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Abstract
In this paper, we present a new type of set-valued mappings called partial
q-set-valued quasi-contraction mappings and give results as regards fixed points for
such mappings in b-metric spaces. By providing some examples, we show that our
results are real generalizations of the main results of Aydi et al. (Fixed Point Theory
Appl. 2012:88, 2012) and many results in the literature. We also consider fixed point
results for single-valued mapping, fixed point results for set-valued mapping in
b-metric space endowed with an arbitrary binary relation, and fixed point results in a
b-metric space endowed with a graph. By using our result, we establish the existence
of solution for the following an integral equations: x(c) = φ(c) +

∫ b
a K (c, r, x(r))dr, where

b > a ≥ 0, x ∈ C[a,b] (the set of continuous real functions defined on [a,b] ⊆R),
φ : [a,b] →R, and K : [a,b]× [a,b]×R→ R are given mappings.
MSC: 47H10; 54H25

Keywords: α-admissible mappings; binary relations; fixed points; b-metric spaces;
q-set-valued α-quasi-contraction mappings

1 Introduction
The Banach contraction principle is a very popular tool of mathematics in solving many
problems in several branches of mathematics since it can be observed easily and comfort-
ably. In , Czerwik [] introduced the concept of b-metric spaces and also presented
the fixed point theorem for contraction mappings in b-metric spaces, that is, we have
a generalization of the Banach contraction principle in metric spaces. Afterward, many
mathematicians studied fixed point theorems for single-valued and set-valued mappings
in b-metric spaces (see [–] and references therein).
In , Aydi et al. [] extended the concept of q-set-valued quasi-contractionmappings

in metric spaces due to Amini-Harandi [] to b-metric spaces. They also established the
fixed point results for q-set-valued quasi-contraction mappings in b-metric spaces. Re-
cently, Sintunavarat et al. [] introduced some set-valued mappings called q-set-valued
α-quasi-contraction mappings and obtained fixed point results for such mappings in b-
metric spaces which are generalization of the results of Aydi et al. [], Amini-Harandi []
and many works in the literature.
Inspired and motivated by several results in the literature, we introduce the class of par-

tial q-set-valued quasi-contraction mappings which is the wider class of many classes in
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this field. As regards this class, we study and obtain fixed point results in b-metric spaces.
These results extend, unify and generalize several well-known comparable results in the
existing literature. As an application of our results, we prove the fixed point theorems for
a single-valued mapping and give an example to show the generality of our result. We also
study the fixed point results in a b-metric space endowed with an arbitrary binary rela-
tion and endowed with a graph. As applications, we apply our result to the proof of the
existence of a solution for the following an integral equation:

x(c) = φ(c) +
∫ b

a
K

(
c, r,x(r)

)
dr, (.)

where b > a ≥ , x ∈ C[a,b] (the set of continuous real functions defined on [a,b] ⊆ R),
φ : [a,b]→R, and K : [a,b]× [a,b]×R→R are given mappings.

2 Preliminaries
In this section, we give some notations and basic knowledge in nonlinear analysis and b-
metric spaces. Throughout this paper, R, R+, and N denote the set of real numbers, the
set of nonnegative real numbers, and the set of positive integers, respectively.

Definition . ([]) Let X be a nonempty set and s ≥  be a given real number. A func-
tional d : X ×X →R+ is called a b-metric if, for all x, y, z ∈ X, the following conditions are
satisfied:

(B) d(x, y) =  if and only if x = y;
(B) d(x, y) = d(y,x);
(B) d(x, z) ≤ s[d(x, y) + d(y, z)].

A pair (X,d) is called a b-metric space with coefficient s.

Remark . The result is obtained that any metric space is a b-metric space with s = .
Thus the class of b-metric spaces is larger than the class of metric spaces.

Some examples of b-metric spaces are given by Berinde [], Czerwik [], Heinonen
[]. Some well-known examples of a b-metric which show that the b-metric space is a
real generalization of metric space are the following.

Example . The set of real numbers together with the functional d :R×R→ R+,

d(x, y) := |x – y|,

for all x, y ∈ R, is a b-metric space with coefficient s = . However, we find that d is not a
metric on X since the ordinary triangle inequality is not satisfied. Indeed,

d(, ) > d(, ) + d(, ).

Example . Let (X,d) be a metric space and a functional ρ : R × R → R+ defined by
ρ(x, y) = (d(x, y))p, where p >  is a fixed real number. We show that ρ is a b-metric with

http://www.fixedpointtheoryandapplications.com/content/2014/1/226
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s = p–. It is easy to see that conditions (B) and (B) are satisfied. If  < p < ∞, then the
convexity of the function f (x) = xp (x > ) implies the following inequality:(

a + b


)p

≤ 

(
ap + bp

)
,

that is,

(a + b)p ≤ p–
(
ap + bp

)
holds. Therefore, for each x, y, z ∈ X, we get

ρ(x, y) =
(
d(x, y)

)p
≤ (

d(x, z) + d(z, y)
)p

≤ p–
((
d(x, z)

)p + (
d(z, y)

)p)
= p–

(
ρ(x, z) + ρ(z, y)

)
.

Consequently, condition (B) is also satisfied and thus ρ is a b-metric on X.

Example . The set lp(R) with  < p < , where

lp(R) :=

{
{xn} ⊆R

∣∣∣∣ ∞∑
n=

|xn|p < ∞
}
,

together with the functional d : lp(R)× lp(R)→R+,

d(x, y) :=

( ∞∑
n=

|xn – yn|p
) 

p

,

for each x = {xn}, y = {yn} ∈ lp(R), is a b-metric spacewith coefficient s = 

p > .We see that

the above result also holds for the general case lp(X) with  < p < , where X is a Banach
space.

Example . Let p be a given real number in the interval (, ). The space Lp[, ] of all
real functions x(t), t ∈ [, ] such that

∫ 
 |x(t)|p dt < , together with the functional d :

Lp[, ]× Lp[, ]→R+,

d(x, y) :=
(∫ 



∣∣x(t) – y(t)
∣∣p dt)/p

, for each x, y ∈ Lp[, ],

is a b-metric space with constant s = 

p .

Example . Let X = {, , } and a functional d : X ×X →R+ be defined by

d(, ) = d(, ) = d(, ) = ,

d(, ) = d(, ) = d(, ) = d(, ) = 

http://www.fixedpointtheoryandapplications.com/content/2014/1/226


Kumam and Sintunavarat Fixed Point Theory and Applications 2014, 2014:226 Page 4 of 20
http://www.fixedpointtheoryandapplications.com/content/2014/1/226

and

d(, ) = d(, ) =m,

wherem is given real number such thatm ≥ . It easy to see that

d(x, y) ≤ m


[
d(x, z) + d(z, y)

]
,

for all x, y, z ∈ X. Therefore, (X,d) is a b-metric space with coefficient s = m/. We find
that the ordinary triangle inequality does not hold if m >  and then (X,d) is not a metric
space.

Next, we give the concepts of convergence, compactness, closedness, and completeness
in a b-metric space.

Definition . ([]) Let (X,d) be a b-metric space. The sequence {xn} in X is called:
() convergent if and only if there exists x ∈ X such that d(xn,x)→  as n→ ∞. In this

case, we write limn→∞ xn = x.
() Cauchy if and only if d(xn,xm)→  as m,n→ ∞.

Remark . In a b-metric space (X,d) the following assertions hold:
() a convergent sequence has a unique limit;
() each convergent sequence is Cauchy;
() in general a functional b-metric d : X ×X →R+ for coefficient s >  is not jointly

continuous in all its variables.

The following example is an example of a b-metric which is not continuous.

Example . (see []) Let X =N∪ {∞} and a functional d : X ×X → R+ be defined by

d(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

, x = y,

y , x =∞ and y 	=∞,

x , x 	=∞ and y =∞,
| x – 

y |, x and y are even,
, x and y are odd and x 	= y,
, otherwise.

It is easy to see that conditions (B) and (B) are satisfied. Also, for each x, y, z ∈ X, we have

d(x, z) ≤ 
[
d(x, y) + d(y, z)

]
.

Therefore, (X,d) is a b-metric space on X with coefficient s = .
Next, we show that d is not continuous. Let xn = n for each n ∈ N. It is easy to see that

d(xn,∞) = d(n,∞) =

n

→ , as n→ ∞,

that is, xn → ∞, but d(xn, ) = � d(∞, ) as n→ ∞. Therefore, d is not continuous.

http://www.fixedpointtheoryandapplications.com/content/2014/1/226
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Definition . The b-metric space (X,d) is complete if every Cauchy sequence in X con-
verges.

Definition . ([]) Let Y be a nonempty subset of a b-metric space X. The closure Y
of Y is the set of limits of all convergent sequences of points in Y , i.e.,

Y :=
{
x ∈ X : there exists a sequence {xn} in Y such that lim

n→∞xn = x
}
.

Definition . ([]) Let (X,d) be a b-metric space. A subset Y ⊆ X is called:
() closed if and only if for each sequence {xn} in Y which converges to an element x, we

have x ∈ Y (i.e. Y = Y );
() compact if and only if for every sequence of element in Y there exists a subsequence

that converges to an element in Y ;
() bounded if and only if δ(Y ) := sup{d(a,b) | a,b ∈ Y } < ∞.

Throughout this paper, we use the following notations of collection of subsets of a b-
metric space (X,d):

P(X) := {Y | Y ⊆ X};
P(X) :=

{
Y ∈P(X) | Y 	= ∅}

;

Pb(X) :=
{
Y ∈ P(X) | Y is bounded

}
;

Pcp(X) :=
{
Y ∈ P(X) | Y is compact

}
;

Pcl(X) :=
{
Y ∈ P(X) | Y is closed

}
;

Pb,cl(X) := Pb(X)∩ Pcl(X).

Next, we give the concept of generalized functionals on a b-metric space (X,d).

Definition . Let (X,d) be a b-metric space.
() The functional D :P(X)×P(X)→R∪ {+∞} is said to be a gap functional if and

only if it is defined by

D(A,B) =

⎧⎪⎨⎪⎩
inf{d(a,b) | a ∈ A,b ∈ B}, A 	= ∅ 	= B,
, A = ∅ = B,
+∞, otherwise.

In particular, if x ∈ X then d(x,B) :=D({x},B).
() The functional ρ :P(X)×P(X)→R∪ {+∞} is said to be an excess generalized

functional if and only if it is defined by

ρ(A,B) =

⎧⎪⎨⎪⎩
sup{d(a,B) | a ∈ A}, A 	= ∅ 	= B,
, A = ∅,
+∞, otherwise.

http://www.fixedpointtheoryandapplications.com/content/2014/1/226
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() The functional H :P(X)×P(X)→ R∪ {+∞} is said to be a Pompeiu-Hausdorff
generalized functional if and only if it is defined by

H(A,B) =

⎧⎪⎨⎪⎩
max{ρ(A,B),ρ(B,A)}, A 	= ∅ 	= B,
, A = ∅,
+∞, otherwise.

Remark . For b-metric space (X,d), the following assertions hold:
() (Pcp(X),H) is a complete b-metric space provided (X,d) is a complete b-metric

space;
() for each A,B ∈ P(X) and x ∈ A, we have

d(x,B)≤ ρ(A,B)≤H(A,B);

() for x ∈ X and B ∈ P(X), we get

d(x,B)≤ d(x,b),

for all b ∈ B.

The following lemmas are useful for the proofs in the main result.

Lemma . ([]) Let (X,d) be a b-metric space. Then

d(x,A)≤ s
[
d(x,B) +H(B,A)

]
,

for all x ∈ X and A,B ∈ P(X). In particular, we have

d(x,A)≤ s
[
d(x, y) + d(y,A)

]
,

for all x, y ∈ X and A ∈ P(X).

Lemma . ([]) Let (X,d) be a b-metric space and A,B ∈ Pb,cl(X). Then for each ε > 
and, for all b ∈ B, there exists a ∈ A such that d(a,b)≤H(A,B) + ε.

Lemma . ([]) Let (X,d) be a b-metric space. For A ∈ Pb,cl(X) and x ∈ X, we have

d(x,A) =  �⇒ x ∈ A.

Lemma . ([]) Let (X,d) be a b-metric space with coefficient s ≥  and {xn} be a se-
quence in X such that

d(xn+,xn+) ≤ γd(xn,xn+),

for all n ∈N, where ≤ γ < . Then {xn} is a Cauchy sequence in X provided that sγ < .

In , Samet et al. [] introduced the concepts of α-admissible mapping as follows.

http://www.fixedpointtheoryandapplications.com/content/2014/1/226
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Definition . ([]) Let X be a nonempty set, t : X → X and α : X × X → [,∞). We
say that t is α-admissible if

for x, y ∈ X for which α(x, y)≥  �⇒ α(tx, ty)≥ .

They proved the fixed point results for single-valued mapping as regards this concept
and also showed that these results can be utilized to derive fixed point theorems in par-
tially ordered spaces. As an application, they obtain the existence of solutions for ordinary
differential equations.
Afterward, Asl et al. [] and Mohammadi et al. [] introduced the concept of α∗-

admissibility and α-admissibility for set-valued mappings as follows.

Definition . ([, ]) Let X be a nonempty set, T : X → X , where X is a collection
of nonempty subsets of X and α : X ×X → [,∞). We say that
() T is α∗-admissible if

for x, y ∈ X for which α(x, y)≥  �⇒ α∗(Tx,Ty)≥ ,

where α∗(Tx,Ty) := inf{α(a,b) | a ∈ Tx,b ∈ Ty}.
() T is α-admissible if for each x ∈ X and y ∈ Tx with α(x, y)≥ , we have α(y, z)≥ ,

for all z ∈ Ty.

Remark . If T is α∗-admissible, then T is also α-admissible mapping.

In recent investigations, the fixed point results for single-valued and set-valued map-
pings via the concepts of being α-admissible and α∗-admissible occupies a prominent
place in many aspects (see [–] and references therein).

3 Fixed point theorems for partial q-set-valued quasi-contractionmappings
In this section, we introduce the partial q-set-valued quasi-contraction mapping and ob-
tain the theorem of the existence of a fixed point for such a mapping in b-metric spaces.
Throughout this paper, for the nonempty set X and the given mapping α : X × X →

[,∞), we use the following notation:

∧
α
:=

{
(x, y) ∈ X ×X : α(x, y)≥ 

}
.

Definition . Let (X,d) be a b-metric space and α : X × X → [,∞) be a given map-
ping. The set-valued mapping T : X → Pb,cl(X) is said to be a partial q-set-valued quasi-
contraction if, for all (x, y) ∈ X ×X,

(x, y) ∈
∧

α

�⇒ H(Tx,Ty) ≤ qmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
,

(.)

where  ≤ q < .

Next, we give the main result in this paper.

http://www.fixedpointtheoryandapplications.com/content/2014/1/226
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Theorem . Let (X,d) be a complete b-metric space with coefficient s ≥ , α : X ×
X → [,∞) be a given mapping and T : X → Pb,cl(X) be a partial q-set-valued quasi-
contraction. Suppose that the following conditions hold:

(i) T is α-admissible;
(ii) there exist x ∈ X and x ∈ Tx such that (x,x) ∈ ∧

α ;
(iii) if {xn} is a sequence in X such that (xn,xn+) ∈ ∧

α , for all n ∈N, and xn → x as
n→ ∞, for some x ∈ X , then (xn,x) ∈ ∧

α .
If q < 

s+s , then T has a fixed point in X, that is, there exists u ∈ X such that u ∈ Tu.

Proof For x, y ∈ X, we obtain

max
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
= 

if and only if x = y is a fixed point of T . Therefore, we suppose that

max
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
> ,

for all x, y ∈ X.
Now, we will set

ε :=



(


s + s
– q

)
and β := q + ε =




(


s + s
+ q

)
.

It follows from q < 
s+s that ε >  and  < β < 

s+s .
Starting from x and x ∈ Tx in (ii), by Lemma ., there exists x ∈ Tx such that

d(x,x) ≤ H(Tx,Tx)

+ εmax
{
d(x,x),d(x,Tx),d(x,Tx),d(x,Tx),d(x,Tx)

}
. (.)

It follows from (x,x) ∈ ∧
α that

H(Tx,Tx) ≤ qmax
{
d(x,x),d(x,Tx),d(x,Tx),d(x,Tx),d(x,Tx)

}
. (.)

From (.) and (.), we get

d(x,x) ≤ (q + ε)max
{
d(x,x),d(x,Tx),d(x,Tx),d(x,Tx),d(x,Tx)

}
= βmax

{
d(x,x),d(x,Tx),d(x,Tx),d(x,Tx),d(x,Tx)

}
.

Since T is α-admissible, x ∈ X, and x ∈ Tx such that α(x,x) ≥ , we get α(x,x) ≥ 
and so (x,x) ∈ ∧

α . Using Lemma ., there exists x ∈ Tx such that

d(x,x) ≤ H(Tx,Tx)

+ εmax
{
d(x,x),d(x,Tx),d(x,Tx),d(x,Tx),d(x,Tx)

}
. (.)

Since T is a partial q-set-valued quasi-contraction and (x,x) ∈ ∧
α , we obtain

H(Tx,Tx) ≤ qmax
{
d(x,x),d(x,Tx),d(x,Tx),d(x,Tx),d(x,Tx)

}
. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/226
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From (.) and (.), we have

d(x,x) ≤ (q + ε)max
{
d(x,x),d(x,Tx),d(x,Tx),d(x,Tx),d(x,Tx)

}
= βmax

{
d(x,x),d(x,Tx),d(x,Tx),d(x,Tx),d(x,Tx)

}
.

By induction, we can construct a sequence {xn} in X such that, for each n ∈N, we have

xn ∈ Txn–, (xn–,xn) ∈
∧

α

and

d(xn,xn+)

≤ β max
{
d(xn–,xn),d(xn–,Txn–),d(xn,Txn),d(xn–,Txn),d(xn,Txn–)

}
. (.)

If there exists n̂ ∈ N such that xn̂– = xn̂, then xn̂ ∈ Txn̂ and then the proof is complete.
For the rest, we will assume that xn– 	= xn, that is, d(xn–,xn) > , for all n ∈ N. Now we
obtain, for all n ∈ N,

d(xn,xn+) ≤ β max
{
d(xn–,xn),d(xn–,Txn–),d(xn,Txn),d(xn–,Txn),d(xn,Txn–)

}
≤ β max

{
d(xn–,xn),d(xn–,xn),d(xn,xn+),d(xn–,xn+),d(xn,xn)

}
≤ β max

{
d(xn–,xn),d(xn,xn+), s

[
d(xn–,xn) + d(xn,xn+)

]}
≤ βs

[
d(xn–,xn) + d(xn,xn+)

]
and hence

d(xn,xn+) ≤ γd(xn–,xn), (.)

where γ := βs
–βs .

Since s≥ , β = 
 (


s+s + q), and q < 

s+s , we get

γ s < . (.)

From (.), (.), and Lemma ., we see that {xn} is a Cauchy sequence in X. By the
completeness of X, there exists u ∈ X such that

lim
n→∞d(xn,u) = . (.)

Next, we will prove that d(u,Tu) = . By the condition (iii), we have (xn,u) ∈ ∧
α , for all

n ∈N. From Lemma . and (.), for each n ∈N, we get

d(u,Tu) ≤ s
[
d(u,xn+) + d(xn+,Tu)

]
≤ s

[
d(u,xn+) +H(Txn,Tu)

]
≤ s

[
d(u,xn+) + qmax

{
d(xn,u),d(xn,Txn),d(u,Tu),d(xn,Tu),d(u,Txn)

}]

http://www.fixedpointtheoryandapplications.com/content/2014/1/226
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≤ s
[
d(u,xn+) + qmax

{
d(xn,u),d(xn,xn+),d(u,Tu),d(xn,Tu),d(u,xn+)

}]
≤ s

[
d(u,xn+) + qmax

{
d(xn,u), s

[
d(xn,u) + d(u,xn+)

]
,d(u,Tu),

s
[
d(xn,u) + d(u,Tu)

]
,d(u,xn+)

}]
.

Letting n → ∞ in the above inequality, we have

d(u,Tu) ≤ qsd(u,Tu). (.)

It follows from q < 
s+s that qs

 < . From (.), we get d(u,Tu) = . Using Lemma .,
we have u ∈ Tu, that is, u is a fixed point of T . This completes the proof. �

Theorem . Let (X,d) be a complete b-metric space with coefficient s ≥ , α : X ×
X → [,∞) be a given mapping and T : X → Pb,cl(X) be a partial q-set-valued quasi-
contraction. Suppose that the following conditions hold:

(i) T is α∗-admissible;
(ii) there exist x ∈ X and x ∈ Tx such that (x,x) ∈ ∧

α ;
(iii) if {xn} is a sequence in X such that (xn,xn+) ∈ ∧

α , for all n ∈N, and xn → x as
n→ ∞, for some x ∈ X , then (xn,x) ∈ ∧

α .
If we set q < 

s+s , then T has a fixed point in X , that is, there exists u ∈ X such that u ∈ Tu.

Proof We can prove this result by using Theorem . and Remark .. �

Corollary . (Theorems ., . in []) Let (X,d) be a complete b-metric space with
coefficient s ≥ , α : X × X → [,∞) be a given mapping and T : X → Pb,cl(X) be a q-set-
valued α-quasi-contraction, that is, for all x, y ∈ X, we have

α(x, y)H(Tx,Ty)≤ qmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
, (.)

where  ≤ q < . Suppose that the following conditions hold:
(i) T is α-admissible (or α∗-admissible);
(ii) there exist x ∈ X and x ∈ Tx such that (x,x) ∈ ∧

α ;
(iii) if {xn} is a sequence in X such that (xn,xn+) ∈ ∧

α , for all n ∈N, and xn → x as
n→ ∞, for some x ∈ X , then (xn,x) ∈ ∧

α .
If q < 

s+s , then T has a fixed point in X, that is, there exists u ∈ X such that u ∈ Tu.

Proof Wewill show that a q-set-valued α-quasi-contraction is a partial q-set-valued quasi-
contraction. Assume that (x, y) ∈ ∧

α and so α(x, y)≥ . Since T is a q-set-valued α-quasi-
contraction, we get

H(Tx,Ty) ≤ α(x, y)H(Tx,Ty)

≤ qmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

This implies that T is a partial q-set-valued quasi-contraction. By Theorem . (or Theo-
rem .), we get the desired result. �
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Corollary . Let (X,d) be a complete b-metric space with coefficient s ≥ , α : X × X →
[,∞) be a given mapping and let T : X → Pb,cl(X) satisfy

(
H(Tx,Ty) + ε

)α(x,y) ≤ qmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
+ ε, (.)

for all x, y ∈ X, where  ≤ q <  and ε ≥ . Suppose that the following conditions hold:
(i) T is α-admissible (or α∗-admissible);
(ii) there exist x ∈ X and x ∈ Tx such that (x,x) ∈ ∧

α ;
(iii) if {xn} is a sequence in X such that (xn,xn+) ∈ ∧

α , for all n ∈N, and xn → x as
n→ ∞, for some x ∈ X , then (xn,x) ∈ ∧

α .
If q < 

s+s , then T has a fixed point in X, that is, there exists u ∈ X such that u ∈ Tu.

Proof Wewill show thatT is a partial q-set-valued quasi-contraction. Suppose that (x, y) ∈∧
α and then α(x, y)≥ . From (.), we get

H(Tx,Ty) + ε ≤ (
H(Tx,Ty) + ε

)α(x,y)

≤ qmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
+ ε,

that is,

H(Tx,Ty) ≤ qmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

This implies that T is a partial q-set-valued quasi-contraction. By Theorem . (or Theo-
rem .), we get the desired result. �

Corollary . Let (X,d) be a complete b-metric space with coefficient s ≥ , α : X × X →
[,∞) be a given mapping and T : X → Pb,cl(X) satisfies

(
α(x, y) –  + ε

)H(Tx,Ty) ≤ εqmax{d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)}, (.)

for all x, y ∈ X, where  ≤ q <  and ε > . Suppose that the following conditions hold:
(i) T is α-admissible (or α∗-admissible);
(ii) there exist x ∈ X and x ∈ Tx such that (x,x) ∈ ∧

α ;
(iii) if {xn} is a sequence in X such that (xn,xn+) ∈ ∧

α , for all n ∈N, and xn → x as
n→ ∞, for some x ∈ X , then (xn,x) ∈ ∧

α .
If q < 

s+s , then T has a fixed point in X, that is, there exists u ∈ X such that u ∈ Tu.

Proof Wewill show thatT is a partial q-set-valued quasi-contraction. Suppose that (x, y) ∈∧
α and then α(x, y)≥ . From (.), we get

εH(Tx,Ty) ≤ (
α(x, y) –  + ε

)H(Tx,Ty)

≤ εqmax{d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)}.

It follows from ε >  that

H(Tx,Ty) ≤ qmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.
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This implies that T is a partial q-set-valued quasi-contraction. By Theorem . (or Theo-
rem .), we get the desired result. �

Corollary . (Theorem . in []) Let (X,d) be a complete b-metric space with coefficient
s ≥  and T : X → Pb,cl(X) be a q-set-valued quasi-contraction. If q < 

s+s , then T has a
fixed point in X, that is, there exists u ∈ X such that u ∈ Tu.

Proof Set α(x, y) = , for all x, y ∈ X. By Theorem . (or Theorem .), we obtain the
desired result. �

Remark . If we take s =  (it corresponds to the case of metric spaces), then the con-
dition of q in Theorem . becomes q < 

 . Therefore, Theorems . and . are general-
ization of several known fixed point results in metric spaces. Also Theorem . is a gen-
eralization of Theorem . and . of Sintunavarat et al. [], Theorem . of Aydi et al.
[], main results of Amini-Harandi [], Daffer and Kaneko [], Rouhani andMoradi [],
and Singh et al. [].

The following example shows that Theorem . properly generalizes Theorem . of
Aydi et al. [].

Example . Let X =R and the functional d : X ×X →R+ defined by

d(x, y) := |x – y|,

for all x, y ∈ X. Clearly, (X,d) is a complete b-metric space with coefficient s = . Define
set-valued mapping T : X → Pb,cl(X) by

Tx =

⎧⎪⎨⎪⎩
[x,max{x, –}], x ∈ (–∞, ),
[, x

 ], x ∈ [, ],
[min{x, },x], x ∈ (,∞),

and α : X ×X → [,∞) by

α(x, y) =

{
ln(x+y+e), x, y ∈ [, ],
, otherwise.

We obtain

H(T,T) = 

and

max
{
d(, ),d(,T),d(,T),d(,T),d(,T)

}
= .

Therefore,

H(T,T) > qmax
{
d(, ),d(,T),d(,T),d(,T),d(,T)

}
,
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for all  ≤ q < . This implies that the contraction condition of Theorem .. of Aydi et al.
[] is not true for this case. Therefore, Theorem . cannot be used to claim the existence
of fixed point of T .
Next, we show that Theorem . can be applied for this case. First of all, we show that

T is a partial q-set-valued quasi-contraction mapping, where q = 
 . Assume that

(x, y) ∈
∧

α
=

{
(x, y) ∈ X ×X : α(x, y)≥ 

}
= [, ]× [, ].

Then we have

H(Tx,Ty) =
∣∣∣∣ x –

y


∣∣∣∣
=

|x – y|


= qd(x, y)

≤ qmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

This shows that T is a partial q-set-valued quasi-contraction mapping. Also we have

q =



<


=


s + s

.

It is easy to see that T is an α-admissible mapping. We find that there exist x =  and
x = . ∈ Tx for which (x,x) ∈ ∧

α . Further, for any sequence {xn} in X with xn → x as
n → ∞, for some x ∈ X, and (xn,xn+) ∈ ∧

α , for all n ∈ N, we see that (xn,x) ∈ ∧
α , for all

n ∈N.
Therefore, all hypotheses of Theorem . are satisfied and so T has a fixed point. In this

case, T have infinitely many fixed points.

4 Consequences
4.1 Fixed point results of single-valuedmappings
In this section, we give the fixed point result for single-valuedmappings. Before presenting
our results, we introduce the new concept of a partial q-single-valued quasi-contraction
mapping.

Definition . Let (X,d) be a b-metric space and α : X × X → [,∞) be a mapping. The
single-valued mapping t : X → X is said to be a partial q-single-valued quasi-contraction
if

(x, y) ∈
∧

α
�⇒ d(tx, ty)≤ qmax

{
d(x, y),d(x, tx),d(y, ty),d(x, ty),d(y, tx)

}
, (.)

where  ≤ q < .

Next, we give the fixed point result for partial q-single-valued quasi-contraction map-
ping.

Theorem . Let (X,d) be a complete b-metric space with coefficient s ≥ , α : X × X →
[,∞) be a given mapping and t : X → X be a partial q-single-valued quasi-contraction.
Suppose that the following conditions hold:

http://www.fixedpointtheoryandapplications.com/content/2014/1/226
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(i) t is α-admissible;
(ii) there exists x ∈ X such that (x, tx) ∈ ∧

α ;
(iii) if {xn} is a sequence in X such that (xn,xn+) ∈ ∧

α , for all n ∈N, and xn → x as
n→ ∞, for some x ∈ X , then (xn,x) ∈ ∧

α .
If q < 

s+s , then t has a fixed point in X , that is, there exists u ∈ X such that u = tu.

Proof It follows by applying Theorem . or Theorem .. �

Remark . Theorem . is an extension of Corollary . of Sintunavarat et al. [],
Corollary . of Aydi et al. [], and the result of Ćirić [].

Example . Let X =R and the functional d : X ×X →R+ defined by

d(x, y) := |x – y|,

for all x, y ∈ X. Clearly, (X,d) is a complete b-metric space with coefficient s = . Define
single-valued mapping t : X → X by

tx =

⎧⎪⎨⎪⎩
max{x, –}, x ∈ (–∞, ),
x
 , x ∈ [, ],
x, x ∈ (,∞),

and α : X ×X → [,∞) by

α(x, y) =

{
, x, y ∈ [, ],
., otherwise.

We obtain

d(t, t) = 

and

max
{
d(, ),d(, t),d(, t),d(, t),d(, t)

}
= .

Therefore,

d(t, t) > qmax
{
d(, ),d(, t),d(, t),d(, t),d(, t)

}
,

for all  ≤ q < . This implies that the contraction condition of Corollary . of Aydi et al.
[] is not true for this case. Therefore, Corollary . of Aydi et al. [] cannot be used to
claim the existence of fixed point of t.
Next, we show that Theorem . can be applying for this case. First of all, we show

that t is a partial q-single-valued quasi-contraction mapping, where q = 
 . Assume that

(x, y) ∈ ∧
α = {(x, y) ∈ X ×X : α(x, y)≥ } = [, ]× [, ]. We obtain

d(tx, ty) =
∣∣∣∣x –

y


∣∣∣∣

http://www.fixedpointtheoryandapplications.com/content/2014/1/226
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=
|x – y|


= qd(x, y)

≤ qmax
{
d(x, y),d(x, tx),d(y, ty),d(x, ty),d(y, tx)

}
.

This shows that t is a partial q-single-valued quasi-contraction mapping. Also we have

q =


<


=


s + s

.

It is easy to see that t is an α-admissible mapping.
We find that there exists x = . such that (x, tx) = (., .) ∈ ∧

α . Further, for any
sequence {xn} in X with xn → x as n → ∞, for some x ∈ X, and (xn,xn+) ∈ ∧

α , for all
n ∈N, we obtain (xn,x) ∈ ∧

α , for all n ∈N, since [, ] is closed.
Therefore, all hypotheses of Theorem . are satisfied and so t has a fixed point, that is,

a point  ∈ X.

4.2 Fixed point results on b-metric space endowed with an arbitrary binary
relation

In this section, we give the fixed point results on a b-metric space endowed with an arbi-
trary binary relation. Before presenting our results, we give the following definitions.

Definition . Let (X,d) be a b-metric space and R be a binary relation over X. We say
thatT : X → Pb,cl(X) is a weakly preservingmapping if for each x ∈ X and y ∈ Txwith xRy,
we have yRz, for all z ∈ Ty.

Definition . Let (X,d) be a b-metric space and R be a binary relation over X. The
set-valued mapping T : X → Pb,cl(X) is said to be a q-set-valued quasi-contraction with
respect toR if, for all x, y ∈ X, we have

xRy �⇒ H(Tx,Ty) ≤ qmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
, (.)

where  ≤ q < .

Theorem . Let (X,d) be a complete b-metric space with coefficient s ≥ ,R be a binary
relation over X, and T : X → Pb,cl(X) be a q-set-valued quasi-contraction with respect toR.
Suppose that the following conditions hold:

(i) T is a weakly preserving mapping;
(ii) there exist x ∈ X and x ∈ Tx such that xRx;
(iii) if {xn} is a sequence in X such that xnRxn+, for all n ∈N, and xn → x as n→ ∞, for

some x ∈ X , then xnRx.
If q < 

s+s , then T has a fixed point in X, that is, there exists u ∈ X such that u ∈ Tu.

Proof Consider the mapping α : X ×X → [,∞) defined by

α(x, y) =

{
 if xRy;
 otherwise.

(.)
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From condition (ii), we get α(x,x) ≥  and so (x,x) ∈ ∧
α . It follows from T being a

preserving mapping that T is an α-admissible mapping. Since T is a q-set-valued quasi-
contraction with respect to R, we have, for all x, y ∈ X,

(x, y) ∈
∧

α

�⇒ H(Tx,Ty) ≤ qmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

(.)

This implies that T is a partial q-set-valued quasi-contraction mapping. Now all the hy-
potheses of Theorem . are satisfied and so the existence of the fixed point of T follows
from Theorem .. �

Next, we give some special case of Theorem . in partially ordered b-metric spaces.
Before we study the next results, we give the following definitions.

Definition . Let X be a nonempty set. Then (X,d,�) is called a partially ordered b-
metric space if (X,d) is a b-metric space and (X,�) is a partially ordered space.

Definition . Let (X,d,�) be a partially ordered b-metric space. We say that T : X →
Pb,cl(X) is a weakly preserving mapping with � if for each x ∈ X and y ∈ Tx with x � y, we
have y � z, for all z ∈ Ty.

Definition . Let (X,d,�) be a partially ordered b-metric space. The set-valued map-
ping T : X → Pb,cl(X) is said to be a q-set-valued quasi-contraction with respect to � if,
for all x, y ∈ X, we have

x � y �⇒ H(Tx,Ty)≤ qmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
, (.)

where  ≤ q < .

Corollary . Let (X,d,�) be a complete partially ordered b-metric space with coefficient
s ≥  and T : X → Pb,cl(X) be a q-set-valued quasi-contraction with respect to �. Suppose
that the following conditions hold:

(i) T is a weakly preserving mapping with �;
(ii) there exist x ∈ X and x ∈ Tx such that x � x;
(iii) if {xn} is a sequence in X such that xn � xn+, for all n ∈N, and xn → x as n → ∞,

for some x ∈ X , then xn � x.
If we set q < 

s+s , then T has a fixed point in X , that is, there exists u ∈ X such that u ∈ Tu.

Proof The result follows from Theorem . by considering the binary relation �. �

4.3 Fixed point results on b-metric spaces endowed with a graph
Throughout this section, let (X,d) be a b-metric space. A set {(x,x) : x ∈ X} is called a
diagonal of the Cartesian productX×X and is denoted by
. Consider a directed graphG
such that the setV (G) of its vertices coincides withX and the set E(G) of its edges contains
all loops, i.e.,
 ⊆ E(G).We assume thatG has no parallel edges, so we can identifyGwith
the pair (V (G),E(G)). Moreover, we may treat G as a weighted graph by assigning to each
edge the distance between its vertices.
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In this section, we give the fixed point results for set-valuedmappings in a b-metric space
endowed with a graph. Before presenting our results, we will introduce new definitions in
a b-metric space endowed with a graph.

Definition . Let (X,d) be a b-metric space endowed with a graph G and T : X →
Pb,cl(X) be set-valued mapping. We say that T weakly preserves the edges of G if for each
x ∈ X and y ∈ Tx with (x, y) ∈ E(G) implies (y, z) ∈ E(G), for all z ∈ Ty.

Definition . Let (X,d) be a b-metric space endowed with a graph G. A set-valued
mappingT : X → Pb,cl(X) is said to be a q-G-set-valued quasi-contraction if, for all x, y ∈ X,
we have

(x, y) ∈ E(G)

�⇒ H(Tx,Ty) ≤ qmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
,

(.)

where  ≤ q < .

Example . Let X be a nonempty set. Any mapping T : X → Pb,cl(X) defined by Tx =
{a}, where a ∈ X, is a q-G-set-valued quasi-contraction for any graph G with V (G) = X.

Example . Let X be a nonempty set. Any mapping T : X → Pb,cl(X) is trivially a q-G-
set-valued quasi-contraction, where G = (V (G),E(G)) = (X,
).

Definition . Let (X,d) be a b-metric space endowed with a graph G. We say that X
has G-regular property if given x ∈ X and sequence {xn} in X such that xn → x as n → ∞
and (xn,xn+) ∈ E(G), for all n ∈ N, then (xn,u) ∈ E(G), for all n ∈N.

Here, we give a fixed point result for set-valued mappings in a b-metric space endowed
with a graph.

Theorem . Let (X,d) be a complete b-metric space with coefficient s ≥  and endowed
with a graph G and let T : X → Pb,cl(X) be a q-G-set-valued quasi-contraction. Suppose
that the following conditions hold:

(i) T weakly preserves edges of G;
(ii) there exist x ∈ X and x ∈ Tx such that (x,x) ∈ E(G);
(iii) X has G-regular property.

If q < 
s+s , then T has a fixed point in X, that is, there exists u ∈ X such that u ∈ Tu.

Proof Consider the mapping α : X ×X → [,∞) defined by

α(x, y) =

{
, (x, y) ∈ E(G);
, otherwise.

(.)

Since T is a q-G-set-valued quasi-contraction, we have, for all x, y ∈ X,

(x, y) ∈
∧

α

�⇒ H(Tx,Ty) ≤ qmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

(.)
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This implies that T is a partial q-set-valued quasi-contraction.
By construction of α and condition (i), we find that T is α-admissible. From condition

(ii) and the construction of α, we get α(x,x) ≥  and thus (x,x) ∈ ∧
α . Using G-regular

property of X, the result is obtained that the condition (iii) in Theorem . holds. Now all
the hypotheses of Theorem . are satisfied and so the existence of the fixed point of T
follows from Theorem .. �

5 Existence of a solution for an integral equation
In this section, we prove the existence theorem for a solution of the following integral
equation by using Theorem .:

x(c) = φ(c) +
∫ b

a
K

(
c, r,x(r)

)
dr, (.)

where b > a ≥ , x ∈ C[a,b] (the set of continuous real functions defined on [a,b] ⊆ R),
φ : [a,b]→R, and K : [a,b]× [a,b]×R→R are given mappings.

Theorem . Suppose that the following hypotheses hold:

(I) K : [a,b]× [a,b]×R →R is continuous;
(I) there exists p ≥  satisfies the following condition for each r, c ∈ [a,b] and x, y ∈ X with

x(w) ≤ y(w), for all w ∈ [a,b]:

∣∣K(
c, r,x(r)

)
–K

(
c, r, y(r)

)∣∣ ≤ ξ (c, r)
∣∣x(r) – y(r)

∣∣,
where ξ : [a,b]× [a,b]→ [,∞) is a continuous function satisfying

sup
c∈[a,b]

(∫ b

a
ξ (c, r)p dr

)
≤ 

(p– + )(b – a)p–
;

(I) there exists x ∈ X such that x(c) ≤ (tx)(c), for all c ∈ [a,b].

Then the integral equation (.) has a solution x ∈ X.

Proof Let X = C[a,b] and let t : X → X be a mapping defined by

(tx)(c) =
∫ b

a
K

(
c, r,x(r)

)
dr,

for all x ∈ X and c ∈ [a,b]. Clearly, X with the b-metric d : X ×X →R+ given by

d(x, y) = sup
c∈[a,b]

∣∣x(c) – y(c)
∣∣p,

for all x, y ∈ X, is a complete b-metric space with coefficient s = p–.
Define a mapping α : X ×X → [,∞) by

α(x, y) =

{
, x(c) ≤ y(c), for all c ∈ [a,b];
, otherwise.
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It is easy to see that t is an α-admissible mapping. From (I), we have (x, tx) ∈ ∧
α . Also

we find that condition (iii) in Theorem . holds (see []).
Next, we show that t is a partial q-single-valued quasi-contraction mapping with q =


p–+ <


p–(p–+) =


s+s . Let  ≤ p′ < ∞ with 
p + 

p′ = . Now, let x, y ∈ X be such that
(x, y) ∈ ∧

α , that is, x(c) ≤ y(c), for all c ∈ [a,b]. From (I), (I), and the Hölder inequality,
for each s ∈ [a,b] we have

∣∣(tx)(s) – (ty)(s)
∣∣p ≤

(∫ b

a

∣∣K(
c, r,x(r)

)
–K

(
c, r, y(r)

)∣∣dr)p

≤
[(∫ b

a
q dr

) 
p′

(∫ b

a
|K(

c, r,x(r)
)
–K

(
c, r, y(r)

)|p dr) 
p
]p

≤ (b – a)
p
p′

(∫ b

a

(
ξ (c, r)

)p∣∣x(r) – y(r)
∣∣p dr)

= (b – a)
p
p′

(∫ b

a
ξ (c, r)pd(x, y)dr

)

≤ (b – a)
p
p′

(∫ b

a
ξ (c, r)pd(x, y)dr

)

= (b – a)p–
(∫ b

a
ξ (c, r)p dr

)(
d(x, y)

)
≤ 

p– + 
max

{
d(x, y),d(x, tx),d(y, ty),d(x, ty),d(y, tx)

}
= qmax

{
d(x, y),d(x, tx),d(y, ty),d(x, ty),d(y, tx)

}
.

This shows that

d(tx, ty)≤ qmax
{
d(x, y),d(x, tx),d(y, ty),d(x, ty),d(y, tx)

}
.

Therefore, by using Theorem ., we see that t has a fixed point, that is, there exists x ∈
X such that x is a fixed point of t. This implies that x is a solution for (.) because the
existence of a solution of (.) is equivalent to the existence of a fixed point of t. This
completes the proof. �
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