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Abstract
In this paper, we prove strong and �-convergence theorems for a class of mappings
which is essentially wider than that of asymptotically nonexpansive mappings on
hyperbolic space through the S-iteration process introduced by Agarwal et al.
(J. Nonlinear Convex Anal. 8:61-79, 2007) which is faster and independent of the Mann
(Proc. Am. Math. Soc. 4:506-510, 1953) and Ishikawa (Proc. Am. Math. Soc. 44:147-150,
1974) iteration processes. Our results generalize, extend, and unify the corresponding
results of Abbas et al. (Math. Comput. Model. 55:1418-1427, 2012), Agarwal et al.
(J. Nonlinear Convex Anal. 8:61-79, 2007), Dhompongsa and Panyanak (Comput. Math.
Appl. 56:2572-2579, 2008), and Khan and Abbas (Comput. Math. Appl. 61:109-116,
2011).
MSC: 47H10
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1 Introduction
The class of asymptotically nonexpansive mappings, introduced by Goebel and Kirk [] in
, is an important generalization of the class of nonexpansivemapping and they proved
that if C is a nonempty closed and bounded subset of a uniformly convex Banach space,
then every asymptotically nonexpansive self -mapping of C has a fixed point.
There are numerous papers dealing with the approximation of fixed points of nonex-

pansive and asymptotically nonexpansive mappings in uniformly convex Banach spaces
through modified Mann and Ishikawa iteration processes (see, e.g., [–] and references
therein). The class of Lipschitz mappings is larger than the classes of nonexpansive and
asymptotically nonexpansive mappings. However, the theory of the computation of fixed
points of non-Lipschitz mappings is equally important and interesting. There are few a
results in this direction (see, e.g., [–]).
In , Lim [] introduced a concept of convergence in a general metric space set-

ting which he called ‘�-convergence’. In , Kirk and Panyanak [] specialized Lim’s
concept toCAT() spaces and showed thatmany Banach space results involvingweak con-
vergence have precise analogs in this setting. Since then, the existence problem and the
�-convergence problem of iterative sequences to a fixed point for nonexpansivemapping,
asymptotically nonexpansive mapping, nearly asymptotically nonexpansive, asymptoti-
cally nonexpansive mapping in intermediate sense, asymptotically nonexpansive nonself-
mapping via Picard, Mann [], Ishikawa [], Agarwal et al. [] in the framework of
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CAT() space have been rapidly developed and many papers have appeared in this direc-
tion (see, e.g., [–]).
The purpose of the paper is to establish �-convergence as well as strong convergence

through the S-iteration process for a class of mappings which is essentially wider than
that of asymptotically nonexpansive mappings on a nonlinear domain, uniformly convex
hyperbolic spacewhich includes both uniformly convexBanach spaces andCAT() spaces.
Therefore, our results extend and improve the corresponding ones proved by Abbas et al.
[], Dhompongsa and Panyanak [], Khan and Abbas [] andmany other results in this
direction.

2 Preliminaries
Let F(T) = {Tx = x : x ∈ C} denotes the set of fixed point. We begin with the following
definitions.

Definition . Let C be a nonempty subset of metric space X and T : C → C a mapping.
A sequence {xn} in C is said to be an approximating fixed point sequence of T if

lim
n→∞d(xn,Txn) = .

Definition . Let C be a nonempty subset of a metric space X. The mapping T : C → C
is said to be
() uniformly L-Lipschitzian if for each n ∈N, there exists a positive number L >  such

that

d
(
Tnx,Tny

) ≤ Ld(x, y) for all x, y ∈ C;

() asymptotically nonexpansive if there exists a sequence {kn} in [,∞) with
limn→∞ kn =  such that

d
(
Tnx,Tny

) ≤ ( + kn)d(x, y) for all x, y ∈ C and n ∈N;

() asymptotically quasi-nonexpansive if F(T) �= ∅ and there exists a sequence {kn} in
[,∞) with limn→∞ kn =  such that

d
(
Tnxn,p

) ≤ ( + kn)d(xn,p) for all x ∈ C,p ∈ F(T) and n ∈N.

The class of nearly Lipschitzian mappings is an important generalization of the class of
Lipschitzian mappings and was introduced by Sahu [].
Let C be a nonempty subset of a metric space X and fix a sequence {an} in [,∞) with

an → . A mapping T : C → C is said to be nearly Lipschitzian with respect to {an} if for
each n ∈N, there exists a constant kn ≥  such that

d
(
Tnx,Tny

) ≤ kn
(
d(x, y) + an

)
for all x, y ∈ C. (.)

The infimum of the constants kn for which (.) holds is denoted by η(Tn) and is called
the nearly Lipschitz constant of Tn.
A nearly Lipschitzian mapping T with the sequence {(an,η(Tn))} is said to be
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() nearly nonexpansive if η(Tn) =  for all n ∈N;
() nearly asymptotically nonexpansive if η(Tn) ≥  for all n ∈N and limn→∞ η(Tn) = ;
() nearly uniformly k-Lipschitzian if η(Tn)≤ k for all n ∈N.

Definition . Let C be a nonempty subset of a metric space X and fix a sequence {an}
in [,∞) with an → . A mapping T : C → C is said to be nearly asymptotically quasi-
nonexpansive with respect to {an} if F(T) �= ∅ and there exists a sequence {un} in [,∞)
with limn→∞ un =  such that

d
(
Tnx,p

) ≤ ( + un)d(x,p) + an

for all x ∈ C, p ∈ F(T) and n ∈N.

In fact, ifT is a nearly asymptotically nonexpansivemapping and F(T) is nonempty, then
T is a nearly asymptotically quasi-nonexpansive mapping. The following is an example of
a nearly asymptotically quasi-nonexpansive mapping with F(T) �= φ.

Example . [] Let X =R, C = (–∞, ] and T : C → C be a mapping defined by

Tx =

⎧⎨
⎩


x if x ∈ (–∞, ],

x –  if x ∈ (, ].

Here, F(T) = {} and also, T is nearly asymptotically quasi-nonexpansive mapping with
{un} = {,  , 

 ,

 , . . .} and {an} = {,  , 

 ,

 , . . .}.

A nearly asymptotically quasi-nonexpansivemapping is called a nearly quasi-nonexpan-
sive (asymptotically quasi-nonexpansive mapping) if un =  for all n ∈ N (an =  for
all n ∈ N). Notice that every nearly asymptotically quasi-nonexpansive mapping with
bounded domain is nearly quasi-nonexpansive. Indeed, ifC is a bounded subset of ametric
space and T : C → C a nearly asymptotically quasi-nonexpansive mapping with sequence
{(an,un)}, then

d
(
Tnx,p

) ≤ ( + un)d(x,p) + an ≤ d(x,p) +
(
un sup

x,y∈C
d(x, y) + an

)

for all x ∈ C, p ∈ F(T) and n ∈N.
The following example shows that T is a nearly quasi-nonexpansive mapping but not

Lipschitzian and quasi-nonexpansive.

Example . [] Let X = R, C = [–
π
, 

π
] and k ∈ (, ). Let T : C → C be a mapping de-

fined by

Tx =

⎧⎨
⎩ if x = ,

kx sin 
x if x �= .

SinceT : C → C is obviously continuous, it easily follows that it is uniformly continuous.
Note F(T) = {} and Tnx →  uniformly, but T is not Lipschitzian. For each fixed n ∈ N,
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define

fn(x) =
∣∣Tnx

∣∣ – |x| for all x ∈ C.

Fix a sequence {an} in R defined by

an =max
{
sup
x∈C

fn(x), 
}

for all n ∈ N.

It is clear that an ≥  for all n ∈ N and an → , since Tnx→  uniformly. By the definition
of {an}, we have

∣∣Tnx
∣∣ ≤ |x| + an for all x ∈ C and n ∈N.

Clearly, T is a nearly quasi-nonexpansive mapping with respect to {an} and it is not
Lipschitz and not quasi-nonexpansive.

Lemma . [, Lemma .] Let C be a nonempty subset of a metric space (X,d) and
T : C → C a quasi-L-Lipschitzian, i.e., F(T) �= ∅ and there exists a constant L >  such that

d(Tx,Ty) ≤ Ld(x, y) for all x ∈ C and y ∈ F(T).

If {xn} is a sequence in C such that limn→∞ d(xn,F(T)) =  and limn→∞ xn = x ∈ C, where
d(x,F(T)) = inf{d(x,p) : p ∈ F(T)}, then x is a fixed point of T .

Throughout this paper we consider the following definition of a hyperbolic space in-
troduced by Kohlenbach []. It is worth noting that they are different from the Gromov
hyperbolic space [] or from other notions of hyperbolic space that can be found in the
literature (see, e.g., [–]).

Definition . A metric space (X,d) is a hyperbolic space if there exists a map W : X ×
[, ]→ X satisfying

(i) d(u,W (x, y,α))≤ αd(u,x) + ( – α)d(u, y),
(ii) d(W (x, y,α),W (x, y,β)) = |α – β|d(x, y),
(iii) W (x, y,α) =W (y,x, ( – α)),
(iv) d(W (x, z,α),W (y,w,α))≤ αd(x, y) + ( – α)d(z,w)

for all x, y, z,w ∈ X and α,β ∈ [, ].

An important example of a hyperbolic space is a CAT() space. It is nonlinear in nature
and its brief introduction is as follows.
A metric space (X,d) is a length space if any two points of X are joined by a rectifiable

path (that is, a path of finite length) and the distance between any two points of X is taken
to be the infimum of the lengths of all rectifiable paths joining them. In this case, d is
known as a length metric (otherwise an inner metric or intrinsic metric). In the case that
no rectifiable path joins two points of the space, the distance between them is taken to
be ∞.
A geodesic path joining x ∈ X to y ∈ X is a map c from a closed interval [, l] ⊂ R to X

such that c() = x, c(l) = y, and d(c(t), c(t′)) = |t – t′| for all t, t′ ∈ [, l]. In particular, c is an

http://www.fixedpointtheoryandapplications.com/content/2014/1/229
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isometry and d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining
x and y. The space (X,d) is said to be a geodesic space if any two points of X are joined by
a geodesic path and X is said to be uniquely geodesic if there is exactly one geodesic path
denoted by αx⊕ (–α)y joining x and y for each x, y ∈ X. The set {αx⊕ (–α)y : α ∈ [, ]}
will be denoted by [x, y], called the segment joining x to y. A subset C of a geodesic space
X is convex if for any x, y ∈ C, we have [x, y]⊂ C.
A geodesic triangle �(x,x,x) in a geodesic metric space (X,d) is defined to be a col-

lection of three points in X (the vertices of �) and three geodesic segments between each
pair of vertices (the edges of �). A comparison triangle for geodesic triangle �(x,x,x)
in (X,d) is a triangle �(x,x,x) := �(x̄, x̄, x̄) in R

 such that dR (x̄i, x̄j) = d(xi,xj) for
i, j ∈ {, , } and such a triangle always exists (see []).
A geodesic metric space is a CAT() space if all geodesic triangles � in X with a com-

parison triangle � ⊂R
 satisfy the CAT() inequality

d(x, y) ≤ dR (x̄, ȳ)

for all x, y ∈ � and for all comparison points x̄, ȳ ∈ �. Let X be a CAT() space. Define
W : X × [, ] → X by W (x, y,α) = αx⊕ ( – α)y. Then W satisfies the four properties of
a hyperbolic space. Also if X is a Banach space and W (x, y,α) = αx + ( – α)y, then X is a
hyperbolic space. Therefore, our hyperbolic space represents a unified approach for both
linear and nonlinear structures simultaneously.
To elaborate that there are hyperbolic spaces which are not imbedded in any Banach

space, we give the following example.

Example . Let B be the open unit ball in complex Hilbert space with respect to the
Poincaré metric (also called ‘Poincaré distance’)

dB(x, y) = arg tanh

∣∣∣∣ x – y
 – xȳ

∣∣∣∣ = arg tanh
(
 – σ (x, y)

) 
 ,

where

σ (x, y) =
( – |x|)( – |y|)

| – xȳ| for all x, y ∈ B.

Then B is a hyperbolic space which is not imbedded in any Banach space.

A metric space (X,d) is called a convex metric space introduced by Takahashi [] if
it satisfies only (i). A subset C of a hyperbolic space X is convex if W (x, y,α) ∈ C for all
x, y ∈ C and α ∈ [, ].
A hyperbolic space (X,d,W ) is uniformly convex [] if for any u,x, y ∈ X, r >  and

ε ∈ (, ], there exists a δ ∈ (, ] such that d(W (x, y,  ),u) ≤ ( – δ)r whenever d(x,u) ≤ r,
d(y,u) ≤ r and d(x, y)≥ εr.
Amapping η : (,∞)× (, ]→ (, ] which provides such a δ = η(r, ε) for given r >  and

ε ∈ (, ], is known as modulus of uniform convexity. We call η monotone if it decreases
with r (for a fixed ε).
The hyperbolic space introduced byKohlenbach [] is slightly restrictive than the space

of hyperbolic type [] but general than hyperbolic space of []. Moreover, this class
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of hyperbolic spaces also contains Hadamard manifolds, Hilbert balls equipped with the
hyperbolic metric [], R-trees and Cartesian products of Hilbert balls as special cases.
Let C be a nonempty subset of hyperbolic space X. Let {xn} be a bounded sequence in a

hyperbolic space X. For x ∈ X, define a continuous functional ra(·, {xn}) : X → [,∞) by

ra
(
x, {xn}

)
= lim sup

n→∞
d(xn,x).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}) = inf

{
ra

(
x, {xn}

)
: x ∈ X

}
.

The asymptotic center AC({xn}) of a bounded sequence of {xn} with respect to a subset of
C of X is the set

AC
({xn}) = {

x ∈ X : ra
(
x, {xn}

) ≤ ra
(
y, {xn}

)
for any y ∈ C

}
.

This is the set of minimizers of the functional ra(·, {xn}). If the asymptotic center is taken
with respect to X, then it is simply denoted by A({xn}).
It is well known that uniformly convex Banach spaces and even CAT() spaces enjoy the

property that bounded sequences have unique asymptotic centers with respect to closed
convex subsets. The following lemma is due to Leustean [] and ensures that this property
also holds in a complete uniformly convex hyperbolic space.

Lemma . [] Let (X,d,W ) be a complete uniformly convex hyperbolic space with
monotone modulus of uniform convexity. Then every bounded sequence {xn} in X has a
unique asymptotic center with respect to any nonempty closed convex subset C of X.

Recall that a sequence {xn} in X is said to �-converge to x ∈ X, if x is the unique asymp-
totic center of {un} for every subsequence {un} of {xn}. In this case, we write �-limn xn = x
and call x the �-limit of {xn}.

Lemma . [] Let C be a nonempty closed convex subset of a uniformly convex hyper-
bolic space and {xn} a bounded sequence in C such that AC({xn}) = {y} and r({xn}) = ρ . If
{ym} is another sequence in C such that limm→∞ ra(ym, {xn}) = ρ , then limm→∞ ym = y.

Lemma . [] Let (X,d,W ) be a uniformly convex hyperbolic space with monotone
modulus of uniform convexity η. Let x ∈ X and {tn} be a sequence in [a,b] for some a,b ∈
(, ). If {xn} and {yn} are sequences in X such that

lim sup
n→∞

d(xn,x)≤ c, lim sup
n→∞

d(yn,x) ≤ c, lim
n→∞d

(
W (xn, yn, tn),x

)
= c

for some c ≥ , then limn→∞ d(xn, yn) = .

Lemma . [] Let {δn}, {βn}, and {γn} be three sequences of nonnegative numbers such
that

δn+ ≤ βnδn + γn for all n ∈ N.

If βn ≥  for all n ∈N,
∑∞

n=(βn – ) < ∞ and γn <∞, then limn→∞ δn exists.

http://www.fixedpointtheoryandapplications.com/content/2014/1/229
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3 Strong and�-convergence theorems in hyperbolic space
In this section, we approximate fixed point for nearly asymptotically nonexpansive map-
pings in a hyperbolic space. More briefly, we established �-convergence and strong con-
vergence theorems for iteration scheme (.).
First, we define the S-iteration process in hyperbolic space as follows.
Let C be a nonempty closed convex subset of a hyperbolic space X and T : C → C be

a nearly asymptotically nonexpansive mapping. Then, for arbitrarily chosen x ∈ C, we
construct the sequence {xn} in C such that⎧⎨

⎩xn+ =W (Tnxn,Tnyn,αn),

yn =W (xn,Tnxn,βn), n ∈ N,
(.)

where {αn} and {βn} are sequences in (, ) is called an S-iteration process.

Lemma . Let C be a nonempty convex subset of a hyperbolic space X and T : C → C
a nearly asymptotically quasi-nonexpansive mapping with sequence {(an,un)} such that∑∞

n= an < ∞ and
∑∞

n= un < ∞. Let {xn} be a sequence in C defined by (.), where {αn}
and {βn} are sequences in (, ). Then limn→∞ d(xn,p) exists for each p ∈ F(T).

Proof First, we show that limn→∞ d(xn,p) exists for each p ∈ F(T), we have

d(xn+,p) = d
(
W

(
Tnxn,Tnyn,αn

)
,p

)
≤ ( – αn)d

(
Tnxn,p

)
+ αnd

(
Tnyn,p

)
≤ ( – αn)

(
( + un)d(xn,p) + an

)
+ αn

(
( + un)d(yn,p) + an

)
≤ ( + un)

[
( – αn)d(xn,p) + αnd(yn,p)

]
+ an (.)

and

d(yn,p) = d
(
W

(
xn,Tnxn,βn

)
,p

)
≤ ( – βn)d(xn,p) + βnd

(
Tnxn,p

)
≤ ( – βn)d(xn,p) + βn

[
( + un)d(xn,p) + an

]
≤ ( + βnun)d(xn,p) + anβn, (.)

from (.) and (.), we have

d(xn+,p)

≤ ( + un)
[
( – αn)d(xn,p) + αn

(
( + βnun)d(xn,p) + anβn

)
+ an

]
≤ (

 + un
(
 + αnβn + αnβnun

))
d(xn,p)

+ an
(
 + ( + un)αnβn

)
, n ∈ N.

It follows that

d(xn+,p) ≤ ( +Mun)d(xn,p) + anM (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/229
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for some M,M ≥ . {un} is bounded. By Lemma ., we find that limn→∞ d(xn,p) ex-
ists. �

Lemma. Let C be a nonempty and closed convex subset of a uniformly convex hyperbolic
space X with monotone modulus of uniform convexity η and let T : C → C be a nearly
asymptotically quasi-nonexpansive mapping with sequences {(an,un)} such that ∑∞

n= an <
∞ and

∑∞
n= un <∞. Let F(T) �= ∅, then for the sequence {xn} in C defined by (.), we have

limn→∞ d(xn,Tnxn) = .

Proof From Lemma ., we find that limn→∞ d(xn,p) exists for each p ∈ F(T). We suppose
that limn→∞ d(xn,p) = c≥ . Since

d
(
Tnxn,p

) ≤ ( + un)d(xn,p) + an for all n ∈ N,

we have

lim sup
n→∞

d
(
Tnxn,p

) ≤ c.

Also

d(yn,p) ≤ d
(
W

(
xn,Tnxn,βn

)
,p

)
≤ ( – βn)d(xn,p) + βnd

(
Tnxn,p

)
≤ ( + βnun)d(xn,p) + anβn,

which yields

lim sup
n→∞

d(yn,p) ≤ c. (.)

Hence

lim sup
n→∞

d
(
Tnyn,p

) ≤ lim sup
n→∞

(
( + un)d(yn,p) + an

) ≤ c. (.)

Since

c = lim
n→∞d(xn+,p) = lim

n→∞d
(
W

(
Tnxn,Tnyn,αn

)
,p

)
,

it follow from Lemma . that

lim
n→∞d

(
Tnxn,Tnyn

)
= . (.)

From (.) and (.), we have

d
(
xn+,Tnxn

)
= d

(
W

(
Tnxn,Tnyn,αn

)
,Tnxn

)
≤ αnd

(
Tnxn,Tnyn

)
≤ bd

(
Tnxn,Tnyn

) →  as n→ ∞. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/229
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Hence, from (.) and (.), we have

d
(
xn+,Tnyn

) ≤ d
(
xn+,Tnxn

)
+ d

(
Tnxn,Tnyn

) →  as n→ ∞. (.)

Now using (.), we have

d(xn+,p) ≤ d
(
xn+,Tnyn

)
+ d

(
Tnyn,p

)
≤ d

(
xn+,Tnyn

)
+

(
( + un)d(yn,p) + an

)
, (.)

which gives from (.)

c≤ lim inf
n→∞ d(yn,p). (.)

From (.) and (.), we obtain

c = lim
n→∞d(yn,p) = d

(
W

(
xn,Tnxn,βn

)
,p

)
. (.)

Apply Lemma . in (.), and we obtain

lim
n→∞d

(
xn,Tnxn

)
= . �

Theorem . Let C be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η and let T : C → C be
a uniformly continuous nearly asymptotically nonexpansive mapping with F(T) �= ∅ and
sequence {(an,η(Tn))} such that

∑∞
n=(η(Tn) – ) <∞ and

∑∞
n= an <∞. For arbitrary x ∈

C, let {xn} be a sequence in C defined by (.), where {αn} and {βn} are sequences in (, ).
Then {xn} is �-convergent to an element of F(T).

Proof ByLemma., limn→∞ d(xn,Tnxn) = . By uniform continuity ofT , d(xn,Tnxn) → 
implies that d(Txn,Tn+xn) → , observe that

d(xn+,xn) ≤ d
(
W

(
Tnxn,Tnyn,αn

)
,xn

)
≤ ( – αn)d

(
xn,Tnxn

)
+ αnd

(
Tnyn,xn

)
≤ d

(
xn,Tnxn

)
+ αnd

(
Tnyn,Tnxn

)
≤ d

(
xn,Tnxn

)
+ η

(
Tn)(d(xn, yn) + an

)
≤ d

(
xn,Tnxn

)
+ η

(
Tn)(d(

xn,Tnxn
)
+ an

)
→  as n→ ∞.

Also

d(xn,Txn)≤ d(xn,xn+) + d
(
xn+,Tn+xn+

)
+ d

(
Tn+xn+,Tn+xn

)
+ d

(
Tn+xn,Txn

)
≤ (

 + η
(
Tn)d(xn,xn+)) + d

(
xn+,Tnxn+

)
+ d

(
Tn+xn,Txn

)
+ an+,

http://www.fixedpointtheoryandapplications.com/content/2014/1/229
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and hence

lim
n→∞d(xn,Txn) = . (.)

Next, we have to show that {xn} is �-convergent to an element of F(T).
Since {xn} is bounded (by Lemma .) therefore, Lemma . asserts that {xn} has a

unique asymptotic center. That is, A({xn}) = {x} (say). Let A({yn}) = {v}. Then by (.),
limn→∞ d(yn,Tyn) = . T is a nearly asymptotically nonexpansive mapping with sequence
{(an,η(Tn))}. By uniform continuity of T

lim
n→∞d

(
Tiyn,Ti+yn

)
=  for i = , , , . . . . (.)

Now we claim that v is a fixed point of T . For this, we define a sequence {zn} in C by
zm = Tmv,m ∈N. For integers m,n ∈N, we have

d(zm, yn) ≤ d
(
Tmv,Tmyn

)
+ d

(
Tmyn,Tm–yn

)
+ · · · + d(Tyn, yn)

≤ η
(
Tm)(

d(v, yn) + am
)
+

m–∑
i=

d
(
Tiyn,Ti+yn

)
. (.)

Then, by (.) and (.), we have

ra
(
zm, {yn}

)
= lim sup

m→∞
d(zm, yn)

≤ η
(
Tm)[

ra
(
v, {yn}

)
+ am

]
.

Hence

lim sup
m→∞

ra
(
zm, {yn}

) ≤ ra
(
v, {yn}

)
. (.)

Since AC({yn}) = {v}, by definition of asymptotic center AC({yn}) of a bounded sequence
{yn} with respect to C ⊂ X, we have

ra
(
v, {yn}

) ≤ ra
(
y, {yn}

)
, ∀y ∈ C.

This implies that

lim inf
m→∞ ra

(
zm, {yn}

) ≥ ra
(
v, {yn}

)
, (.)

therefore, from (.) and (.), we have

lim
m→∞ ra

(
zm, {yn}

)
= ra

(
v, {yn}

)
.

It follows from Lemma . that Tmv→ v. By uniform continuity of T , we have

Tv = T
(
lim

m→∞Tmv
)
= Tm+v = v,

which implies that v is a fixed point of T , i.e., v ∈ F(T).
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Next, we claim that v is the unique asymptotic center for each subsequence {yn} of {xn}.
Assume contrarily, that is, x �= v. Since limn→∞ d(xn, v) exists by Lemma ., therefore, by
the uniqueness of asymptotic centers, we have

lim sup
n→∞

d(yn, v) < lim sup
n→∞

d(yn,x)

≤ lim sup
n→∞

d(xn,x)

< lim sup
n→∞

d(xn, v)

= lim supd(yn, v),

a contradiction and hence x = v. Since {yn} is an arbitrary subsequence of {xn}, therefore,
AC({yn}) = {v} for all subsequence of {yn} of {xn}. This proves that {xn} �-converges to a
fixed point of T . �

We now discuss the strong convergence for the S-iteration process defined by (.) for
Lipschitzian type mappings in a uniformly convex hyperbolic space setting.

Theorem . Let C be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η and let T : C → C be
a nearly asymptotically quasi-nonexpansive mapping with sequence {(an,un)} such that∑∞

n= an <∞ and
∑∞

n= un < ∞. Assume that F(T) is a closed set. Let {xn} be a sequence in
C defined by (.), where {αn} and {βn} are sequences in (, ). Then {xn} converges strongly
to a fixed point of T if and only if lim infn→∞ d(xn,F(T)) = .

Proof Necessity is obvious.
Conversely, suppose that lim infn→∞ d(xn,F(T)) = . From (.), we have

d
(
xn+,F(T)

) ≤ ( +Mun)d
(
xn,F(T)

)
+Man, n ∈N,

so limn→∞ d(xn,F(T)) exists. It follows that limn→∞ d(xn,F(T)) = . Next, we show that
{xn} is a Cauchy sequence. The following arguments are similar to those given in [,
Lemma ] and [, Theorem .], and we obtain the following inequality:

d(xn+m,p) ≤ L

[
d(xn,p) +

∞∑
j=n

bj

]

for every p ∈ F(T) and for all m,n ≥ , where L = eM(
∑n+m–

j=n uj) >  and bj = Maj. As,∑∞
n= un < ∞ so L∗ = eM(

∑∞
n= un) ≥ L = eM(

∑n+m–
j=n uj) > . Let ε >  be arbitrarily chosen.

Since limn→∞ d(xn,F) =  and
∑∞

n= an < ∞, there exists a positive integer n such that

d(xn,F) <
ε

L∗ and
∞∑
j=n

bj <
ε

L∗ , ∀n≥ n.

In particular, inf{d(xn ,p) : p ∈ F} < ε
L∗ . Thus there must exist p∗ ∈ F such that

d
(
xn ,p

∗) < ε

L∗ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/229
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Hence for n ≥ n, we have

d(xn+m,xn) ≤ d
(
xn+m,p∗) + d

(
p∗,xn

)
≤ L∗

[
d
(
xn ,p

∗) + ∞∑
j=n

bj

]

< L∗
(

ε

L∗ +
ε

L∗

)
= ε.

Hence {xn} is a Cauchy sequence in closed subset C of a complete hyperbolic space
and so it must converge strongly to a point q in C. Now, limn→∞ d(xn,F(T)) =  gives
d(q,F(T)) = . Since F(T) is closed, we have q ∈ F(T). �

In the next result, the closedness assumption on F(T) is not required.

Theorem . Let C be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η and T : C → C an
asymptotically quasi-nonexpansive mapping with sequence {un} such that

∑∞
n= un < ∞.

Let {xn} be a sequence in C defined by (.), where {αn} and {βn} are sequences in (, ).
Then {xn} converges strongly to a fixed point of T if lim infn→∞ d(xn,F(T)) = .

Proof Following an argument similar to those of Theorem ., we see that {xn} is a Cauchy
sequence in C. Let limn→∞ xn = x. Since an asymptotically quasi-nonexpansive mapping
is quasi-L-Lipschitzian, it follows from Lemma . that x is a fixed point of T . �

Theorem . Let C be a nonempty closed convex subset of a complete uniformly con-
vex hyperbolic space X with monotone modulus of uniform convexity η and T : C → C
a uniformly continuous nearly asymptotically nonexpansive mapping with F(T) �= ∅ and
sequence {an,η(Tn)} such that

∑∞
n=(η(Tn) – ) < ∞ and an < ∞. For arbitrary x ∈ C, let

{xn} be a sequence in C defined by (.), where {αn} and {βn} are sequences in (, ). If T is
uniformly continuous and Tm is demicompact for somem ∈N , it follows that {xn} converges
strongly to a fixed point of T .

Proof By (.), we have limn→∞ d(xn,Txn) = . By the uniformly continuous of T , we have

d(xn,Txn) →  ⇒ d
(
Tx,Txn

) →  ⇒ ·· · ⇒ d
(
Tixn,Ti+xn

) → 

for all i ∈N. It follows that

d
(
xn,Tmxn

) ≤
m–∑
i=

d
(
Tixn,Ti+xn

) →  as n→ ∞.

Since d(xn,Tmxn) → , and Tm is demicompact, there exists a subsequence {xnj} of {xn}
such that limj→∞ Tmxnj = x ∈ C.
Note that

d(xnj ,x) ≤ d
(
xnj ,T

mxnj
)
+ d

(
Tmxnj ,x

) →  as j → ∞.
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Since limn→∞ d(xn,Txn) = , we get x ∈ F(T). Since limn→∞ d(xn,x) exists by Lemma .,
and limj→∞ d(xnj ,x) = , we conclude that xn → x. �

Recall that a mapping T from a subset of a metric space (X,d) into itself with F(T) �= ∅ is
said to satisfy condition (A) (see []) if there exists a nondecreasing function f : [,∞) →
[,∞) with f () = , f (t) >  for t ∈ (,∞) such that

d(x,Tx)≥ f
(
d
(
x,F(T)

))
for all x ∈ C.

Theorem . Let C be a nonempty closed convex subset of a complete uniformly con-
vex hyperbolic space X with monotone modulus of uniform convexity η and T : C → C
a uniformly continuous nearly asymptotically nonexpansive mapping with F(T) �= ∅ and
sequence {(an,η(Tn))} such that∑∞

n= η(Tn–) < ∞ and
∑∞

n= an < ∞. For arbitrary x ∈ C,
let {xn} be a sequence in C defined by (.),where {αn} and {βn} are sequences in (, ). Sup-
pose that T satisfies the condition (A). Then {xn} converges strongly to a fixed point of T .

Proof By (.), we have limn→∞ d(xn,Txn) =  Further, by condition (A),

lim
n→∞d(xn,Txn) ≥ lim

n→∞ f
(
d
(
xn,F(T)

))
.

It follows that limn→∞ d(xn,F(T)) = . Therefore, the result follows from Theorem ..
�

4 Conclusion
. We prove strong and �-convergence of the S-iteration process, which is faster than

the iteration processes used by Abbas et al. [], Dhompongsa and Panyanak [],
and Khan and Abbas [].

. Theorem . extends Agarwal et al. [, Theorem .] from a uniformly convex
Banach space to a uniformly convex hyperbolic space.

. Theorem . extends Dhompongsa and Panyanak [, Theorem .] from the class of
nonexpansive mappings to the class of mappings which are not necessarily
Lipschitzian.

. Theorem ., extends corresponding results of Beg [], Chang [], Khan and
Takahashi [] and Osilike and Aniagbosor [] for a more general class of
non-Lipschitzian mappings in the framework of a uniformly convex hyperbolic
space. It also extends the corresponding results of Dhomponsga and Panyanak []
from the class of nonexpansive mappings to a more general class of non-Lipschitzian
mappings in the same space setting.

. Theorem . extends Sahu and Beg [, Theorem .] from a Banach to a uniformly
convex hyperbolic space.
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