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Abstract
In this paper, partial order theory is used to study the fixed point of a mixed
monotone ternary operator A : P× P× P → P. The existence and uniqueness of a
fixed point are obtained without assuming the operators to be compact or
continuous. In the end, the application to an integral equation is presented. Our
results unify, generalize, and complement various known comparable results from the
current literature.
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1 Introduction
Fixed point theory has fascinated hundreds of researchers since  with the celebrated
Banach fixed point theorem. It is well known that mixed monotone operators were in-
troduced by Guo and Lakshmikantham [] in . Later, Bhaskar and Lakshmikantham
[] introduced the notion of a coupled fixed point and proved some coupled fixed point
results under certain conditions, in a complete metric space endowed with a partial or-
der. Their study has not only important theoretical meaning but also wide applications
in engineering, nuclear physics, biological chemistry technology, etc. (see [–] and the
references therein).
Very recently, Harjani et al. [] have established the existence results of coupled fixed

point for mixed monotone operators, and further obtained their applications to integral
equations. Berinde and Borcut [] have introduced the concept of a triple fixed point and
proved some related theorems for contractive type operators in partially ordered metric
spaces. Zhai [] has considered mixed monotone operators with convexity and get the
existence and uniqueness of a fixed point (A(u,u) = u type) without assuming the operator
to be compact or continuous.
Motivated by thework reported in [–], the aimof this paper is to discuss the existence

and uniqueness of a fixed point (A(u,u,u) = u type) formixedmonotone ternary operators
in the context of ordered metric spaces. Our results unify, generalize, and complement
various known comparable results from the current literature.
The rest of the paper is organized as follows. In Section , we recall some basic defi-

nitions and notations which will be used in the sequel. The existence and uniqueness of
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a fixed point for mixed monotone ternary operators (without assuming the operators to
be compact or continuous) are obtained in Section . We also present an application in
Section  to an integral equation to illustrate our results.

2 Preliminaries
In this section, we recall some standard definitions and notations needed in the following
section. For the convenience of the reader, we suggest that one refers to [, , –] for
details.
Throughout this paper, unless otherwise specified, suppose that (E,‖ ·‖) is a real Banach

space which is partially ordered by a cone P ⊂ E, i.e., x ≤ y if and only if y – x ∈ P. If x ≤ y
and x �= y, then we denote x < y or y > x. By θ we denote the zero element of E. Recall that
a non-empty closed convex set P ⊂ E is a cone if it satisfies (i) x ∈ P, λ ≥  ⇒ λx ∈ P;
(ii) x ∈ P, –x ∈ P ⇒ x = θ .
Further, P is called normal if there exists a constant N >  such that, for all x, y ∈ E, θ ≤

x ≤ y implies ‖x‖ ≤N‖y‖; in this case N is called the normality constant of P. If x,x ∈ E,
the set [x,x] = {x ∈ E | x ≤ x ≤ x} is called the order interval between x and x.

Definition . (see []) A : P×P → P is said to be amixedmonotone operator ifA(x, y) is
monotone non-decreasing in x andmonotone non-increasing in y, that is, for any x, y ∈ P,

x,x ∈ P, x ≤ x ⇒ A(x, y) ≤ A(x, y),

y, y ∈ P, y ≤ y ⇒ A(x, y) ≤ A(x, y).
(.)

Definition . (see []) An element x ∈ P is called a fixed point of A : P × P → P if

A(x,x) = x.

Definition . (see []) A : P × P × P → P is said to be a mixed monotone operator if
A(x, y, z) is monotone non-decreasing in x, z and monotone non-increasing in y, that is,
for any x, y, z ∈ P

x,x ∈ P, x ≤ x ⇒ A(x, y, z) ≤ A(x, y, z),

y, y ∈ P, y ≤ y ⇒ A(x, y, z) ≥ A(x, y, z), (.)

z, z ∈ P, z ≤ z ⇒ A(x, y, z) ≤ A(x, y, z).

Definition . An element x ∈ P is called a fixed point of A : P × P × P → P if

A(x,x,x) = x.

3 Main results
In this section we consider the existence and uniqueness of a fixed point for mixed mono-
tone ternary operators in ordered Banach spaces. Our first main result is the following.

Theorem. Let E be a real Banach space and let P be a normal cone in E.A : P×P×P →
P is a mixed monotone ternary operator which satisfies the following:

http://www.fixedpointtheoryandapplications.com/content/2014/1/223
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(H) for t ∈ (, ), x, y ∈ P, there exists α(t,x, y) ∈ (, +∞), such that

A(tx, y, tx) ≤ tα(t,x,y)A(x, y,x); (.)

(H) there exist u, v,m ∈ P, r ∈ (, ), such that

u ≤ rv, m ≤ rv,

A(u, v,m)≥ u, A(v,u, v) ≤ v, A(m, v,u) ≥m, (.)

A(u, v,u) ≥ u, A(m, v,m) ≥m.

Then A has a unique fixed point u∗ in [u, rv] ∩ [m, rv].Moreover, constructing succes-
sively the sequences

xn = A(xn–, yn–, zn–), yn = A(yn–,xn–, yn–),

zn = A(zn–, yn–,xn–), n = , , . . . ,

for any initial values x, y, z ∈ [u, rv]∩ [m, rv], we have

∥∥xn – u∗∥∥ → ,
∥∥yn – u∗∥∥ → ,

∥∥zn – u∗∥∥ → 

as n→ ∞.

Proof Let w = rv, ε = rα(r,v,u)–. Then w ≥ u, ε ∈ (, ), and

A(w,u,w) = A(rv,u, rv) ≤ rα(r,v,u)A(v,u, v)

≤ rα(r,v,u)v = rα(r,v,u)– · rv = εw ≤ w, (.)

A(u,w,m) = A(u, rv,m) ≥ A(u, v,m) ≥ u, (.)

A(m,w,u) = A(m, rv,u) ≥ A(m, v,u) ≥m. (.)

Construct successively the sequences

un = A(un–,wn–,mn–), wn = A(wn–,un–,wn–), mn = A(mn–,wn–,un–),

w′
n =


ε
A

(
w′
n–,un–,w

′
n–

)
, w′

 = w, n = , , . . . .

From (.)-(.) and the mixed monotonicity of A, we have

u ≤ u ≤ u ≤ · · · ≤ un ≤ · · · ≤ wn ≤ · · · ≤ w ≤ w, (.)

m ≤m ≤m ≤ · · · ≤mn ≤ · · · ≤ wn ≤ · · · ≤ w ≤ w. (.)

Next we prove that

u ≤ w′
n ≤ w. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/223
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From (.) and (.),

w′
 =


ε
A(w,u,w) ≤ 

ε
· εw = w,

w′
 =


ε
A(w,u,w) ≥ 

ε
A(u, v,u) ≥ 

ε
u ≥ u,

w′
 =


ε
A

(
w′
,u,w

′

) ≤ 

ε
A(w,u,w) ≤ 

ε
· εw = w,

w′
 =


ε
A

(
w′
,u,w

′

) ≥ 

ε
A(u, v,u) ≥ 

ε
u ≥ u.

Suppose that when n = k, we have

u ≤ w′
k ≤ w,

then when n = k + , note that uk ≤ w = rv ≤ v, we obtain

w′
k+ =


ε
A

(
w′
k ,uk ,w

′
k
) ≤ 

ε
A(w,u,w) ≤ 

ε
· εw = w,

w′
k+ =


ε
A

(
w′
k ,uk ,w

′
k
) ≥ 

ε
A(u, v,u) ≥ 

ε
u ≥ u.

By mathematical induction, we know that (.) holds. The same procedure may easily be
adapted to obtain

m ≤ w′
n ≤ w. (.)

On the other hand, from (.),

w = A(w,u,w) = ε

ε
A(w,u,w) = εw′

,

w = A(w,u,w) = A
(
εw′

,u, εw
′

) ≤ εα(ε,w′

,u)A
(
w′
,u,w

′

)

= εα(ε,w′
,u)+ · 

ε
A

(
w′
,u,w

′

)

≤ εw′
.

Suppose that when n = k, we have wk ≤ εkw′
k . Then when n = k + , in view of (.), we

obtain

wk+ = A(wk ,uk ,wk) ≤ A
(
εkw′

k ,uk , ε
kw′

k
) ≤ (

εk
)α(εk ,w′

k ,uk )A
(
w′
k ,uk ,w

′
k
)

= εkα(ε
k ,w′

k ,uk )+ · 
ε
A

(
w′
k ,uk ,w

′
k
)

≤ εk+w′
k+.

By mathematical induction, we have

wn ≤ εnw′
n, n = , , . . . . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/223
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By (.)-(.) we get

θ ≤ wn – un ≤ εnw′
n – un ≤ εnw′

n – εnun = εn
(
w′
n – un

) ≤ εn(w – u),

θ ≤ un+p – un ≤ wn – un, θ ≤ wn –wn+p ≤ wn – un;

θ ≤ wn –mn ≤ εnw′
n –mn ≤ εnw′

n – εnmn = εn
(
w′
n –mn

) ≤ εn(w –m),

θ ≤mn+p –mn ≤ wn –mn.

Noting that P is normal and ε ∈ (, ), we have

‖wn – un‖ ≤Nεn‖w – u‖ →  (as n→ ∞),

‖wn –mn‖ ≤Nεn‖w –m‖ →  (as n→ ∞).

Further,

‖un+p – un‖ ≤N‖wn – un‖ →  (as n→ ∞),

‖wn –wn+p‖ ≤N‖wn – un‖ →  (as n→ ∞),

‖mn+p –mn‖ ≤N‖wn –mn‖ →  (as n→ ∞).

Here N is the normality constant.
So, we can claim that {un}, {wn}, and {mn} are Cauchy sequences. Since E is complete,

there exist u∗,w∗,m∗ ∈ P such that

un → u∗, wn → w∗, mn →m∗ (as n→ ∞).

By (.), (.), respectively, we know that

u ≤ un ≤ u∗ ≤ w∗ ≤ wn ≤ w,

m ≤mn ≤m∗ ≤ w∗ ≤ wn ≤ w,

and then

θ ≤ w∗ – u∗ ≤ wn – un ≤ εn(w – u),

θ ≤ w∗ –m∗ ≤ wn –mn ≤ εn(w –m).

Further, ‖w∗ – u∗‖ ≤ Nεn‖w – u‖ →  (as n → ∞), and thus w∗ = u∗. Similarly, we get
‖w∗ –m∗‖ ≤Nεn‖w –m‖ →  (as n→ ∞), and thus w∗ =m∗. Consequently, w∗ = u∗ =
m∗. Then we obtain

un+ = A(un,wn,mn) ≤ A
(
u∗,u∗,u∗) ≤ A(wn,un,wn) = wn+.

Letting n → ∞, then we get

A
(
u∗,u∗,u∗) = u∗.

That is, u∗ is a fixed point of A in [u, rv]∩ [m, rv].

http://www.fixedpointtheoryandapplications.com/content/2014/1/223
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In the following, we prove that u∗ is the unique fixed point of A in [u, rv] ∩ [m, rv].
Suppose that there exists x∗ ∈ [u, rv] ∩ [m, rv] such that A(x∗,x∗,x∗) = x∗. Then u ≤
x∗ ≤ w andm ≤ x∗ ≤ w. By mathematical induction and the mixed monotonicity of A,
we have

un+ = A(un,wn,mn) ≤ x∗ = A
(
x∗,x∗,x∗) ≤ A(wn,un,wn) = wn+.

Then from the normality of P, we have x∗ = u∗.
Moreover, constructing successively the sequences

xn = A(xn–, yn–, zn–), yn = A(yn–,xn–, yn–),

zn = A(zn–, yn–,xn–), n = , , . . . ,

for any initial values x, y, z ∈ [u, rv] ∩ [m, rv], we have un ≤ xn, wn ≥ yn, mn ≤ zn,
n = , , . . . . Letting n→ ∞ yields xn → u∗, yn → u∗, zn → u∗ as n→ ∞. �

Remark . It is evident from (.) that for t ∈ (, ), x, y ∈ P, there exists α(t, t x, y) ∈
(, +∞), such that

A
(

t
x, y,


t
x
)

≥ 
tα(t, t x,y)

A(x, y,x). (.)

Remark . Let α(t,x, y) be a constant α ∈ (, +∞), then Theorem . also holds.

Corollary . Let E be a real Banach space and let P be a normal cone in E.A : P×P×P →
P is amixedmonotone ternary operator which satisfies (H) and, for t ∈ (, ), x, y ∈ P, there
exists α ∈ (, +∞), such that A(tx, y, tx) ≤ tαA(x, y,x). Then A has a unique fixed point u∗

in [u, rv]∩ [m, rv].Moreover, constructing successively the sequences

xn = A(xn–, yn–, zn–), yn = A(yn–,xn–, yn–),

zn = A(zn–, yn–,xn–), n = , , . . . ,

for any initial values x, y, z ∈ [u, rv] ∩ [m, rv], we have un ≤ xn, wn ≥ yn, mn ≤ zn,
n = , , . . . . Letting n→ ∞ yields xn → u∗, yn → u∗, zn → u∗ as n→ ∞.

Following the lines of the proof of Theorem ., we obtain an immediate consequence.

Corollary . (see []) Let E be a real Banach space and let P be a normal cone in E.
A : P × P → P is a mixed monotone operator which satisfies the following:

(H) for t ∈ (, ), x, y ∈ P, there exists α(t,x, y) ∈ (, +∞), such that

A(tx, y) ≤ tα(t,x,y)A(x, y);

(H) there exist u, v ∈ P, r ∈ (, ), such that

u ≤ rv, A(u, v) ≥ u, A(v,u) ≤ v.

http://www.fixedpointtheoryandapplications.com/content/2014/1/223
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Then A has a unique fixed point u∗ in [u, rv]. Moreover, constructing successively the
sequences

xn = A(xn–, yn–), yn = A(yn–,xn–), n = , , . . . ,

for any initial values x, y ∈ [u, rv], we have

∥∥xn – u∗∥∥ → ,
∥∥yn – u∗∥∥ → 

as n→ ∞.

Theorem. Let E be a real Banach space and let P be a normal cone in E.A : P×P×P →
P is a mixed monotone ternary operator which satisfies (.) and

(H) for R ∈ (, +∞), x, y, z ∈ P there exist α( R ,Rx, y, z),α(

R ,x, y,Rz) ∈ (, +∞) such that

A(Rx, y, z)≥ Rα( R ,Rx,y,z)A(x, y, z), (.)

A(x, y,Rz)≥ Rα( R ,x,y,Rz)A(x, y, z); (.)

(H) there exist u, v,m ∈ P, R ∈ (, +∞), such that

v ≥ Ru, v ≥ Rm,

A(u, v,m) ≥ u, A(v,u, v) ≤ v, A(m, v,u) ≥m, (.)

A(u, v,u)≥ u, A(m, v,m) ≥m.

Then the operator equation A(w,w,w) = bw has a unique solution w∗ in [Ru, v] ∩
[Rm, v], where b = min{Rα( R ,Ru,v,m)–,Rα( R ,m,v,Ru)–}. Moreover, constructing succes-
sively the sequences

xn = b–A(xn–, yn–, zn–), yn = b–A(yn–,xn–, yn–),

zn = b–A(zn–, yn–,xn–), n = , , . . . ,

for any initial values x, y, z ∈ [Ru, v]∩ [Rm, v], we have

∥∥xn –w∗∥∥ → ,
∥∥yn –w∗∥∥ → ,

∥∥zn –w∗∥∥ → 

as n→ ∞.

Remark . Two comments with respect to conditions (.) and (.) are in order:
(a) A sufficient condition on A for (.) to be satisfied is that for t ∈ (, ), x, y, z ∈ P,

there exists α(t,x, y, z) ∈ (, +∞), such that

A(tx, y, z) ≤ tα(t,x,y,z)A(x, y, z).

(b) A sufficient condition on A for (.) to be satisfied is that for t ∈ (, ), x, y, z ∈ P,
there exists α(t,x, y, z) ∈ (, +∞), such that

A(x, y, tz)≤ tα(t,x,y,z)A(x, y, z).

http://www.fixedpointtheoryandapplications.com/content/2014/1/223
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Proof of Theorem . Let w = Ru. Then v ≥ w. Note that b > , from (.)-(.),

A(w, v,m) = A(Ru, v,m) ≥ Rα( R ,Ru,v,m)A(u, v,m)

= Rα( R ,Ru,v,m)–RA(u, v,m) ≥ bRu = bw ≥ w, (.)

A(v,w, v) = A(v,Ru, v) ≤ A(v,u, v) ≤ v, (.)

A(m, v,w) = A(m, v,Ru) ≥ Rα( R ,m,v,Ru)A(m, v,u)

= Rα( R ,m,v,Ru)–RA(m, v,u) ≥ bA(m, v,u) ≥ bm ≥m. (.)

Set B(x, y, z) = b–A(x, y, z), x, y, z ∈ P. Then from the above inequalities, we have

B(w, v,m) = b–A(w, v,m) ≥ b–bw = w,

B(v,w, v) = b–A(v,w, v)≤ b–v ≤ v, (.)

B(m, v,w) = b–A(m, v,w) ≥ b–bm =m.

Also, construct successively the sequences

wn = B(wn–, vn–,mn–), vn = B(vn–,wn–, vn–), mn = B(mn–, vn–,wn–),

v′
n = bB

(
v′
n–,wn–, v′

n–
)
, v′

 = v, n = , , . . . .

From (.) and the mixed monotonicity of A, we have

w ≤ w ≤ w ≤ · · · ≤ wn ≤ · · · ≤ vn ≤ · · · ≤ v ≤ v, (.)

m ≤m ≤m ≤ · · · ≤mn ≤ · · · ≤ vn ≤ · · · ≤ v ≤ v. (.)

Next we prove that

w ≤ v′
n ≤ v, n = , , . . . . (.)

By (.) and (.), we have

A(w, v,w) = A(Ru, v,Ru)≥ Rα( R ,Ru,v)A(u, v,u)

≥ RA(u, v,u)

≥ Ru

= w. (.)

From (.)-(.) and (.),

v′
 = bB

(
v′
,w, v′


)
= bB(v,w, v) = A(v,w, v) ≤ v,

v′
 = bB

(
v′
,w, v′


)
= bB(v,w, v) ≥ bB(w, v,m) = A(w, v,m) ≥ w,

v′
 = bB

(
v′
,w, v′


) ≤ bB(v,w, v) = A(v,w, v) ≤ v,

v′
 = bB

(
v′
,w, v′


) ≥ bB(w, v,w) = A(w, v,w) = A(Ru, v,Ru)≥ w.

http://www.fixedpointtheoryandapplications.com/content/2014/1/223
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Suppose that when n = k, we have

w ≤ v′
k ≤ v,

then when n = k + , recalling (.) and (.), we obtain

v′
k+ = bB

(
v′
k ,wk , v′

k
) ≤ bB(v,w, v) = A(v,w, v) ≤ v,

v′
k+ = bB

(
v′
k ,wk , v′

k
) ≥ bB(w, v,w) = A(w, v,w) = A(Ru, v,Ru)≥ w.

By mathematical induction, we know that (.) holds. The same procedure may easily be
adapted to obtain

m ≤ v′
n ≤ v, n = , , . . . . (.)

On the other hand, from (.),

v = B(v,w, v) =

b
bB(v,w, v) =


b
bB

(
v′
,w, v′


)
=

b
v′
,

v = B(v,w, v) = B
(

b
v′
,w,


b
v′


)
≤

(

b

)α( b ,v
′
,w)

B
(
v′
,w, v′


)

=
(

b

)α( b ,v
′
,w)+

bB
(
v′
,w, v′


) ≤

(

b

)

v′
.

Suppose that when n = k, we have vk ≤ ( b )
kv′

k . Then when n = k + , in view of (.), we
obtain

vk+ = B(vk ,wk , vk) ≤ B
((


b

)k

v′
k ,wk ,

(

b

)k

v′
k

)

≤
((


b

)k)α(( b )
k ,v′k ,wk )

B
(
v′
k ,wk , v′

k
)

≤
(

b

)kα(( b )
k ,v′k ,wk )+

bB
(
v′
k ,wk , v′

k
)

≤
(

b

)k+

v′
k+.

By mathematical induction, we have

vn ≤
(

b

)n

v′
n, n = , , . . . . (.)

By (.)-(.) we get

θ ≤ vn –wn ≤
(

b

)n

v′
n –wn ≤

(

b

)n

v′
n –

(

b

)n

wn

=
(

b

)n(
v′
n –wn

) ≤
(

b

)n

(v –w),

http://www.fixedpointtheoryandapplications.com/content/2014/1/223
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θ ≤ wn+p –wn ≤ vn –wn, θ ≤ vn – vn+p ≤ vn –wn;

θ ≤ vn –mn ≤
(

b

)n

v′
n –mn ≤

(

b

)n

v′
n –

(

b

)n

mn

=
(

b

)n(
v′
n –mn

) ≤
(

b

)n

(v –m),

θ ≤mn+p –mn ≤ vn –mn, θ ≤ vn – vn+p ≤ vn –mn.

Note that P is normal and b > , we have

‖vn –wn‖ ≤N
(

b

)n

‖v –w‖ →  (as n→ ∞),

‖vn –mn‖ ≤N
(

b

)n

‖v –m‖ →  (as n→ ∞).

Further,

‖wn+p –wn‖ ≤N‖vn –wn‖ →  (as n→ ∞),

‖vn – vn+p‖ ≤N‖vn –wn‖ →  (as n→ ∞),

‖mn+p –mn‖ ≤N‖vn –mn‖ →  (as n→ ∞).

Here N is the normality constant.
So, we can claim that {wn}, {vn}, and {mn} are Cauchy sequences. Since E is complete,

there exist w∗, v∗,m∗ ∈ P such that

wn → w∗, vn → v∗, mn →m∗ (as n→ ∞).

By (.), (.), respectively, we know that

w ≤ wn ≤ w∗ ≤ v∗ ≤ vn ≤ v,

m ≤mn ≤m∗ ≤ v∗ ≤ vn ≤ v,

and then

θ ≤ v∗ –w∗ ≤ vn –wn ≤
(

b

)n

(v –w),

θ ≤ v∗ –m∗ ≤ vn –mn ≤
(

b

)n

(v –m).

Further, ‖v∗ –w∗‖ ≤N( b )
n‖v –w‖ →  (as n→ ∞), and thus v∗ = w∗. Similarly, we get

‖v∗ –m∗‖ ≤N( b )
n‖v –m‖ →  (as n→ ∞), and thus v∗ =m∗. Consequently, w∗ = v∗ =

m∗. Then we obtain

wn+ = B(wn, vn,mn) ≤ B
(
w∗,w∗,w∗) ≤ B(vn,wn, vn) = vn+.

Letting n → ∞, we get

B
(
w∗,w∗,w∗) = w∗.
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That is, the operator equation A(w,w,w) = bw has a unique solution w∗ in [Ru, v] ∩
[Rm, v].
In the following, we prove that w∗ is the unique solution of A(w,w,w) = bw in [Ru, v]∩

[Rm, v]. Suppose that there exists x∗ ∈ [Ru, v]∩ [Rm, v] such that A(x∗,x∗,x∗) = bx∗.
Then w ≤ x∗ ≤ v and m ≤ x∗ ≤ v. By mathematical induction and the mixed mono-
tonicity of A, we have

wn+ = B(wn, vn,mn) ≤ x∗ = B
(
x∗,x∗,x∗) ≤ B(vn,wn, vn) = vn+.

Then from the normality of P, we have x∗ = w∗.
Moreover, constructing successively the sequences

xn = b–A(xn–, yn–, zn–), yn = b–A(yn–,xn–, yn–),

zn = b–A(zn–, yn–,xn–), n = , , . . . ,

for any initial values x, y, z ∈ [Ru, v] ∩ [Rm, v], we have wn ≤ xn, vn ≥ yn, mn ≤ zn,
n = , , . . . . Letting n→ ∞ yields xn → w∗, yn → w∗, zn → w∗ as n→ ∞. �

From the proof of Theorem ., we can easily obtain the following conclusion.

Corollary . (see []) Let E be a real Banach space and let P be a normal cone in E.
A : P × P → P is a mixed monotone operator which satisfies (H) and

(H) there exist u, v ∈ P, R ∈ (, +∞) such that

v ≥ Ru, A(u, v) ≥ u, A(v,u)≤ v.

Then the operator equation A(w,w) = bw has a unique solution w∗ in [Ru, v], where b =
Rα( R ,Ru,v)–.Moreover, constructing successively the sequences

xn = b–A(xn–, yn–), yn = b–A(yn–,xn–), n = , , . . . ,

for any initial values x, y ∈ [Ru, v], we have

∥∥xn –w∗∥∥ → ,
∥∥yn –w∗∥∥ → 

as n→ ∞.

4 Application
As application of our results, we investigate the solvability of the following integral equa-
tion:

x(τ ) =
∫ 


k(τ , s)

[
xα (s)

 + xα (s)
+ xα (s)

]
ds (.)

with α,α > , α > .
Put E = C[, ] (the space of continuous functions defined on [, ] endowed with supre-

mum norm). Let P = {x ∈ E | x(t) ≥ ,∀t ∈ [, ]}, then E is a Banach space and P is a nor-
mal cone. Suppose that k(τ , s) : [, ]×[, ]→ R++ (R++ denotes the positive real numbers)
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is continuous and  <
∫ 
 k(τ , s) ds ≤ 

 . In the following, we prove that (.) has a unique
solution.
Consider the integral operator A : P × P × P → P defined by

A(u, v,m) =
∫ 


k(τ , s)

[
uα (s)

 + vα (s)
+mα (s)

]
ds

with α,α > , α > .
It is clear that A(u, v,m) is a mixed monotone ternary operator. We shall show that

A(u, v,m) satisfies (H) and for t ∈ (, ), x, y ∈ P, there exists α ∈ (, +∞), such that
A(tx, y, tx) ≤ tαA(x, y,x).
In fact, let u(τ ) ≡ ,m(τ )≡ , v(τ ) ≡ , then

A(u, v,u) =  ≥ u,

A(v,u, v) = 
∫ 


k(τ , s) ds≤ .

On the other hand, noting that for any t ∈ (, ), letting

α =min{α,α} > ,

we obtain

A(tx, y, tx) =
∫ 


k(τ , s)

[
tαxα (s)
 + yα (s)

+ tαxα (s)
]
ds

≤
∫ 


k(τ , s)

[
tαxα (s)
 + yα (s)

+ tαxα (s)
]
ds

= tα
∫ 


k(τ , s)

[
xα (s)

 + yα (s)
+ xα (s)

]
ds

= tαA(x, y,x).

Hence, all the hypotheses of Corollary . are satisfied. The operator

A(u, v,m) =
∫ 


k(τ , s)

[
uα (s)

 + vα (s)
+mα (s)

]
ds

has a unique fixed point in [u, v], i.e., the integral equation (.) has a unique solution in
[u, v].
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