖xn – p‖
= ‖xn – p‖. (.)

Utilizing Lemma ., we deduce from (.), (.), and  ≤ γ < τ that for all n ≥ 

‖xn+ – p‖
=
∥∥λnγ

(
αnVxn + ( – αn)Sxn

)
+ (I – λnμF)yn – p

∥∥
=
∥∥λnγ

(
αnVxn + ( – αn)Sxn

)
– λnμFp + (I – λnμF)yn – (I – λnμF)p

∥∥
≤ ∥∥λnγ

(
αnVxn + ( – αn)Sxn

)
– λnμFp

∥∥ + ∥∥(I – λnμF)yn – (I – λnμF)p
∥∥

= λn
∥∥αn(γVxn –μFp) + ( – αn)(γ Sxn –μFp)

∥∥ + ∥∥(I – λnμF)yn – (I – λnμF)p
∥∥

≤ λn
[
αn‖γVxn –μFp‖ + ( – αn)‖γ Sxn –μFp‖] + ∥∥(I – λnμF)yn – (I – λnμF)p

∥∥
≤ λn

[
αn
(
γ ‖Vxn –Vp‖ + ‖γVp –μFp‖) + ( – αn)

(
γ ‖Sxn – Sp‖ + ‖γ Sp –μFp‖)]

+
∥∥(I – λnμF)yn – (I – λnμF)p

∥∥
≤ λn

[
αn
(
γρ‖xn – p‖ + ‖γVp –μFp‖) + ( – αn)

(
γ ‖xn – p‖ + ‖γ Sp –μFp‖)]

+ ( – λnτ )‖yn – p‖
≤ λn

[(
 – αn( – ρ)

)
γ ‖xn – p‖ +max

{‖γVp –μFp‖,‖γ Sp –μFp‖}]
+ ( – λnτ )‖xn – p‖

= λn
(
 – αn( – ρ)

)
γ ‖xn – p‖ + λnmax

{‖γVp –μFp‖,‖γ Sp –μFp‖}
+ ( – λnτ )‖xn – p‖

≤ λnγ ‖xn – p‖ + λnmax
{‖γVp –μFp‖,‖γ Sp –μFp‖} + ( – λnτ )‖xn – p‖

=
(
 – λn(τ – γ )

)‖xn – p‖ + λnmax
{‖γVp –μFp‖,‖γ Sp –μFp‖}

=
(
 – λn(τ – γ )

)‖xn – p‖ + λn(τ – γ )
max{‖γVp –μFp‖,‖γ Sp –μFp‖}

τ – γ

≤max

{
‖xn – p‖, ‖γVp –μFp‖

τ – γ
,
‖γ Sp –μFp‖

τ – γ

}
.
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By induction, we get

‖xn – p‖ ≤max

{
‖x – p‖, ‖γVp –μFp‖

τ – γ
,
‖γ Sp –μFp‖

τ – γ

}
, ∀n≥ .

Thus, {xn} is bounded and so are the sequences {un}, {vn}, and {yn}.
Step . We prove that limn→∞ ‖xn+–xn‖

αn
= .

Indeed, utilizing (.) and (.), we obtain

‖vn+ – vn‖
=
∥∥ΛN

n+un+ –ΛN
n un

∥∥
=
∥∥JRN ,λN ,n+ (I – λN ,n+BN )ΛN–

n+ un+ – JRN ,λN ,n (I – λN ,nBN )ΛN–
n un

∥∥
≤ ∥∥JRN ,λN ,n+ (I – λN ,n+BN )ΛN–

n+ un+ – JRN ,λN ,n+ (I – λN ,nBN )ΛN–
n+ un+

∥∥
+
∥∥JRN ,λN ,n+ (I – λN ,nBN )ΛN–

n+ un+ – JRN ,λN ,n (I – λN ,nBN )ΛN–
n un

∥∥
≤ ∥∥(I – λN ,n+BN )ΛN–

n+ un+ – (I – λN ,nBN )ΛN–
n+ un+

∥∥
+
∥∥(I – λN ,nBN )ΛN–

n+ un+ – (I – λN ,nBN )ΛN–
n un

∥∥ + |λN ,n+ – λN ,n|

×
(


λN ,n+

∥∥JRN ,λN ,n+ (I – λN ,nBN )ΛN–
n+ un+ – (I – λN ,nBN )ΛN–

n un
∥∥

+


λN ,n

∥∥(I – λN ,nBN )ΛN–
n+ un+ – JRN ,λN ,n (I – λN ,nBN )ΛN–

n un
∥∥)

≤ |λN ,n+ – λN ,n|
(∥∥BNΛN–

n+ un+
∥∥ + M̃

)
+
∥∥ΛN–

n+ un+ –ΛN–
n un

∥∥
≤ |λN ,n+ – λN ,n|

(∥∥BNΛN–
n+ un+

∥∥ + M̃
)

+ |λN–,n+ – λN–,n|
(∥∥BN–Λ

N–
n+ un+

∥∥ + M̃
)
+
∥∥ΛN–

n+ un+ –ΛN–
n un

∥∥
· · ·

≤ |λN ,n+ – λN ,n|
(∥∥BNΛN–

n+ un+
∥∥ + M̃

)
+ |λN–,n+ – λN–,n|

(∥∥BN–Λ
N–
n+ un+

∥∥ + M̃
)

+ · · · + |λ,n+ – λ,n|
(∥∥BΛ


n+un+

∥∥ + M̃
)
+
∥∥Λ

n+un+ –Λ
nun

∥∥
≤ M̃

N∑
i=

|λi,n+ – λi,n| + ‖un+ – un‖, (.)

where

sup
n≥

{


λN ,n+

∥∥JRN ,λN ,n+ (I – λN ,nBN )ΛN–
n+ un+ – (I – λN ,nBN )ΛN–

n un
∥∥

+


λN ,n

∥∥(I – λN ,nBN )ΛN–
n+ un+ – JRN ,λN ,n (I – λN ,nBN )ΛN–

n un
∥∥}≤ M̃

for some M̃ >  and supn≥{
∑N

i= ‖BiΛ
i–
n+un+‖ + M̃} ≤ M̃ for some M̃ > .

Utilizing Proposition .(ii), (v), we deduce that

‖un+ – un‖
=
∥∥ΔM

n+xn+ –ΔM
n xn

∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/222


Ceng et al. Fixed Point Theory and Applications 2014, 2014:222 Page 15 of 35
http://www.fixedpointtheoryandapplications.com/content/2014/1/222

=
∥∥T (ΘM ,ϕM)

rM,n+
(I – rM,n+AM)ΔM–

n+ xn+ – T (ΘM ,ϕM)
rM,n

(I – rM,nAM)ΔM–
n xn

∥∥
≤ ∥∥T (ΘM ,ϕM)

rM,n+
(I – rM,n+AM)ΔM–

n+ xn+ – T (ΘM ,ϕM)
rM,n

(I – rM,nAM)ΔM–
n+ xn+

∥∥
+
∥∥T (ΘM ,ϕM)

rM,n
(I – rM,nAM)ΔM–

n+ xn+ – T (ΘM ,ϕM)
rM,n

(I – rM,nAM)ΔM–
n xn

∥∥
≤ ∥∥T (ΘM ,ϕM)

rM,n+
(I – rM,n+AM)ΔM–

n+ xn+ – T (ΘM ,ϕM)
rM,n

(I – rM,n+AM)ΔM–
n+ xn+

∥∥
+
∥∥T (ΘM ,ϕM)

rM,n
(I – rM,n+AM)ΔM–

n+ xn+ – T (ΘM ,ϕM)
rM,n

(I – rM,nAM)ΔM–
n+ xn+

∥∥
+
∥∥(I – rM,nAM)ΔM–

n+ xn+ – (I – rM,nAM)ΔM–
n xn

∥∥
≤ |rM,n+ – rM,n|

rM,n+

∥∥T (ΘM ,ϕM)
rM,n+

(I – rM,n+AM)ΔM–
n+ xn+ – (I – rM,n+AM)ΔM–

n+ xn+
∥∥

+ |rM,n+ – rM,n|
∥∥AMΔM–

n+ xn+
∥∥ + ∥∥ΔM–

n+ xn+ –ΔM–
n xn

∥∥
= |rM,n+ – rM,n|

[∥∥AMΔM–
n+ xn+

∥∥ + 
rM,n+

∥∥T (ΘM ,ϕM)
rM,n+

(I – rM,n+AM)ΔM–
n+ xn+

– (I – rM,n+AM)ΔM–
n+ xn+

∥∥] + ∥∥ΔM–
n+ xn+ –ΔM–

n xn
∥∥

· · ·

≤ |rM,n+ – rM,n|
[∥∥AMΔM–

n+ xn+
∥∥ + 

rM,n+

∥∥T (ΘM ,ϕM)
rM,n+

(I – rM,n+AM)ΔM–
n+ xn+

– (I – rM,n+AM)ΔM–
n+ xn+

∥∥] + · · · + |r,n+ – r,n|
[∥∥AΔ


n+xn+

∥∥
+


r,n+

∥∥T (Θ,ϕ)
r,n+ (I – r,n+A)Δ

n+xn+ – (I – r,n+A)Δ
n+xn+

∥∥]
+
∥∥Δ

n+xn+ –Δ
nxn

∥∥
≤ M̃

M∑
k=

|rk,n+ – rk,n| + ‖xn+ – xn‖, (.)

where M̃ >  is a constant such that for each n≥ 

M∑
k=

[∥∥AkΔ
k–
n+xn+

∥∥ + 
rk,n+

∥∥T (Θk ,ϕk )
rk,n+ (I – rk,n+Ak)Δk–

n+xn+ – (I – rk,n+Ak)Δk–
n+xn+

∥∥]
≤ M̃.

Furthermore, we define yn = βnxn + ( – βn)wn for all n≥ . It follows that

wn+ –wn

=
yn+ – βn+xn+

 – βn+
–
yn – βnxn
 – βn

=
γn+Gvn+ + δn+TGvn+

 – βn+
–

γnGvn + δnTGvn
 – βn

=
γn+(Gvn+ –Gvn) + δn+(TGvn+ – TGvn)

 – βn+

+
(

γn+

 – βn+
–

γn

 – βn

)
Gvn +

(
δn+

 – βn+
–

δn

 – βn

)
TGvn. (.)
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Since (γn + δn)ξ ≤ γn for all n≥ , utilizing Lemma ., we have

∥∥γn+(Gvn+ –Gvn) + δn+(TGvn+ – TGvn)
∥∥≤ (γn+ + δn+)‖Gvn+ –Gvn‖. (.)

Hence it follows from (.)-(.) that

‖wn+ –wn‖

≤ ‖γn+(Gvn+ –Gvn) + δn+(TGvn+ – TGvn)‖
 – βn+

+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣‖Gvn‖ + ∣∣∣∣ δn+

 – βn+
–

δn

 – βn

∣∣∣∣‖TGvn‖
≤ (γn+ + δn+)

 – βn+
‖Gvn+ –Gvn‖ +

∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖Gvn‖ + ‖TGvn‖
)

= ‖Gvn+ –Gvn‖ +
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖Gvn‖ + ‖TGvn‖
)

≤ ‖vn+ – vn‖ +
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖Gvn‖ + ‖TGvn‖
)

≤ M̃

N∑
i=

|λi,n+ – λi,n| + ‖un+ – un‖ +
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖Gvn‖ + ‖TGvn‖
)

≤ M̃

N∑
i=

|λi,n+ – λi,n| + M̃

M∑
k=

|rk,n+ – rk,n| + ‖xn+ – xn‖

+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖Gvn‖ + ‖TGvn‖
)
. (.)

In the meantime, simple calculation shows that

yn+ – yn = βn(xn+ – xn) + ( – βn)(wn+ –wn) + (βn+ – βn)(xn+ –wn+).

So, it follows from (.) that

‖yn+ – yn‖
≤ βn‖xn+ – xn‖ + ( – βn)‖wn+ –wn‖ + |βn+ – βn|‖xn+ –wn+‖

≤ βn‖xn+ – xn‖ + ( – βn)

[
M̃

N∑
i=

|λi,n+ – λi,n| + M̃

M∑
k=

|rk,n+ – rk,n| + ‖xn+ – xn‖

+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖Gvn‖ + ‖TGvn‖
)]

+ |βn+ – βn|‖xn+ –wn+‖

≤ ‖xn+ – xn‖ + M̃

N∑
i=

|λi,n+ – λi,n| + M̃

M∑
k=

|rk,n+ – rk,n|

+
|γn+ – γn|( – βn) + γn|βn+ – βn|

 – βn+

(‖Gvn‖ + ‖TGvn‖
)

+ |βn+ – βn|‖xn+ –wn+‖
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≤ ‖xn+ – xn‖ + M̃

N∑
i=

|λi,n+ – λi,n| + M̃

M∑
k=

|rk,n+ – rk,n|

+ |γn+ – γn| ‖Gvn‖ + ‖TGvn‖
 – b

+ |βn+ – βn|
(

‖xn+ –wn+‖ + ‖Gvn‖ + ‖TGvn‖
 – b

)

≤ ‖xn+ – xn‖ + M̃

( N∑
i=

|λi,n+ – λi,n|

+
M∑
k=

|rk,n+ – rk,n| + |γn+ – γn| + |βn+ – βn|
)
, (.)

where supn≥{‖xn+ –wn+‖ + ‖Gvn‖+‖TGvn‖
–b + M̃ + M̃} ≤ M̃ for some M̃ > .

On the other hand, we define zn := αnVxn+(–αn)Sxn for all n≥ . Then it is well known
that xn+ = λnγ zn + (I – λnμF)yn for all n≥ . Simple calculations show that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zn+ – zn = (αn+ – αn)(Vxn – Sxn) + αn+(Vxn+ –Vxn)

+ ( – αn+)(Sxn+ – Sxn),
xn+ – xn+ = (λn+ – λn)(γ zn –μFyn) + λn+γ (zn+ – zn)

+ (I – λn+μF)yn+ – (I – λn+μF)yn.

Since V is a ρ-contraction with coefficient ρ ∈ [, ) and S is a nonexpansive mapping, we
conclude that

‖zn+ – zn‖ ≤ |αn+ – αn|‖Vxn – Sxn‖ + αn+‖Vxn+ –Vxn‖
+ ( – αn+)‖Sxn+ – Sxn‖

≤ |αn+ – αn|‖Vxn – Sxn‖ + αn+ρ‖xn+ – xn‖ + ( – αn+)‖xn+ – xn‖
=
(
 – αn+( – ρ)

)‖xn+ – xn‖ + |αn+ – αn|‖Vxn – Sxn‖,

which together with (.) and ≤ γ < τ implies that

‖xn+ – xn+‖
≤ |λn+ – λn|‖γ zn –μFyn‖ + λn+γ ‖zn+ – zn‖

+
∥∥(I – λn+μF)yn+ – (I – λn+μF)yn

∥∥
≤ |λn+ – λn|‖γ zn –μFyn‖ + λn+γ ‖zn+ – zn‖ + ( – λn+τ )‖yn+ – yn‖
≤ |λn+ – λn|‖γ zn –μFyn‖ + λn+γ

[(
 – αn+( – ρ)

)‖xn+ – xn‖

+ |αn+ – αn|‖Vxn – Sxn‖
]
+ ( – λn+τ )

[
‖xn+ – xn‖ + M̃

( N∑
i=

|λi,n+ – λi,n|

+
M∑
k=

|rk,n+ – rk,n| + |γn+ – γn| + |βn+ – βn|
)]

≤ (
 – λn+(τ – γ )

)‖xn+ – xn‖ + |λn+ – λn|‖γ zn –μFyn‖ + |αn+ – αn|‖Vxn – Sxn‖

+ M̃

( N∑
i=

|λi,n+ – λi,n| +
M∑
k=

|rk,n+ – rk,n| + |γn+ – γn| + |βn+ – βn|
)
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≤ (
 – λn+(τ – γ )

)‖xn+ – xn‖ + M̃

{ N∑
i=

|λi,n+ – λi,n| +
M∑
k=

|rk,n+ – rk,n|

+ |λn+ – λn| + |αn+ – αn| + |βn+ – βn| + |γn+ – γn|
}
,

where supn≥{‖γ zn –μFyn‖ + ‖Vxn – Sxn‖ + M̃} ≤ M̃ for some M̃ > . Consequently,

‖xn+ – xn‖
αn

≤ (
 – λn(τ – γ )

)‖xn – xn–‖
αn

+ M̃

{ N∑
i=

|λi,n – λi,n–|
αn

+
M∑
k=

|rk,n – rk,n–|
αn

+
|λn – λn–|

αn
+

|αn – αn–|
αn

+
|βn – βn–|

αn
+

|γn – γn–|
αn

}

=
(
 – λn(τ – γ )

)‖xn – xn–‖
αn–

+
(
 – λn(τ – γ )

)‖xn – xn–‖
(


αn

–


αn–

)

+ M̃

{ N∑
i=

|λi,n – λi,n–|
αn

+
M∑
k=

|rk,n – rk,n–|
αn

+
|λn – λn–|

αn

+
|αn – αn–|

αn
+

|βn – βn–|
αn

+
|γn – γn–|

αn

}

≤ (
 – λn(τ – γ )

)‖xn – xn–‖
αn–

+ λn(τ – γ ) · M̃

τ – γ

{

λn

∣∣∣∣ αn
–


αn–

∣∣∣∣
+

N∑
i=

|λi,n – λi,n–|
λnαn

+
M∑
k=

|rk,n – rk,n–|
λnαn

+

αn

∣∣∣∣ – λn–

λn

∣∣∣∣
+


λn

∣∣∣∣ – αn–

αn

∣∣∣∣ + |βn – βn–|
λnαn

+
|γn – γn–|

λnαn

}
, (.)

where supn≥{‖xn – xn–‖ + M̃} ≤ M̃ for some M̃ > . From conditions (i)-(iv) it follows
that

∑∞
n= λn(τ – γ ) = ∞ and

lim
n→∞

M̃

τ – γ

{

λn

∣∣∣∣ αn
–


αn–

∣∣∣∣ + N∑
i=

|λi,n – λi,n–|
λnαn

+
M∑
k=

|rk,n – rk,n–|
λnαn

+

αn

∣∣∣∣ – λn–

λn

∣∣∣∣ + 
λn

∣∣∣∣ – αn–

αn

∣∣∣∣ + |βn – βn–|
λnαn

+
|γn – γn–|

λnαn

}
= . (.)

Thus, utilizing Lemma ., we immediately conclude that

lim
n→∞

‖xn+ – xn‖
αn

= .

So, from αn →  it follows that

lim
n→∞‖xn+ – xn‖ = .
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Step .Weprove that limn→∞ ‖xn–un‖ = , limn→∞ ‖xn–vn‖ = , limn→∞ ‖vn–Gvn‖ = 
and limn→∞ ‖vn – Tvn‖ = .
Indeed, utilizing Lemmas . and .(b), from (.), (.)-(.), and  ≤ γ < τ we deduce

that

‖yn – p‖

= ‖βnxn + γnGvn + δnTGvn – p‖

=
∥∥∥∥βn(xn – p) + ( – βn)

(
γnGvn + δnTGvn

 – βn
– p

)∥∥∥∥
= βn‖xn – p‖ + ( – βn)

∥∥∥∥γnGvn + δnTGvn
 – βn

– p
∥∥∥∥

– βn( – βn)
∥∥∥∥γnGvn + δnTGvn

 – βn
– xn

∥∥∥∥
= βn‖xn – p‖ + ( – βn)

∥∥∥∥γn(Gvn – p) + δn(TGvn – p)
 – βn

∥∥∥∥ – βn( – βn)
∥∥∥∥yn – xn
 – βn

∥∥∥∥
≤ βn‖xn – p‖ + ( – βn)

(γn + δn)‖Gvn – p‖
( – βn)

–
βn

 – βn
‖yn – xn‖

= βn‖xn – p‖ + ( – βn)‖Gvn – p‖ – βn

 – βn
‖yn – xn‖

≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ – βn

 – βn
‖yn – xn‖

≤ βn‖xn – p‖ + ( – βn)‖xn – p‖ – βn

 – βn
‖yn – xn‖

= ‖xn – p‖ – βn

 – βn
‖yn – xn‖, (.)

and hence

‖xn+ – p‖

=
∥∥λnγ

(
αnVxn + ( – αn)Sxn

)
+ (I – λnμF)yn – p

∥∥
=
∥∥λnγ

(
αnVxn + ( – αn)Sxn

)
– λnμFp + (I – λnμF)yn – (I – λnμF)p

∥∥
=
∥∥λn

[
αn(γVxn –μFp) + ( – αn)(γ Sxn –μFp)

]
+ (I – λnμF)yn – (I – λnμF)p

∥∥
=
∥∥λn

[
αn(γVxn – γVp) + ( – αn)(γ Sxn – γ Sp)

]
+ (I – λnμF)yn – (I – λnμF)p

+ λn
[
αn(γVp –μFp) + ( – αn)(γ Sp –μFp)

]∥∥
≤ ∥∥λn

[
αn(γVxn – γVp) + ( – αn)(γ Sxn – γ Sp)

]
+ (I – λnμF)yn – (I – λnμF)p

∥∥
+ λnαn

〈
(γVp –μFp),xn+ – p

〉
+ λn( – αn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ [

λn
∥∥αn(γVxn – γVp) + ( – αn)(γ Sxn – γ Sp)

∥∥ + ∥∥(I – λnμF)yn – (I – λnμF)p
∥∥]

+ λnαn
〈
(γVp –μFp),xn+ – p

〉
+ λn( – αn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ [

λn
(
αnγρ‖xn – p‖ + ( – αn)γ ‖xn – p‖) + ( – λnτ )‖yn – p‖]

+ λnαn
〈
(γVp –μFp),xn+ – p

〉
+ ( – αn)λn

〈
(γ Sp –μFp),xn+ – p

〉

http://www.fixedpointtheoryandapplications.com/content/2014/1/222


Ceng et al. Fixed Point Theory and Applications 2014, 2014:222 Page 20 of 35
http://www.fixedpointtheoryandapplications.com/content/2014/1/222

=
[
λn
(
 – αn( – ρ)

)
γ ‖xn – p‖ + ( – λnτ )‖yn – p‖]

+ λnαn
〈
(γVp –μFp),xn+ – p

〉
+ λn( – αn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ [

λnγ ‖xn – p‖ + ( – λnτ )‖yn – p‖]
+ λnαn

〈
(γVp –μFp),xn+ – p

〉
+ λn( – αn)

〈
(γ Sp –μFp),xn+ – p

〉
=
[
λnτ · γ

τ
‖xn – p‖ + ( – λnτ )‖yn – p‖

]
+ λnαn

〈
(γVp –μFp),xn+ – p

〉
+ λn( – αn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ λn

γ 

τ
‖xn – p‖ + ( – λnτ )‖yn – p‖

+ λnαn
〈
(γVp –μFp),xn+ – p

〉
+ λn( – αn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ λn

γ 

τ
‖xn – p‖ + ( – λnτ )

[
‖xn – p‖ – βn

 – βn
‖yn – xn‖

]
+ λnαn

〈
(γVp –μFp),xn+ – p

〉
+ λn( – αn)

〈
(γ Sp –μFp),xn+ – p

〉
=
(
 – λn

τ  – γ 

τ

)
‖xn – p‖ – βn( – λnτ )

 – βn
‖yn – xn‖

+ λnαn
〈
(γVp –μFp),xn+ – p

〉
+ λn( – αn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ ‖xn – p‖ – βn( – λnτ )

 – βn
‖yn – xn‖

+ λnαn‖γVp –μFp‖‖xn+ – p‖ + λn‖γ Sp –μFp‖‖xn+ – p‖, (.)

which together with {βn} ⊂ [a,b]⊂ (, ), immediately yields

a( – λnτ )
 – a

‖yn – xn‖ ≤ βn( – λnτ )
 – βn

‖yn – xn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + λnαn‖γVp –μFp‖‖xn+ – p‖
+ λn‖γ Sp –μFp‖‖xn+ – p‖

≤ ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖)

+ λnαn‖γVp –μFp‖‖xn+ – p‖
+ λn‖γ Sp –μFp‖‖xn+ – p‖.

Since λn → , αn → , ‖xn+ – xn‖ → , and {xn} is bounded, we have

lim
n→∞‖yn – xn‖ = . (.)

Observe that∥∥Δk
nxn – p

∥∥ = ∥∥T (Θk ,ϕk )
rk,n (I – rk,nAk)Δk–

n xn – T (Θk ,ϕk )
rk,n (I – rk,nAk)p

∥∥
≤ ∥∥(I – rk,nAk)Δk–

n xn – (I – rk,nAk)p
∥∥

≤ ∥∥Δk–
n xn – p

∥∥ + rk,n(rk,n – μk)
∥∥AkΔ

k–
n xn –Akp

∥∥
≤ ‖xn – p‖ + rk,n(rk,n – μk)

∥∥AkΔ
k–
n xn –Akp

∥∥ (.)
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and

∥∥Λi
nun – p

∥∥ = ∥∥JRi ,λi,n (I – λi,nBi)Λi–
n un – JRi ,λi,n (I – λi,nBi)p

∥∥
≤ ∥∥(I – λi,nBi)Λi–

n un – (I – λi,nBi)p
∥∥

≤ ∥∥Λi–
n un – p

∥∥ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥
≤ ‖un – p‖ + λi,n(λi,n – ηi)

∥∥BiΛ
i–
n un – Bip

∥∥
≤ ‖xn – p‖ + λi,n(λi,n – ηi)

∥∥BiΛ
i–
n un – Bip

∥∥ (.)

for i ∈ {, , . . . ,N} and k ∈ {, , . . . ,M}. Combining (.), (.), and (.), we get

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ – βn

 – βn
‖yn – xn‖

≤ βn‖xn – p‖ + ( – βn)‖vn – p‖

≤ βn‖xn – p‖ + ( – βn)
∥∥Λi

nun – p
∥∥

≤ βn‖xn – p‖ + ( – βn)
[‖un – p‖ + λi,n(λi,n – ηi)

∥∥BiΛ
i–
n un – Bip

∥∥]
≤ βn‖xn – p‖ + ( – βn)

[∥∥Δk
nxn – p

∥∥ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥]
≤ βn‖xn – p‖ + ( – βn)

[‖xn – p‖ + rk,n(rk,n – μk)
∥∥AkΔ

k–
n xn –Akp

∥∥
+ λi,n(λi,n – ηi)

∥∥BiΛ
i–
n un – Bip

∥∥]
= ‖xn – p‖ + ( – βn)

[
rk,n(rk,n – μk)

∥∥AkΔ
k–
n xn –Akp

∥∥
+ λi,n(λi,n – ηi)

∥∥BiΛ
i–
n un – Bip

∥∥],
which immediately leads to

( – βn)
[
rk,n(μk – rk,n)

∥∥AkΔ
k–
n xn –Akp

∥∥ + λi,n(ηi – λi,n)
∥∥BiΛ

i–
n un – Bip

∥∥]
≤ ‖xn – p‖ – ‖yn – p‖

≤ ‖xn – yn‖
(‖xn – p‖ + ‖yn – p‖).

Since ‖xn – yn‖ → , {βn} ⊂ [a,b] ⊂ (, ), {λi,n} ⊂ [ai,bi] ⊂ (, ηi), {rk,n} ⊂ [ck ,dk] ⊂
(, μk), i ∈ {, , . . . ,N}, k ∈ {, , . . . ,M}, and {xn}, {yn} are bounded sequences, we have

lim
n→∞

∥∥AkΔ
k–
n xn –Akp

∥∥ =  and lim
n→∞

∥∥BiΛ
i–
n un – Bip

∥∥ =  (.)

for all k ∈ {, , . . . ,M} and i ∈ {, , . . . ,N}.
Furthermore, by Proposition .(ii) and Lemma .(a), we have

∥∥Δk
nxn – p

∥∥
=
∥∥T (Θk ,ϕk )

rk,n (I – rk,nAk)Δk–
n xn – T (Θk ,ϕk )

rk,n (I – rk,nAk)p
∥∥

≤ 〈
(I – rk,nAk)Δk–

n xn – (I – rk,nAk)p,Δk
nxn – p

〉
=


(∥∥(I – rk,nAk)Δk–

n xn – (I – rk,nAk)p
∥∥ + ∥∥Δk

nxn – p
∥∥
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–
∥∥(I – rk,nAk)Δk–

n xn – (I – rk,nAk)p –
(
Δk

nxn – p
)∥∥)

≤ 

(∥∥Δk–

n xn – p
∥∥ + ∥∥Δk

nxn – p
∥∥ – ∥∥Δk–

n xn –Δk
nxn – rk,n

(
AkΔ

k–
n xn –Akp

)∥∥),
which implies that

∥∥Δk
nxn – p

∥∥
≤ ∥∥Δk–

n xn – p
∥∥ – ∥∥Δk–

n xn –Δk
nxn – rk,n

(
AkΔ

k–
n xn –Akp

)∥∥
=
∥∥Δk–

n xn – p
∥∥ – ∥∥Δk–

n xn –Δk
nxn

∥∥ – rk,n
∥∥AkΔ

k–
n xn –Akp

∥∥
+ rk,n

〈
Δk–

n xn –Δk
nxn,AkΔ

k–
n xn –Akp

〉
≤ ∥∥Δk–

n xn – p
∥∥ – ∥∥Δk–

n xn –Δk
nxn

∥∥ + rk,n
∥∥Δk–

n xn –Δk
nxn

∥∥∥∥AkΔ
k–
n xn –Akp

∥∥
≤ ‖xn – p‖ – ∥∥Δk–

n xn –Δk
nxn

∥∥ + rk,n
∥∥Δk–

n xn –Δk
nxn

∥∥∥∥AkΔ
k–
n xn –Akp

∥∥. (.)

By Lemma .(a) and Lemma ., we obtain

∥∥Λi
nun – p

∥∥
=
∥∥JRi ,λi,n (I – λi,nBi)Λi–

n un – JRi ,λi,n (I – λi,nBi)p
∥∥

≤ 〈
(I – λi,nBi)Λi–

n un – (I – λi,nBi)p,Λi
nun – p

〉
=


(∥∥(I – λi,nBi)Λi–

n un – (I – λi,nBi)p
∥∥ + ∥∥Λi

nun – p
∥∥

–
∥∥(I – λi,nBi)Λi–

n un – (I – λi,nBi)p –
(
Λi

nun – p
)∥∥)

≤ 

(∥∥Λi–

n un – p
∥∥ + ∥∥Λi

nun – p
∥∥ – ∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥)
≤ 


(‖un – p‖ + ∥∥Λi

nun – p
∥∥ – ∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥)
≤ 


(‖xn – p‖ + ∥∥Λi

nun – p
∥∥ – ∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥),
which immediately leads to

∥∥Λi
nun – p

∥∥
≤ ‖xn – p‖ – ∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥
= ‖xn – p‖ – ∥∥Λi–

n un –Λk
nun

∥∥ – λ
i,n
∥∥BiΛ

i–
n un – Bip

∥∥
+ λi,n

〈
Λi–

n un –Λi
nun,BiΛ

i–
n un – Bip

〉
≤ ‖xn – p‖ – ∥∥Λi–

n un –Λi
nun

∥∥ + λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥. (.)

Combining (.) and (.), we conclude

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ – βn

 – βn
‖yn – xn‖

≤ βn‖xn – p‖ + ( – βn)‖vn – p‖
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≤ βn‖xn – p‖ + ( – βn)
∥∥Λi

nun – p
∥∥

≤ βn‖xn – p‖ + ( – βn)
[‖xn – p‖ – ∥∥Λi–

n un –Λi
nun

∥∥
+ λi,n

∥∥Λi–
n un –Λi

nun
∥∥∥∥BiΛ

i–
n un – Bip

∥∥]
≤ ‖xn – p‖ – ( – βn)

∥∥Λi–
n un –Λi

nun
∥∥

+ λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥,
which yields

( – βn)
∥∥Λi–

n un –Λi
nun

∥∥
≤ ‖xn – p‖ – ‖yn – p‖ + λi,n

∥∥Λi–
n un –Λi

nun
∥∥∥∥BiΛ

i–
n un – Bip

∥∥
≤ ‖xn – yn‖

(‖xn – p‖ + ‖yn – p‖) + λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥.
Since {βn} ⊂ [a,b]⊂ (, ), {λi,n} ⊂ [ai,bi] ⊂ (, ηi), i = , , . . . ,N , and {un}, {xn}, and {yn}
are bounded sequences, we deduce from (.) and ‖xn – yn‖ →  that

lim
n→∞

∥∥Λi–
n un –Λi

nun
∥∥ = , ∀i ∈ {, , . . . ,N}. (.)

Also, combining (.), (.), and (.), we deduce

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ – βn

 – βn
‖yn – xn‖

≤ βn‖xn – p‖ + ( – βn)‖vn – p‖

≤ βn‖xn – p‖ + ( – βn)‖un – p‖

≤ βn‖xn – p‖ + ( – βn)
∥∥Δk

nxn – p
∥∥

≤ βn‖xn – p‖ + ( – βn)
[‖xn – p‖ – ∥∥Δk–

n xn –Δk
nxn

∥∥
+ rk,n

∥∥Δk–
n xn –Δk

nxn
∥∥∥∥AkΔ

k–
n xn –Akp

∥∥]
≤ ‖xn – p‖ – ( – βn)

∥∥Δk–
n xn –Δk

nxn
∥∥

+ rk,n
∥∥Δk–

n xn –Δk
nxn

∥∥∥∥AkΔ
k–
n xn –Akp

∥∥,
which yields

( – βn)
∥∥Δk–

n xn –Δk
nxn

∥∥
≤ ‖xn – p‖ – ‖yn – p‖ + rk,n

∥∥Δk–
n xn –Δk

nxn
∥∥∥∥AkΔ

k–
n xn –Akp

∥∥
≤ ‖xn – yn‖

(‖xn – p‖ + ‖yn – p‖) + rk,n
∥∥Δk–

n xn –Δk
nxn

∥∥∥∥AkΔ
k–
n xn –Akp

∥∥.
Since {βn} ⊂ [a,b] ⊂ (, ), {rk,n} ⊂ [ck ,dk] ⊂ (, μk) for k = , , . . . ,M, and {xn}, {yn} are
bounded sequences, we deduce from (.) and ‖xn – yn‖ →  that

lim
n→∞

∥∥Δk–
n xn –Δk

nxn
∥∥ = , ∀k ∈ {, , . . . ,M}. (.)
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Hence from (.) and (.), we get

‖xn – un‖ =
∥∥Δ

nxn –ΔM
n xn

∥∥
≤ ∥∥Δ

nxn –Δ
nxn

∥∥ + ∥∥Δ
nxn –Δ

nxn
∥∥ + · · · + ∥∥ΔM–

n xn –ΔM
n xn

∥∥
→  as n→ ∞ (.)

and

‖un – vn‖ =
∥∥Λ

nun –ΛN
n un

∥∥
≤ ∥∥Λ

nun –Λ
nun

∥∥ + ∥∥Λ
nun –Λ

nun
∥∥ + · · · + ∥∥ΛN–

n un –ΛN
n un

∥∥
→  as n→ ∞, (.)

respectively. Thus, from (.) and (.), we obtain

‖xn – vn‖ ≤ ‖xn – un‖ + ‖un – vn‖ →  as n→ ∞. (.)

On the other hand, for simplicity, we write p̃ = PC(I – νF)p, ṽn = PC(I – νF)vn, and
kn =Gvn = PC(I – νF)ṽn for all n≥ . Then

p =Gp = PC(I – νF)p̃ = PC(I – νF)PC(I – νF)p.

We now show that limn→∞ ‖Gvn – vn‖ = , i.e., limn→∞ ‖kn – vn‖ = . As a matter of fact,
for p ∈ Ω , it follows from (.), (.), and (.) that

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖Gvn – p‖ – βn

 – βn
‖yn – xn‖

≤ βn‖xn – p‖ + ( – βn)‖Gvn – p‖

= βn‖xn – p‖ + ( – βn)‖kn – p‖

≤ βn‖xn – p‖ + ( – βn)
[‖ṽn – p̃‖ + ν(ν – ζ)‖Fṽn – Fp̃‖

]
≤ βn‖xn – p‖ + ( – βn)

[‖vn – p‖ + ν(ν – ζ)‖Fvn – Fp‖

+ ν(ν – ζ)‖Fṽn – Fp̃‖
]

≤ βn‖xn – p‖ + ( – βn)
[‖xn – p‖ + ν(ν – ζ)‖Fvn – Fp‖

+ ν(ν – ζ)‖Fṽn – Fp̃‖
]

= ‖xn – p‖ + ( – βn)
[
ν(ν – ζ)‖Fvn – Fp‖

+ ν(ν – ζ)‖Fṽn – Fp̃‖
]
, (.)

which immediately yields

( – βn)
[
ν(ζ – ν)‖Fvn – Fp‖ + ν(ζ – ν)‖Fṽn – Fp̃‖

]
≤ ‖xn – p‖ – ‖yn – p‖

≤ ‖xn – yn‖
(‖xn – p‖ + ‖yn – p‖).
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Since ‖xn – yn‖ → , {βn} ⊂ [a,b] ⊂ (, ), νj ∈ (, ζj), j = , , and {xn}, {yn} are bounded
sequences, we have

lim
n→∞‖Fvn – Fp‖ =  and lim

n→∞‖Fṽn – Fp̃‖ = . (.)

Also, in terms of the firm nonexpansivity of PC and the ζj-inverse-strong monotonicity of
Fj for j = , , we obtain from νj ∈ (, ζj), j = , ,

‖ṽn – p̃‖ =
∥∥PC(I – νF)vn – PC(I – νF)p

∥∥
≤ 〈

(I – νF)vn – (I – νF)p, ṽn – p̃
〉

=


[∥∥(I – νF)vn – (I – νF)p

∥∥ + ‖ṽn – p̃‖

–
∥∥(I – νF)vn – (I – νF)p – (ṽn – p̃)

∥∥]
≤ 


[‖vn – p‖ + ‖ṽn – p̃‖ – ∥∥(vn – ṽn) – ν(Fvn – Fp) – (p – p̃)

∥∥]
=



[‖vn – p‖ + ‖ṽn – p̃‖ – ∥∥(vn – ṽn) – (p – p̃)

∥∥
+ ν

〈
(vn – ṽn) – (p – p̃),Fvn – Fp

〉
– ν

‖Fvn – Fp‖
]

and

‖kn – p‖ =
∥∥PC(I – νF)ṽn – PC(I – νF)p̃

∥∥
≤ 〈

(I – νF)ṽn – (I – νF)p̃,kn – p
〉

=


[∥∥(I – νF)ṽn – (I – νF)p̃

∥∥ + ‖kn – p‖

–
∥∥(I – νF)ṽn – (I – νF)p̃ – (kn – p)

∥∥]
≤ 


[‖ṽn – p̃‖ + ‖kn – p‖ – ∥∥(ṽn – kn) + (p – p̃)

∥∥
+ ν

〈
Fṽn – Fp̃, (ṽn – kn) + (p – p̃)

〉
– ν

 ‖Fṽn – Fp̃‖
]

≤ 

[‖vn – p‖ + ‖wn – p‖ – ∥∥(ṽn – kn) + (p – p̃)

∥∥
+ ν

〈
Fṽn – Fp̃, (ṽn – kn) + (p – p̃)

〉]
.

Thus, we have

‖ṽn – p̃‖ ≤ ‖vn – p‖ – ∥∥(vn – ṽn) – (p – p̃)
∥∥

+ ν
〈
(vn – ṽn) – (p – p̃),Fvn – Fp

〉
– ν

‖Fvn – Fp‖ (.)

and

‖kn – p‖ ≤ ‖vn – p‖ – ∥∥(ṽn – kn) + (p – p̃)
∥∥

+ ν‖Fṽn – Fp̃‖
∥∥(ṽn – kn) + (p – p̃)

∥∥. (.)
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Consequently, from (.), (.), and (.), it follows that

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)
[‖ṽn – p̃‖ + ν(ν – ζ)‖Fṽn – Fp̃‖

]
≤ βn‖xn – p‖ + ( – βn)‖ṽn – p̃‖

≤ βn‖xn – p‖ + ( – βn)
[‖vn – p‖ – ∥∥(vn – ṽn) – (p – p̃)

∥∥
+ ν

〈
(vn – ṽn) – (p – p̃),Fvn – Fp

〉
– ν

‖Fvn – Fp‖
]

≤ βn‖xn – p‖ + ( – βn)
[‖xn – p‖ – ∥∥(vn – ṽn) – (p – p̃)

∥∥
+ ν

∥∥(vn – ṽn) – (p – p̃)
∥∥‖Fvn – Fp‖

]
≤ ‖xn – p‖ – ( – βn)

∥∥(vn – ṽn) – (p – p̃)
∥∥

+ ν
∥∥(vn – ṽn) – (p – p̃)

∥∥‖Fvn – Fp‖,

which hence leads to

( – βn)
∥∥(vn – ṽn) – (p – p̃)

∥∥
≤ ‖xn – p‖ – ‖yn – p‖ + ν

∥∥(vn – ṽn) – (p – p̃)
∥∥‖Fvn – Fp‖

≤ ‖xn – yn‖
(‖xn – p‖ + ‖yn – p‖) + ν

∥∥(vn – ṽn) – (p – p̃)
∥∥‖Fvn – Fp‖.

Since ‖xn – yn‖ → , {βn} ⊂ [a,b] ⊂ (, ), ν ∈ (, ζ), and {xn}, {yn}, {vn}, {ṽn} are
bounded sequences, we obtain from (.)

lim
n→∞

∥∥(vn – ṽn) – (p – p̃)
∥∥ = . (.)

Furthermore, from (.), (.), and (.), it follows that

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖kn – p‖

≤ βn‖xn – p‖ + ( – βn)
[‖vn – p‖ – ∥∥(ṽn – kn) + (p – p̃)

∥∥
+ ν‖Fṽn – Fp̃‖

∥∥(ṽn – kn) + (p – p̃)
∥∥]

≤ βn‖xn – p‖ + ( – βn)
[‖xn – p‖ – ∥∥(ṽn – kn) + (p – p̃)

∥∥
+ ν‖Fṽn – Fp̃‖

∥∥(ṽn – kn) + (p – p̃)
∥∥]

= ‖xn – p‖ – ( – βn)
∥∥(ṽn – kn) + (p – p̃)

∥∥
+ ν‖Fṽn – Fp̃‖

∥∥(ṽn – kn) + (p – p̃)
∥∥,

which hence yields

( – βn)
∥∥(ṽn – kn) + (p – p̃)

∥∥
≤ ‖xn – p‖ – ‖yn – p‖ + ν‖Fṽn – Fp̃‖

∥∥(ṽn – kn) + (p – p̃)
∥∥

≤ ‖xn – yn‖
(‖xn – p‖ + ‖yn – p‖) + ν‖Fṽn – Fp̃‖

∥∥(ṽn – kn) + (p – p̃)
∥∥.
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Since ‖xn – yn‖ → , {βn} ⊂ [a,b] ⊂ (, ), ν ∈ (, ζ), and {xn}, {yn}, {kn}, {ṽn} are
bounded sequences, we obtain from (.)

lim
n→∞

∥∥(ṽn – kn) + (p – p̃)
∥∥ = . (.)

Note that

‖vn – kn‖ ≤ ∥∥(vn – ṽn) – (p – p̃)
∥∥ + ∥∥(ṽn – kn) + (p – p̃)

∥∥.
Hence from (.) and (.), we get

lim
n→∞‖vn –Gvn‖ = lim

n→∞‖vn – kn‖ = . (.)

Also, observe that

yn – xn = γn(Gvn – xn) + δn(TGvn – xn), ∀n≥ .

Hence we find that

δn‖TGvn – vn‖ ≤ δn‖TGvn – xn‖ + δn‖xn – vn‖
=
∥∥yn – xn – γn(Gvn – xn)

∥∥ + δn‖xn – vn‖
≤ ‖yn – xn‖ + γn‖Gvn – xn‖ + δn‖xn – vn‖
≤ ‖yn – xn‖ + γn‖Gvn – vn‖ + γn‖vn – xn‖ + δn‖xn – vn‖
= ‖yn – xn‖ + γn‖Gvn – vn‖ + (γn + δn)‖xn – vn‖
≤ ‖yn – xn‖ + ‖Gvn – vn‖ + ‖xn – vn‖.

So, from lim infn→∞ δn > , (.), (.), and (.), it follows that

lim
n→∞‖TGvn – vn‖ = . (.)

In addition, noticing that

‖Tvn – vn‖ ≤ ‖Tvn – TGvn‖ + ‖TGvn – vn‖
≤ ‖vn –Gvn‖ + ‖TGvn – vn‖,

we know from (.) and (.) that

lim
n→∞‖Tvn – vn‖ = . (.)

Step . We prove that ωw(xn) ⊂ Ω .
Indeed, sinceH is reflexive and {xn} is bounded, there exists at least a weak convergence

subsequence of {xn}. Hence it is well known that ωw(xn) �= ∅. Now, take an arbitrary w ∈
ωw(xn). Then there exists a subsequence {xni} of {xn} such that xni ⇀ w. From (.)-(.),
and (.), we have uni ⇀ w, vni ⇀ w,Λm

niuni ⇀ w, andΔk
nixni ⇀ w, wherem ∈ {, , . . . ,N}
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and k ∈ {, , . . . ,M}. Utilizing Lemma .(ii), we deduce from vni ⇀ w and (.) that
w ∈ Fix(T). In the meantime, utilizing Lemma ., we obtain from vni ⇀ w and (.)
w ∈ GSVI(G). Next, we prove that w ∈ ⋂N

m= I(Bm,Rm). As a matter of fact, since Bm is
ηm-inverse-strongly monotone, Bm is a monotone and Lipschitz continuous mapping. It
follows from Lemma . that Rm + Bm is maximal monotone. Let (v, g) ∈ G(Rm + Bm), i.e.,
g – Bmv ∈ Rmv. Again, since Λm

n un = JRm ,λm,n (I – λm,nBm)Λm–
n un, n ≥ , m ∈ {, , . . . ,N},

we have

Λm–
n un – λm,nBmΛm–

n un ∈ (I + λm,nRm)Λm
n un,

that is,


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
) ∈ RmΛm

n un.

In terms of the monotonicity of Rm, we get〈
v –Λm

n un, g – Bmv –


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
)〉≥ 

and hence

〈
v –Λm

n un, g
〉

≥
〈
v –Λm

n un,Bmv +


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
)〉

=
〈
v –Λm

n un,Bmv – BmΛm
n un + BmΛm

n un – BmΛm–
n un +


λm,n

(
Λm–

n un –Λm
n un

)〉
≥ 〈

v –Λm
n un,BmΛm

n un – BmΛm–
n un

〉
+
〈
v –Λm

n un,


λm,n

(
Λm–

n un –Λm
n un

)〉
.

In particular,

〈
v –Λm

niuni , g
〉 ≥ 〈

v –Λm
niuni ,BmΛm

niuni – BmΛm–
ni uni

〉
+
〈
v –Λm

niuni ,


λm,ni

(
Λm–

ni uni –Λm
niuni

)〉
.

Since ‖Λm
n un –Λm–

n un‖ →  (due to (.)) and ‖BmΛm
n un –BmΛm–

n un‖ →  (due to the
Lipschitz continuity of Bm), we conclude from Λm

niuni ⇀ w and {λi,n} ⊂ [ai,bi] ⊂ (, ηi)
that

lim
i→∞

〈
v –Λm

niuni , g
〉
= 〈v –w, g〉 ≥ .

It follows from the maximal monotonicity of Bm + Rm that  ∈ (Rm + Bm)w, i.e., w ∈
I(Bm,Rm). Therefore, w ∈⋂N

m= I(Bm,Rm). Next we prove that w ∈⋂M
k=GMEP(Θk ,ϕk ,Ak).

Since Δk
nxn = T (Θk ,ϕk )

rk,n (I – rk,nAk)Δk–
n xn, n≥ , k ∈ {, , . . . ,M}, we have

Θk
(
Δk

nxn, y
)
+ ϕk(y) – ϕk

(
Δk

nxn
)
+
〈
AkΔ

k–
n xn, y –Δk

nxn
〉

+

rk,n

〈
y –Δk

nxn,Δ
k
nxn –Δk–

n xn
〉≥ .
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By (A), we have

ϕk(y)–ϕk
(
Δk

nxn
)
+
〈
AkΔ

k–
n xn, y–Δk

nxn
〉
+


rk,n

〈
y–Δk

nxn,Δ
k
nxn–Δk–

n xn
〉≥ Θk

(
y,Δk

nxn
)
.

Let zt = ty + ( – t)w for all t ∈ (, ] and y ∈ C. This implies that zt ∈ C. Then we have〈
zt –Δk

nxn,Akzt
〉

≥ ϕk
(
Δk

nxn
)
– ϕk(zt) +

〈
zt –Δk

nxn,Akzt
〉
–
〈
zt –Δk

nxn,AkΔ
k–
n xn

〉
–
〈
zt –Δk

nxn,
Δk

nxn –Δk–
n xn

rk,n

〉
+Θk

(
zt ,Δk

nxn
)

= ϕk
(
Δk

nxn
)
– ϕk(zt) +

〈
zt –Δk

nxn,Akzt –AkΔ
k
nxn

〉
+
〈
zt –Δk

nxn,AkΔ
k
nxn –AkΔ

k–
n xn

〉
–
〈
zt –Δk

nxn,
Δk

nxn –Δk–
n xn

rk,n

〉
+Θk

(
zt ,Δk

nxn
)
. (.)

By (.), we have ‖AkΔ
k
nxn–AkΔ

k–
n xn‖ →  as n→ ∞. Furthermore, by themonotonic-

ity of Ak , we obtain 〈zt –Δk
nxn,Akzt –AkΔ

k
nxn〉 ≥ . Then by (A) we obtain

〈zt –w,Akzt〉 ≥ ϕk(w) – ϕk(zt) +Θk(zt ,w). (.)

Utilizing (A), (A), and (.), we obtain

 = Θk(zt , zt) + ϕk(zt) – ϕk(zt)

≤ tΘk(zt , y) + ( – t)Θk(zt ,w) + tϕk(y) + ( – t)ϕk(w) – ϕk(zt)

≤ t
[
Θk(zt , y) + ϕk(y) – ϕk(zt)

]
+ ( – t)〈zt –w,Akzt〉

= t
[
Θk(zt , y) + ϕk(y) – ϕk(zt)

]
+ ( – t)t〈y –w,Akzt〉,

and hence

 ≤ Θk(zt , y) + ϕk(y) – ϕk(zt) + ( – t)〈y –w,Akzt〉.

Letting t → , we have, for each y ∈ C,

 ≤ Θk(w, y) + ϕk(y) – ϕk(w) + 〈y –w,Akw〉.

This implies that w ∈ GMEP(Θk ,ϕk ,Ak), and hence, w ∈ ⋂M
k=GMEP(Θk ,ϕk ,Ak). Thus,

w ∈ Ω =
⋂∞

n= Fix(Tn) ∩ ⋂M
k=GMEP(Θk ,ϕk ,Ak) ∩ ⋂N

m= I(Bm,Rm). Consequently, w ∈⋂M
k=GMEP(Θk ,ϕk ,Ak) ∩ ⋂N

m= I(Bm,Rm) ∩ GSVI(G) ∩ Fix(T) =: Ω . This shows that
ωw(xn) ⊂ Ω .
Step . We prove that ωw(xn) ⊂ Ξ .
Indeed, take an arbitrary w ∈ ωw(xn). Then there exists a subsequence {xni} of {xn} such

that xni ⇀ w. Utilizing (.), we obtain, for all p ∈ Ω ,

‖xn+ – p‖

≤
(
 – λn

τ  – γ 

τ

)
‖xn – p‖ – βn( – λnτ )

 – βn
‖yn – xn‖
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+ λnαn
〈
(γVp –μFp),xn+ – p

〉
+ λn( – αn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ ‖xn – p‖ + λnαn

〈
(γV –μF)p,xn+ – p

〉
+ λn( – αn)

〈
(γ Sp –μFp),xn+ – p

〉
,

which implies that

〈
(μF – γ S)p,xn – p

〉
≤ 〈

(μF – γ S)p,xn – xn+
〉
+
〈
(μF – γ S)p,xn+ – p

〉
≤ ∥∥(μF – γ S)p

∥∥‖xn – xn+‖ + ‖xn – p‖ – ‖xn+ – p‖
λn( – αn)

+
αn

 – αn

〈
(γV –μF)p,xn+ – p

〉
≤ ∥∥(μF – γ S)p

∥∥‖xn – xn+‖ + ‖xn – xn+‖(‖xn – p‖ + ‖xn+ – p‖)
λn( – αn)

+
αn

 – αn

∥∥(γV –μF)p
∥∥‖xn+ – p‖. (.)

Since αn → , ‖xn – xn+‖ →  and

lim
n→∞

‖xn – xn+‖
λn

= lim
n→∞

‖xn – xn+‖
αn

· αn

λn
= ,

from (.), we conclude that

〈
(μF – γ S)p,w – p

〉
= lim

i→∞
〈
(μF – γ S)p,xni – p

〉
≤ lim sup

n→∞

〈
(μF – γ S)p,xn – p

〉
≤ , ∀p ∈ Ω ,

that is,

〈
(μF – γ S)p,w – p

〉≤ , ∀p ∈ Ω . (.)

Since μF – γ S is (μη – γ )-strongly monotone and (μκ + γ )-Lipschitz continuous, by
Minty’s lemma [] we know that (.) is equivalent to the VIP

〈
(μF – γ S)w,p –w

〉≥ , ∀p ∈ Ω . (.)

This shows that w ∈VI(Ω ,μF – γ S). Taking into account {x∗} =VI(Ω ,μF – γ S), we know
that w = x∗. Thus, ωw(xn) = {x∗}; that is, xn ⇀ x∗.
Next we prove that limn→∞ ‖xn – x∗‖ = . As a matter of fact, utilizing (.) with p = x∗,

we get

∥∥xn+ – x∗∥∥
≤
(
 – λn

τ  – γ 

τ

)∥∥xn – x∗∥∥ – βn( – λnτ )
 – βn

‖yn – xn‖
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+ λnαn
〈(
γVx∗ –μFx∗),xn+ – x∗〉 + λn( – αn)

〈(
γ Sx∗ –μFx∗),xn+ – x∗〉

≤
(
 – λn

τ  – γ 

τ

)∥∥xn – x∗∥∥ + λnαn
∥∥(γV –μF)x∗∥∥∥∥xn+ – x∗∥∥

+ λn( – αn)
〈(
γ Sx∗ –μFx∗),xn+ – x∗〉

=
(
 – λn

τ  – γ 

τ

)∥∥xn – x∗∥∥ + λn
τ  – γ 

τ
· τ
τ  – γ 

[
αn
∥∥(γV –μF)x∗∥∥∥∥xn+ – x∗∥∥

+ ( – αn)
〈(
γ Sx∗ –μFx∗),xn+ – x∗〉]. (.)

Since
∑∞

n= λn = ∞ and limn→∞〈(γ Sx∗ –μFx∗),x∗ – xn+〉 =  (due to xn ⇀ x∗), we deduce
that

∑∞
n= λn

τ–γ 

τ
=∞, and

lim
n→∞

τ
τ  – γ 

[
αn
∥∥(γV –μF)x∗∥∥∥∥xn+ – x∗∥∥ + ( – αn)

〈(
γ Sx∗ –μFx∗),xn+ – x∗〉] = .

Therefore, applying Lemma . to (.) we infer that limn→∞ ‖xn – x∗‖ = . This com-
pletes the proof. �

Putting M = N = , F ≡ , and F = Γ an inverse-strongly monotone mapping on C in
Algorithm ., we have the following algorithm.

Algorithm . Let C be a nonempty closed convex subset of a real Hilbert space H ,
Θ : C × C → R be a bifunction from satisfying conditions (A)-(A), ϕ : C → R ∪ {+∞}
be a proper lower semicontinuous and convex function with restriction (B) or (B), and
A : H → H be μ-inverse-strongly monotone. Let R : C → H be a maximal monotone
mapping, B : C → H be η-inverse-strongly monotone, T : C → C be a ξ -strictly pseu-
docontractive mapping, S : H → H is a nonexpansive mapping and V : H → H be a
ρ-contraction with coefficient ρ ∈ [, ). Let Γ : C → H be ζ -inverse-strongly mono-
tone, and F : H → H be κ-Lipschitzian and η-strongly monotone with positive con-
stants κ ,η >  such that  ≤ γ < τ and  < μ < η

κ
where τ =  –

√
 –μ(η –μκ). As-

sume that Ω := GMEP(Θ ,ϕ,A) ∩ I(B,R) ∩ VI(C,Γ ) ∩ Fix(T) �= ∅. Let {αn}, {λn} ⊂ (, ],
{βn}, {γn}, {δn} ⊂ [, ], {ρn} ⊂ (, α], {rn} ⊂ [c,d] ⊂ (, μ) and {ρn} ⊂ [e, f ] ⊂ (, η).
For arbitrarily given x ∈H , let {xn} be a sequence generated by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ(un, y) + ϕ(y) – ϕ(un) + 〈Axn, y – un〉 + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,
vn = JR,ρn (I – ρnB)un,
yn = βnxn + γnPC(I – νΓ )vn + δnTPC(I – νΓ )vn,
xn+ = λnγ (αnVxn + ( – αn)Sxn) + (I – λnμF)yn, ∀n≥ ,

(.)

where ν ∈ (, ζ ).

From Theorem ., we have following result.

Corollary . In addition to assumption of Algorithm ., suppose that
(i) limn→∞ λn = ,

∑∞
n= λn =∞ and limn→∞ 

λn
| – αn–

αn
| = ;

(ii) lim supn→∞
αn
λn

< ∞, limn→∞ 
λn

| 
αn

– 
αn–

| =  and limn→∞ 
αn

| – λn–
λn

| = ;
(iii) limn→∞ |βn–βn–|

λnαn
=  and limn→∞ |γn–γn–|

λnαn
= ;

http://www.fixedpointtheoryandapplications.com/content/2014/1/222


Ceng et al. Fixed Point Theory and Applications 2014, 2014:222 Page 32 of 35
http://www.fixedpointtheoryandapplications.com/content/2014/1/222

(iv) limn→∞ |rn–rn–|
λnαn

=  and limn→∞ |ρn–ρn–|
λnαn

= ;
(v) βn + γn + δn =  and (γn + δn)ξ ≤ γn for all n≥ ;
(vi) {βn} ⊂ [a,b]⊂ (, ) and lim infn→∞ δn > .

Then
(a) limn→∞ ‖xn+–xn‖

αn
= ;

(b) ωw(xn) ⊂ Ω ;
(c) {xn} converges strongly to a point x∗ ∈ Ω , which is a unique solution of HVIP (.),

i.e.,

〈
(μF – γ S)x∗,p – x∗〉≥ , ∀p ∈ Ω .

Proof Since F ≡  and F = Γ a ζ -inverse-strongly monotone mapping on C, it is easy
to see that GSVI(G) = VI(C,Γ ). Thus, in terms of Theorem ., we derive the desired
result. �

Putting Γ = I –Φ , where Φ : C → C is a ξ-strictly pseudocontractive mapping on C, in
Algorithm ., we obtain the following algorithm.

Algorithm . Let C be a nonempty closed convex subset of a real Hilbert space H ,
Θ : C × C → R be a bifunction satisfying conditions (A)-(A), ϕ : C → R ∪ {+∞} be
a proper lower semicontinuous and convex function with restriction (B) or (B), and
A : H → H be μ-inverse-strongly monotone. Let R : C → H be a maximal monotone
mapping, B : C → H be η-inverse-strongly monotone, T : C → C be a ξ -strictly pseu-
docontractive mapping, S : H → H is a nonexpansive mapping and V : H → H be a
ρ-contraction with coefficient ρ ∈ [, ). Let Φ : C → C be a ξ-strictly pseudocontrac-
tive mapping, and F : H → H be κ-Lipschitzian and η-strongly monotone with positive
constants κ ,η >  such that  ≤ γ < τ and  < μ < η

κ
where τ =  –

√
 –μ(η –μκ).

Assume that Ω := GMEP(Θ ,ϕ,A) ∩ I(B,R) ∩ Fix(Φ) ∩ Fix(T) �= ∅. Let {αn}, {λn} ⊂ (, ],
{βn}, {γn}, {δn} ⊂ [, ], {ρn} ⊂ (, α], {rn} ⊂ [c,d] ⊂ (, μ) and {ρn} ⊂ [e, f ] ⊂ (, η).
For arbitrarily given x ∈H , let {xn} be a sequence generated by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ(un, y) + ϕ(y) – ϕ(un) + 〈Axn, y – un〉 + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,
vn = JR,ρn (I – ρnB)un,
yn = βnxn + γn(I – ν(I –Φ))vn + δnT(I – ν(I –Φ))vn,
xn+ = λnγ (αnVxn + ( – αn)Sxn) + (I – λnμF)yn, ∀n≥ ,

(.)

where ν ∈ (,  – ξ).

Corollary . In addition to assumption of Algorithm ., suppose that
(i) limn→∞ λn = ,

∑∞
n= λn =∞ and limn→∞ 

λn
| – αn–

αn
| = ;

(ii) lim supn→∞
αn
λn

< ∞, limn→∞ 
λn

| 
αn

– 
αn–

| =  and limn→∞ 
αn

| – λn–
λn

| = ;
(iii) limn→∞ |βn–βn–|

λnαn
=  and limn→∞ |γn–γn–|

λnαn
= ;

(iv) limn→∞ |rn–rn–|
λnαn

=  and limn→∞ |ρn–ρn–|
λnαn

= ;
(v) βn + γn + δn =  and (γn + δn)ξ ≤ γn for all n≥ ;
(vi) {βn} ⊂ [a,b]⊂ (, ) and lim infn→∞ δn > .

Then
(a) limn→∞ ‖xn+–xn‖

αn
= ;
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(b) ωw(xn) ⊂ Ω ;
(c) {xn} converges strongly to a point x∗ ∈ Ω , which is a unique solution of HVIP (.),

i.e.,

〈
(μF – γ S)x∗,p – x∗〉≥ , ∀p ∈ Ω .

Proof Since Φ : C → C is a ξ-strictly pseudocontractive mapping on C, it is well known
that for constant ξ ∈ [, ),

〈Φx –Φy,x – y〉 ≤ ‖x – y‖ –  – ξ


∥∥(I –Φ)x – (I –Φ)y

∥∥, ∀x, y ∈ C.

It is clear that in this case themappingΓ = I–Φ is –ξ
 -inverse-stronglymonotone.More-

over, we have, for ν ∈ (,  – ξ),

yn = βnxn + γnPC(I – νΓ )vn + δnTPC(I – νΓ )vn

= βnxn + γn
(
I – ν(I –Φ)

)
vn + δnT

(
I – ν(I –Φ)

)
vn.

Now let us show Fix(Φ) =VI(C,Γ ). In fact, we have, for λ > ,

u ∈VI(C,Γ ) ⇐⇒ 〈Γ u, y – u〉 ≥ , ∀y ∈ C

⇐⇒ 〈u – λΓ u – u,u – y〉 ≥ , ∀y ∈ C

⇐⇒ u = PC(u – λΓ u)

⇐⇒ u = PC(u – λu + λΦu)

⇐⇒ 〈u – λu + λΦu – u,u – y〉 ≥ , ∀y ∈ C

⇐⇒ 〈u –Φu,u – y〉 ≤ , ∀y ∈ C

⇐⇒ u =Φu

⇐⇒ u ∈ Fix(Φ).

Consequently,

Ω =GMEP(Θ ,ϕ,A)∩ I(B,R)∩VI(C,Γ )∩ Fix(T)

=GMEP(Θ ,ϕ,A)∩ I(B,R)∩ Fix(Φ)∩ Fix(T).

Therefore, by Corollary ., we derive the desired result. �

Remark . Our results generalize and improve results in [, ] and the references
therein.
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