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Abstract
The aim of this paper is to present the definition of a generalized altering distance
function and to extend the results of Yan et al. (Fixed Point Theory Appl. 2012:152,
2012) and some others, and to prove a new fixed point theorem of generalized
contraction mappings in a complete metric space endowed with a partial order by
using generalized altering distance functions. The results of this paper can be used to
investigate a large class of nonlinear problems. As an application, we discuss the
existence of a solution for a periodic boundary value problem.
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1 Introduction
The Banach contraction mapping principle is a classical and powerful tool in nonlinear
analysis.Weak contractions are generalizations of the Banach contractionmapping, which
have been studied by several authors. In [–], the authors prove some types of weak con-
tractions in complete metric spaces, respectively. In particular, the existence of a fixed
point for weak contractions and generalized contractions was extended to partially or-
dered metric spaces in [, –]. Among them, some involve altering distance functions.
Such functions were introduced by Khan et al. in [], where they present some fixed point
theorems with the help of such functions. First, we recall the definition of an altering dis-
tance function.

Definition . An altering distance function is a function ψ : [,∞)→ [,∞) which sat-
isfies:
(a) ψ is continuous and non-decreasing.
(b) ψ =  if and only if t = .

Recently, Harjani and Sadarangani proved some fixed point theorems for weak contrac-
tions and generalized contractions in partially ordered metric spaces by using the altering
distance function in [, ], respectively. Their results improve the theorems of [, ].
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Theorem . ([]) Let (X,≤) be a partially ordered set and suppose that there exists a
metric d ∈ X such that (X,d) is a complete metric space. Let f : X → X be a continuous and
non-decreasing mapping such that

d
(
f (x), f (y)

) ≤ d(x, y) –ψ
(
d(x, y)

)
, for x≥ y,

where ψ : [,∞) → [,∞) is continuous and non-decreasing function such that ψ is posi-
tive in (,∞), ψ() =  and limt→∞ ψ(t) = ∞. If there exists x ∈ X with x ≤ f (x), then f
has a fixed point.

Theorem . ([]) Let (X,≤) be a partially ordered set and suppose that there exists a
metric d ∈ X such that (X,d) is a complete metric space. Let f : X → X be a continuous and
non-decreasing mapping such that

ψd
(
f (x), f (y)

) ≤ ψ
(
d(x, y)

)
– φ

(
d(x, y)

)
, for x≥ y,

where ψ and φ are altering distance functions. If there exists x ∈ X with x ≤ f (x), then
f has a fixed point.

Subsequently, Amini-Harandi and Emami proved another fixed point theorem for con-
traction type maps in partially ordered metric spaces in []. The following class of func-
tions is used in [].
Let � denote the class of those functions β : [,∞)→ [, ) which satisfy the condition:

β(tn)→  ⇒ tn → .

Theorem . ([]) Let (X,≤) be a partially ordered set and suppose that there exists a
metric d such that (X,d) is a completemetric space. Let f : X → X be an increasingmapping
such that there exists an element x ∈ X with x ≤ f (x). Suppose that there exists β ∈ �
such that

d
(
f (x), f (y)

) ≤ β
(
d(x, y)

)
d(x, y) for each x, y ∈ X with x ≥ y.

Assume that either f is continuous or M is such that if an increasing sequence xn → x ∈ X,
then xn ≤ x, ∀n. Besides, if for each x, y ∈ X there exists z ∈ m which is comparable to x
and y, then f has a unique fixed point.

In , Yan et al. proved the following result.

Theorem . ([]) Let X be a partially ordered set and suppose that there exists a metric
d in x such that (X,d) is a complete metric space. Let T : X → X be a continuous and
non-decreasing mapping such that

ψ
(
d(Tx,Ty)

) ≤ φ
(
d(x, y)

)
, ∀x≥ y,

where ψ is an altering distance function and φ : [,∞) → [,∞) is a continuous function
with the condition ψ(t) > φ(t) for all t > . If there exists x ∈ X such that x ≤ Tx, then T
has a fixed point.
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The aimof this paper is to present the definition of generalized altering distance function
and to extend the results of Yan et al. [] and some others, and to prove a new fixed point
theorem of generalized contraction mappings in a complete metric space endowed with a
partial order by using generalized altering distance functions. The results of this paper can
be used to investigate a large class of nonlinear problems. As an application, we discuss
the existence of a solution for a periodic boundary value problem.

2 Main results
We first give the definition of generalized altering distance function as follows.

Definition . A generalized altering distance function is a function ψ : [,∞)→ [,∞)
which satisfies:
(a) ψ is non-decreasing;
(b) ψ =  if and only if t = .

Wefirst recall the following notion of amonotone non-decreasing function in a partially
ordered set.

Definition . If (X,≤) is a partially ordered set and T : X → X, we say that T is mono-
tone non-decreasing if x, y ∈ X, x ≤ y⇒ T(x)≤ T(y).

This definition coincides with the notion of a non-decreasing function in the case where
X = R and ≤ represents the usual total order in R.
In what follows, we prove the following theorem, which is the generalized type of The-

orems .-..

Theorem . Let X be a partially ordered set and suppose that there exists a metric d
in x such that (X,d) is a complete metric space. Let T : X → X be a continuous and non-
decreasing mapping such that

ψ
(
d(Tx,Ty)

) ≤ φ
(
d(x, y)

)
, ∀x≥ y,

whereψ is a generalized altering distance function and φ : [,∞) → [,∞) is a right upper
semi-continuous function with the condition: ψ(t) > φ(t) for all t > . If there exists x ∈ X
such that x ≤ Tx, then T has a fixed point.

Proof Since T is a non-decreasing function, we obtain by induction that

x ≤ Tx ≤ Tx ≤ Tx ≤ · · · ≤ Tnx ≤ Tn+x ≤ · · · . ()

Put xn+ = Txn. Then, for each integer n ≥ , from () and, as the elements xn+ and xn are
comparable, we get

ψ
(
d(xn+,xn)

)
= ψ

(
d(Txn,Txn–)

) ≤ φ
(
d(xn,xn–)

)
. ()

Using the condition of Theorem . we have

d(xn+,xn) < d(xn,xn–). ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/227
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Hence the sequence {d(xn+,xn)} is decreasing and, consequently, there exists r ≥  such
that

d(xn+,xn) → r+,

as n→ ∞. Consider the properties of ψ and φ, letting n → ∞ in () we get

ψ(r)≤ lim
n→∞ψ

(
d(xn+,xn)

) ≤ lim
n→∞φ

(
d(xn,xn–)

) ≤ φ(r).

By using the condition: ψ(t) > φ(t) for all t > , we have r = , and hence

d(xn+,xn) → , ()

as n → ∞. In what follows, we will show that {xn} is a Cauchy sequence. Suppose that
{xn} is not a Cauchy sequence. Then there exists ε >  for which we can find subsequences
{xnk } with nk >mk > k such that

d(xnk ,xmk ) ≥ ε ()

for all k ≥ . Further, corresponding to mk we can choose nk in such a way that it is the
smallest integer with nk >mk and satisfying (). Then

d(xnk– ,xmk– ) < ε. ()

From () and (), we have

ε ≤ d(xnk ,xmk ) ≤
(
d(xnk ),xnk–

)
+ d(xnk– ,xmk ) < d(xnk ,xnk– ) + ε.

Letting k → ∞ and using (), we get

lim
k→∞

d(xnk ,xmk ) = ε. ()

By using the triangular inequality we have

d(xnk ,xmk ) ≤ d(xnk ,xnk– ) + d(xnk– ,xmk– ) + d(xmk– ,xmk ),

d(xnk– ,xmk– ) ≤ d(xnk– ,xnk ) + d(xnk ,xmk ) + d(xmk ,xmk– ).

Letting k → ∞ in the above two inequalities and using () and (), we have

lim
k→∞

d(xnk– ,xmk– ) = ε. ()

As nk >mk and xnk– and xmk– are comparable, using () we have

ψ
(
d(xnk ,xmk )

) ≤ φ
(
d(xnk– ,xmk– )

)
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/227
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Consider the properties of ψ and φ, letting k → ∞ and taking into account () and (), we
have

ψ(ε) ≤ φ(ε).

From the condition ψ(t) > φ(t) for all t > , we get ε = , which is a contradiction. This
shows that {xn} is a Cauchy sequence and, since X is a complete metric space, there exists
z ∈ X such that xn → z as n→ ∞. Moreover, the continuity of T implies that

z = lim
n→∞xn+ = lim

n→∞Txn = Tz,

and this proves that z is a fixed point. This completes the proof. �

In what follows, we prove that Theorem . is still valid for T being not necessarily
continuous, assuming the following hypothesis in X:

If (xn) is a non-decreasing sequence in X such that xn → x

then xn ≤ x for all n ∈N . ()

Theorem . Let (X,≤) be a partially ordered set and suppose that there exists a metric d
in X such that (X,d) is a complete metric space. Assume that X satisfies (). Let T : X → X
be a non-decreasing mapping such that

ψ
(
d(Tx,Ty)

) ≤ φ
(
d(x, y)

)
, ∀x≥ y,

whereψ is a generalized altering distance functions and φ: [,∞)→ [,∞) is a right upper
semi-continuous function with the condition ψ(t) > φ(t) for all t > . If there exists x ∈ X
such that x ≤ Tx, then T has a fixed point.

Proof Following the proof of Theorem . we only have to check that T(z) = z. As (xn) is
a non-decreasing sequence in X and limn→∞ xn = z the condition () gives us that xn ≤ z
for every n ∈N and consequently,

ψ
(
d
(
xn+,T(z)

))
= ψ

(
d
(
T(xn),T(z)

)) ≤ φ
(
d(xn, z)

)
.

Letting n → ∞ and taking into account that ψ is an altering distance function, we have

ψ
(
d
(
z,T(z)

)) ≤ φ().

Using condition of theorem we have φ() = , this implies �(d(z,T(z))) = . Thus,
d(z,T(z)) =  or equivalently, T(z) = z. �

Now, we present an example where it can be appreciated that the hypotheses in Theo-
rems . and Theorems . do not guarantee uniqueness of the fixed point. An example
appears in [].
Let X = {(, ), (, )} ⊂ R and consider the usual order (x, y) ≤ (z, t) ⇔ x ≤ z, y ≤ t.

Thus, (x, y) is a partially ordered set whose different elements are not comparable. Besides

http://www.fixedpointtheoryandapplications.com/content/2014/1/227
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(X,d) is a complete metric space considering d the Euclidean distance. The identity map
T(x, y) = (x, y) is trivially continuous and non-decreasing and condition () of Theorem .
is satisfied, since the elements in X are only comparable to themselves. Moreover, (, ) ≤
T(, ) = (, ) and T has two fixed points in X.
In what follows, we give a sufficient condition for the uniqueness of the point in Theo-

rems . and .. This condition is:

for x, y ∈ X there exists a lower bound or an upper bound. ()

In [] it is proved that condition () is equivalent to:

for x, y ∈ X there exists z ∈ X which is comparable to x and y. ()

Theorem . Adding condition () to the hypotheses of Theorem . (resp. Theorem .)
we obtain the uniqueness of the fixed point of T .

Proof Suppose that there exist z, y ∈ X which are fixed points. We distinguish two cases.
Case . If y is comparable to z then Tn(y) = y is comparable to Tn(z) = z for n = , , , . . .

and

ψ
(
d(z, y)

)
= ψ

(
d
(
Tn(z),Tn(y)

))
≤ φ

(
d
(
Tn–(z),Tn–(y)

))
≤ φ

(
d(z, y)

)
.

As we have the condition ψ(t) > φ(t) for t >  we obtain d(z, y) =  and this implies z = y.
Case . If y is not comparable to z then there exists x ∈ X comparable to y and z. Mono-

tonicity of T implies that Tn(x) is comparable to Tn(y) and to Tn(z) = z, for n = , , , . . .
Moreover,

ψ
(
d
(
z,Tn(x)

))
= ψ

(
d
(
Tn(z),Tn(x)

))
≤ φ

(
d
(
Tn–(z),Tn–(x)

))
= φ

(
d
(
z,Tn–(x)

))
. ()

Hence, ψ is a generalized altering distance function and we have the condition ψ(t) >
φ(t) for t > , this gives us that {d(z, f n(x))} is a non-negative decreasing sequence and,
consequently, there exists γ such that

lim
n→∞d

(
z,Tn(x)

)
= γ .

Letting n → ∞ in () and, taking into account the properties of ψ and φ, we obtain

ψ(γ )≤ φ(γ ).

This and the conditionψ(t) > φ(t) for t >  imply γ = . Analogously, it can be proved that

lim
n→∞d

(
y,Tn(x)

)
= .
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Finally, as

lim
n→∞d

(
z,Tn(x)

)
= lim

n→∞d
(
y,Tn(x)

)
= 

the uniqueness of the limit gives us y = z. This finishes the proof. �

Remark . Under the assumption of Theorem ., it can be proved that for every x ∈ X,
limn→∞ Tn(x) = z, where z is the fixed point (i.e. the operator f is Picard).

Remark . Theorem . is a particular case of Theorem . for ψ being the identity
function, and φ(t) = t –ψ(t). Theorem . is a particular case of our Theorem . for φ(t)
being replaced by ψ(t) –φ(t). Theorem . is a particular case of Theorem . for ψ being
the identity function, and φ(t) = β(t)t. Theorem . is also a particular case of Theorem .
for ψ and φ being continuous.

Example . The following are some generalized altering distance functions:

ψ(t) =

⎧⎨
⎩, t = ,

[t] + , t > ,

ψ(t) =

⎧⎨
⎩, t = ,

λ([t] + ), t > ,

where α >  is a constant.

ψ(t) =

⎧⎨
⎩t,  ≤ t < ,

αt, t ≥ ,

where α ≥  is a constant.
We choose ψ(t) = ψ(t) and

φ(t) =

⎧⎨
⎩t,  ≤ t < ,

βt, t ≥ ,

where  < β < α is a constant. By using Theorem ., we can get the following result.

Theorem . Let X be a partially ordered set and suppose that there exists a metric d
in x such that (X,d) is a complete metric space. Let T : X → X be a continuous and non-
decreasing mapping such that

 ≤ d(Tx,Ty) <  ⇒ d(Tx,Ty) ≤ (
d(x, y)

),
d(Tx,Ty) ≥  ⇒ α

(
d(Tx,Ty)

) ≤ βd(x, y)

for any x, y ∈ X. If there exists x ∈ X such that x ≤ Tx, then T has a fixed point.

http://www.fixedpointtheoryandapplications.com/content/2014/1/227
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3 Application to ordinary differential equations
In this section we present two examples where our Theorems . and . can be applied.
The first example is inspired by []. We study the existence of a solution for the following
first-order periodic problem:

⎧⎨
⎩u′(t) = f (t,u(t)), t ∈ [,T],

u() = u(T),
()

where T >  and f : I × R → R is a continuous function. Previously, we considered the
space C(I) (I = [,T]) of continuous functions defined on I . Obviously, this space with the
metric given by

d(x, y) = sup
{∣∣x(t) – y(t)

∣∣ : t ∈ I
}
, for x, y ∈ C(I),

is a complete metric space. C(I) can also be equipped with a partial order given by

x, y ∈ C(I), x≤ y ⇔ x(t)≤ y(t)m, for t ∈ I.

Clearly, (C(I),≤) satisfies condition (), since for x, y ∈ C(I) the functions max{x, y} and
min{x, y} are least upper and greatest lower bounds of x and y, respectively. Moreover, in
[] it is proved that (C(I),≤) with the above mentioned metric satisfies condition ().
Now we give the following definition.

Definition . A lower solution for () is a function α ∈ C()(I) such that

⎧⎨
⎩α′(t) ≤ f (t,α(t)), for t ∈ I,

α()≤ α(T).

Theorem. Consider problem ()with f : I×R → R continuous and suppose that there
exist λ,α >  with

α ≤
(
λ(eλT – )
T(eλT + )

) 


such that for x, y ∈ R with x ≥ y

 ≤ f (t,x) + λx –
[
f (t, y) + λy

] ≤ α
√
g(x – y),

where g(t) : [, +∞) → [, +∞) is a light upper semi-continuous function with g() = ,
g(t) < t, ∀t > . Then the existence of a lower solution for () provides the existence of an
unique solution of ().

Proof Problem () can be written as

⎧⎨
⎩u′(t) + λu(t) = f (t,u(t)) + λu(t), for t ∈ I = [,T],

u() = u(T).

http://www.fixedpointtheoryandapplications.com/content/2014/1/227
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This problem is equivalent to the integral equation

u(t) =
∫ T


G(t, s)

[
f
(
s,u(s)

)
+ λu(s)

]
ds,

where G(t, s) is the Green function given by

G(t, s) =

⎧⎨
⎩

eλ(T+s–t)
eλT– ,  ≤ s < t ≤ T ,

eλ(s–t)
eλT– ,  ≤ t < s ≤ T .

Define F : C(I) → C(I) by

(Fu)(t) =
∫ T


G(t, s)

[
f
(
s,u(s)

)
+ λu(s)

]
ds.

Note that if u ∈ C(I) is a fixed point of F then u ∈ C(I) is a solution of (). In what
follows, we check that the hypotheses in Theorems . and . are satisfied. The mapping
F is non-decreasing, since we have u≥ v, and using our assumption. We can obtain

f (t,u) + λu≥ f (t, v) + λv

which implies, since G(t, s) > , that for t ∈ I

(Fu)(t) =
∫ T


G(t, s)

[
f
(
s,u(s)

)
+ λu(s)

]
ds

≥
∫ T


G(t, s)

[
f
(
s, v(s)

)
+ λv(s)

]
ds = (Fv)(t).

Besides, for u≥ v, we have

d(Fu,Fv) = sup
t∈I

∣∣(Fu)(t) – (Fv)(t)
∣∣

= sup
t∈I

(
(Fu)(t) – (Fv)(t)

)

= sup
t∈I

∫ T


G(t, s)

[
f
(
s,u(s)

)
+ λu(s) – f

(
s, v(s)

)
– λv(s)

]
ds

≤ sup
t∈I

∫ T


G(t, s)α

√
g
(
u(s) – v(s)

)
ds. ()

Using the Cauchy-Schwarz inequality in the last integral we get

∫ T


G(t, s)α

√
g
(
u(s) – v(s)

)
ds

≤
(∫ T


G(t, s) ds

) 

(∫ T


αg

(
u(s) – v(s)

)
ds

) 

. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/227
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The first integral gives us

∫ T


G(t, s) ds =

∫ t


G(t, s) ds +

∫ T

t
G(t, s) ds

=
∫ t



eλ(T+s–t)

(eλT – )
ds +

∫ T

t

eλ(s–t)

(eλT – )
ds

=


λ(eλT – )
e(λT–)

=
eλT + 

λ(eλT – )
. ()

The second integral in () gives the following estimate:

∫ T


αg

(
u(s) – v(s)

)
ds≤ αg

(‖u – v‖) · T

= αg
(
d(u, v)

) · T . ()

Taking into account ()-() we have

d(Fu,Fv)≤ sup
t∈I

(
eλT + 

λ(eλT – )

) 
 · (αg

(
d(u, v)

) · T) 


=
(

eλT + 
λ(eλT – )

) 
 · α · √T · (g(d(u, v))) 



and from the last inequality we obtain

d(Fu,Fv) ≤ eλT + 
λ(eλT – )

· α · T · g(d(u, v))

or, equivalently.

λ
(
eλT – 

)
d(Fu,Fv) ≤ (

eλT + 
) · α · T · g(d(u, v)).

By our assumption, as

α ≤
(
λ(eλT – )
T(eλT + )

) 

,

the last inequality gives us

λ
(
eλT – 

)
d(Fu,Fv) ≤ λ

(
eλT – 

) · g(d(u, v)),
and, hence,

d(Fu,Fv) ≤ g
(
d(u, v)

)
. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/227
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Put ψ(t) = t and φ(t) = g(t). Obviously, ψ is a generalized altering distance function, ψ(t)
and φ(t) satisfy the condition of ψ(t) > φ(t) for t > . From (), we obtain for u ≥ v

ψ
(
d(Fu,Fv)

) ≤ φ
(
d(u, v)

)
.

Finally, let α(t) be a lower solution for (); we claim that α ≤ F(α). In fact

α′(t) + λα(t)≤ f
(
t,α(t)

)
+ λα(t), for t ∈ I.

We multiply by eλt ,

(
α(t)eλt)′ ≤ [

f
(
t,α(t)

)
+ λα(t)

]
eλt , for t ∈ I,

and this gives us

α(t)eλt ≤ α() +
∫ t



[
f
(
s,α(s)

)
+ λα(s)

]
eλs ds, for t ∈ I. ()

As α()≤ α(T), the last inequality gives us

α()eλt ≤ α(T)eλT ≤ α() +
∫ T



[
f
(
s,α(s)

)
+ λα(s)

]
eλs ds,

and so

α()≤
∫ T



eλs

eλT – 
[
f
(
s,α(s)

)
+ λα(s)

]
ds.

This and () give us

α(t)eλt ≤
∫ t



eλ(T+s)

eλT – 
[
f
(
s,α(s)

)
+ λα(s)

]
ds +

∫ T

t

eλs

eλT – 
[
f
(
s,α(s)

)
+ λα(s)

]
ds

and, consequently,

α(t)≤
∫ t



eλ(T+s–t)

eλT – 
ds +

∫ t



eλ(s–t)

eλT – 
[
f
(
s,α(s)

)
+ λα(s)

]
ds

=
∫ T


G(t, s)

[
f
(
s,α(s)

)
+ λα(s)

]
ds

= (Fα)(t), for t ∈ I.

Finally, Theorems . and . show that F has an unique fixed point. �

Example . In Theorem ., we can choose the function g(t) as follows:
() g(t) = ln(t + );
()

g(t) =

⎧⎪⎪⎨
⎪⎪⎩
t, ≤ t < ,

 , t = ,

t,  < t < +∞.

http://www.fixedpointtheoryandapplications.com/content/2014/1/227
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()

g(t) =

⎧⎨
⎩t,  ≤ t ≤ 

 ,

t – 
 ,


 < t < +∞.

The functions g(t), g(t) are continuous and non-decreasing. The function g(t) is right
upper semi-continuous. If we choose g(t) = g(t) in Theorem ., we obtain the result of
[].

Example . Consider the following first-order periodic problem:

⎧⎨
⎩u′(t) = sin t

et – βx, t ∈ [,T],

u() = u(T).
()

Let

f (t,x) =
sin t
et

– βx, x ∈ [,∞), t ∈ [, ],

then f (t,x) is continuous. Further, for x ≥ y, we have

f (t,x) + λx –
[
f (t, y) + λy

]
= (λ – β)

x – y


.

We chose β ∈ [,λ] such that

(λ – β) ≤
(
λ(eλT – )
T(eλT + )

) 

.

Taking g(t) = ( t )
 for all t ∈ [, +∞), we have

f (t,x) + λx –
[
f (t, y) + λy

]
= (λ – β)

√
g(x – y).

By using Theorem ., we know that the first-order periodic problem () has a unique
solution.

A second example where our results can be applied is the following two-point boundary
value problem of the second order differential equation:

⎧⎨
⎩– dx

dt = f (t,x), x ∈ [,∞), t ∈ [, ],

x() = x() = .
()

It is well known that x ∈ C[, ] is a solution of () that is equivalent to x ∈ C[, ] being
a solution of the integral equation

x(t) =
∫ 


G(t, s)f

(
s,x(s)

)
ds, for t ∈ [, ],

http://www.fixedpointtheoryandapplications.com/content/2014/1/227
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where G(t, s) is the Green function given by

G(t, s) =

⎧⎨
⎩t( – s),  ≤ t ≤ s ≤ ,

s( – t),  ≤ s ≤ t ≤ .
()

Theorem . Consider problem () with f : I × R → [,∞) continuous and non-
decreasing with respect to the second variable and suppose that there exists  ≤ α ≤ 
such that for x, y ∈ R with x ≥ y

f (t,x) – f (t, y) ≤ α
√
g(x – y), ()

where g(t) : [, +∞) → [, +∞) is a light upper semi-continuous function with g() = ,
g(t) < t, ∀t > . Then our problem () has a unique non-negative solution.

Proof Consider the cone

P =
{
x ∈ C[, ] : x(t)≥ 

}
.

Obviously, (P,d) with d(x, y) = sup{|x(t) – y(t)| : t ∈ [, ]} is a complete metric space. Con-
sider the operator given by

(Tx)(t) =
∫ 


G(t, s)f

(
s,x(s)

)
ds, for x ∈ P,

where G(t, s) is the Green function appearing in ().
As f is non-decreasing with respect to the second variable, for x, y ∈ P with y ≥ x and

t ∈ [, ], we have

(Ty)(t) =
∫ 


G(t, s)f

(
s, y(s)

)
ds≥

∫ 


G(t, s)f

(
s,x(s)

)
ds ≥ (Tx)(t),

and this proves that T is a non-decreasing operator.
Besides, for y≥ x and taking into account (), we obtain

d(Ty,Tx) = sup
t∈[,]

∣∣(Tx)(t) – (Ty)(t)
∣∣

= sup
t∈[,]

(
(Tx)(t) – (Ty)(t)

)

= sup
t∈[,]

∫ 


G(t, s)

(
f
(
s,x(s)

)
– f

(
s, y(s)

))
ds

≤ sup
t∈[,]

∫ 


G(t, s)α

√
g
(
x(s) – y(s)

)

≤ sup
t∈[,]

∫ 


G(t, s)α

√
g
(
x(s) – y(s)

)
ds

= α

√
ln

[‖y – x‖ + 
]
sup
t∈[,]

∫ 


G(t, s)ds. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/227
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It is easy to verify that

∫ 


G(t, s)ds =

–t


+
t


and that

sup
t∈[,]

∫ 


G(t, s)ds =



.

These facts, the inequality (), and the hypothesis  < α ≤  give us

d(Tx,Ty) ≤ α


√
g(x – y)

≤
√
g
(‖x – y‖) = √

g
(
d(x, y)

)
.

Hence

d(Ty,Tx) ≤ g
(
d(x, y)

)
.

Put ψ(t) = t, φ(t) = g(t), obviously ψ is an altering distance function, ψ and φ satisfy the
condition of ψ(t) > φ(t), for t > . From the last inequality, we have

ψ
(
d(Tx,Ty)

) ≤ φ
(
d(x, y)

)
.

Finally, as f and G are non-negative functions

T =
∫ 


G(t, s)f (s, )ds≥ 

and Theorems . and . tell us that F has a unique non-negative solution. �

Remark . In Theorem ., we can choose g(t) as g(), g(t), and g(t) as well as in
Theorem ..

Example . Consider the following two-point boundary value problem of the second
order differential equation:

⎧⎨
⎩– dx

dt = sin t
et + x

+cos tπ , x ∈ [,∞), t ∈ [, ],

x() = x() = .
()

Let

f (t,x) =
sin t
et

+
x

 + cos tπ
, x ∈ [,∞), t ∈ [, ],

then f (t,x) is continuous and non-decreasing with respect to the second variable. Further,
for x ≥ y, we have

f (t,x) – f (t, y) =
x

 + cos tπ
–

y
 + cos tπ

≤
√(

x – y


)

.

http://www.fixedpointtheoryandapplications.com/content/2014/1/227
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Taking g(t) = t
 for all t ∈ [, +∞). By using Theorem ., we know that the two-point

boundary value problem () has a unique non-negative solution.
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