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Abstract
In this paper, we introduce a new iterative scheme by a hybrid method and prove a
strong convergence theorem of a common element in the set of fixed points of a
finite family of closed quasi-Bregman strictly pseudocontractive mappings and
common solutions to a system of equilibrium problems in reflexive Banach space. Our
results extend important recent results announced by many authors.
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1 Introduction
Let E be a real Banach space andC a nonempty closed convex subset of E. The normalized
duality map from E to E∗ (E∗ is the dual space of E) denoted by J is defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}.

Let T : C → C be a map, a point x ∈ C is called a fixed point of T if Tx = x, and the set of
all fixed points of T is denoted by F(T). The mapping T is called L-Lipschitzian or simply
Lipschitz if there exists L > , such that ‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ C and if L = , then
the map T is called nonexpansive.
Let g : C ×C →R be a bifunction. The equilibrium problem with respect to g is to find

z ∈ C such that g(z, y) ≥ , ∀y ∈ C.

The set of solution of equilibrium problem is denoted by EP(g). Thus

EP(g) :=
{
z ∈ C : g(z, y) ≥ ,∀y ∈ C

}
.

Numerous problems in physics, optimization and economics reduce to finding a solu-
tion of equilibrium problem. Some methods have been proposed to solve the equilibrium
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problem in Hilbert spaces; see for example Blum and Oettli [], Combettes and Hirstoaga
[]. Recently, Tada and Takahashi [, ] and Takahashi and Takahashi [] obtain weak and
strong convergence theorems for finding a common element of the set of solutions of an
equilibrium problem and set of fixed points of a nonexpansive mapping in Hilbert space.
In particular, Takahashi and Zembayashi [] established a strong convergence theorem
for finding a common element of the two sets by using the hybrid method introduced
in Nakajo and Takahashi []. They also proved such a strong convergence theorem in a
uniformly convex and uniformly smooth Banach space.
Reich and Sabach [] and Kassay et al. [] proved some convergence theorems for the

solution of some equilibrium and variational inequality problems in the setting of reflexive
Banach spaces.
Let φ : E × E → [,∞) denote the Lyapunov functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E.

A mapping T : C → C is said to be quasi-φ strictly pseudocontractive, see [], if F(T) �= ∅
and there exists a constant k ∈ (, ] such that

φ(p,Tx) ≤ φ(p,x) + kφ(x,Tx), ∀x ∈ C and p ∈ F(T).

Let E be a real reflexive Banach space with norm ‖ · ‖ and E∗ the dual space of E. Through-
out this paper, we shall assume f : E → (–∞, +∞] is a proper, lower semi-continuous and
convex function. We denote by dom f := {x ∈ E : f (x) < +∞} the domain of f .
Let x ∈ int dom f ; the subdifferential of f at x is the convex set defined by

∂f (x) =
{
x∗ ∈ E∗ : f (x) +

〈
x∗, y – x

〉 ≤ f (y),∀y ∈ E
}
,

where the Fenchel conjugate of f is the function f ∗ : E∗ → (–∞, +∞] defined by

f ∗(x∗) = sup
{〈
x∗,x

〉
– f (x) : x ∈ E

}
.

We know that the Young-Fenchel inequality holds:

〈
x∗,x

〉 ≤ f (x) + f ∗(x∗), ∀x ∈ E,x∗ ∈ E∗.

A function f on E is coercive [] if the sublevel set of f is bounded; equivalently,

lim‖x‖→+∞ f (x) = +∞.

A function f on E is said be strongly coercive [] if

lim‖x‖→+∞
f (x)
‖x‖ = +∞.

For any x ∈ int dom f and y ∈ E, the right-hand derivative of f at x in the direction y is
defined by

f ◦(x, y) := lim
t→+

f (x + ty) – f (x)
t

.
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The function f is said to be Gâteaux differentiable at x if limt→+
f (x+ty)–f (x)

t exists for any y.
In this case, f ◦(x, y) coincides with ∇f (x), the value of the gradient ∇f of f at x. The func-
tion f is said to beGâteaux differentiable if it is Gâteaux differentiable for any x ∈ int dom f .
The function f is said to be Fréchet differentiable at x if this limit is attained uniformly in
‖y‖ = . Finally, f is said to be uniformly Fréchet differentiable on a subset C of E if the
limit is attained uniformly for x ∈ C and ‖y‖ = . It is well known that if f is Gâteaux dif-
ferentiable (resp. Fréchet differentiable) on int dom f , then f is continuous and its Gâteaux
derivative ∇f is norm-to-weak∗ continuous (resp. continuous) on int dom f (see also [,
]). We will need the following results.

Lemma . [] If f : E → R is uniformly Fréchet differentiable and bounded on bounded
subsets of E, then∇f is uniformly continuous on bounded subsets of E from the strong topol-
ogy of E to the strong topology of E∗.

Definition . [] The function f is said to be:
(i) essentially smooth, if ∂f is both locally bounded and single-valued on its domain;
(ii) essentially strictly convex, if (∂f )– is locally bounded on its domain and f is strictly

convex on every convex subset of dom ∂f ;
(iii) Legendre, if it is both essentially smooth and essentially strictly convex.

Remark . Let E be a reflexive Banach space. Then we have:
(i) f is essentially smooth if and only if f ∗ is essentially strictly convex (see [],

Theorem .);
(ii) (∂f )– = ∂f ∗ (see []);
(iii) f is Legendre if and only if f ∗ is Legendre (see [], Corollary .);
(iv) if f is Legendre, then ∇f is a bijection satisfying ∇f = (∇f ∗)–,

ran∇f = dom∇f ∗ = int dom f ∗ and ran∇f ∗ = dom f = int dom f (see [],
Theorem .).

Examples of Legendre functions were given in [, ]. One important and interesting
Legendre function is 

p‖ · ‖p ( < p < ∞) when E is a smooth and strictly convex Banach
space. In this case the gradient ∇f of f is coincident with the generalized duality mapping
of E, i.e., ∇f = Jp ( < p < ∞). In particular, ∇f = I the identity mapping in Hilbert spaces.
In the rest of this paper, we always assume that f : E → (–∞, +∞] is Legendre.
Let f : E → (–∞, +∞] be a convex and Gâteaux differentiable function. The function

Df : dom f × int dom f → [, +∞), defined as follows:

Df (y,x) := f (y) – f (x) –
〈∇f (x), y – x

〉
, (.)

is called the Bregman distance with respect to f (see []). It is obvious from the definition
of Df that

Df (z,x) =Df (z, y) +Df (y,x) +
〈∇f (y) –∇f (x), z – y

〉
. (.)

Recall that the Bregman projection [] of x ∈ int dom f onto the nonempty, closed, and
convex set C ⊂ dom f is the necessarily unique vector Pf

C(x) ∈ C satisfying

Df
(
Pf
C(x),x

)
= inf

{
Df (y,x) : y ∈ C

}
.

Concerning the Bregman projection, the following are well known.
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Lemma . [] Let C be a nonempty, closed, and convex subset of a reflexive Banach
space E. Let f : E → R be a Gâteaux differentiable and totally convex function and let
x ∈ E. Then:
(a) z = Pf

C(x) if and only if 〈∇f (x) –∇f (z), y – z〉 ≤ , ∀y ∈ C;
(b) Df (y,P

f
C(x)) +Df (P

f
C(x),x)≤Df (y,x), ∀x ∈ E, y ∈ C.

Let f : E → (–∞, +∞] be a convex and Gâteaux differentiable function. The modulus of
the total convexity of f at x ∈ int dom f is the function vf (x, ·) : [, +∞) → [, +∞] defined
by

vf (x, t) := inf
{
Df (y,x) : y ∈ dom f ,‖y – x‖ = t

}
.

The function f is called totally convex at x if vf (x, t) >  whenever t > . The function f is
called totally convex if it is totally convex at any point x ∈ int dom f and is said to be totally
convex on bounded sets if vf (B, t) >  for any nonempty bounded subset B of E and t > ,
where the modulus of the total convexity of the function f on the set B is the function
vf : int dom f × [, +∞)→ [, +∞] defined by

vf (B, t) := inf
{
vf (x, t) : x ∈ B∩ dom f

}
.

Lemma . [] If x ∈ dom f , then the following statements are equivalent:
(i) the function f is totally convex at x;
(ii) for any sequence {yn} ⊂ dom f ,

lim
n→+∞Df (yn,x) =  ⇒ lim

n→+∞‖yn – x‖ = .

Recall that the function f called sequentially consistent [] if for any two sequences {xn}
and {yn} in E such that the first one is bounded

lim
n→+∞Df (yn,xn) =  ⇒ lim

n→+∞‖yn – xn‖ = .

Lemma . [] The function f is totally convex on bounded sets if and only if the function
f is sequentially consistent.

Lemma . [] Let f : E → R be a Gâteaux differentiable and totally convex function. If
x ∈ E and the sequence {Df (xn,x)} is bounded, then the sequence {xn} is bounded too.

Lemma . [] Let f : E → R be a Gâteaux differentiable and totally convex function,
x ∈ E and let C be a nonempty, closed, and convex subset of E. Suppose that the sequence
{xn} is bounded and any weak subsequential limit of {xn} belongs to C. If Df (xn,x) ≤
Df (P

f
C(x),x) for any n ∈R, then {xn} converges strongly to Pf

C(x).

A mapping T is said to be Bregman firmly nonexpansive [], if for all x, y ∈ C,

〈∇f (Tx) –∇f (Ty),Tx – Ty
〉 ≤ 〈∇f (x) –∇f (y),Tx – Ty

〉
or, equivalently,

Df (Tx,Ty) +Df (Ty,Tx) +Df (Tx,x) +Df (Ty, y) ≤Df (Tx, y) +Df (Ty,x).

http://www.fixedpointtheoryandapplications.com/content/2014/1/231
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A point p ∈ C is said to be asymptotic fixed point of a map T , if there exists a sequence
{xn} inC which converges weakly to p such that limn→∞ ‖xn–Txn‖ = .We denote by F̂(T)
the set of asymptotic fixed points of T . A point p ∈ C is said to be strong asymptotic fixed
point of a map T , if there exists a sequence {xn} in C which converges strongly to p such
that limn→∞ ‖xn – Txn‖ = . We denote by F̃(T) the set of strong asymptotic fixed points
of T . Let f : E → R, a mapping T : C → C is said to be Bregman relatively nonexpansive
[] if F(T) �= ∅, F̂(T) = F(T) andDf (p,T(x))≤Df (p,x) for all x ∈ C and p ∈ F(T). Themap
T : C → C is said to be Bregman weak relatively nonexpansive if F(T) �= ∅, F̃(T) = F(T)
and Df (p,T(x)) ≤ Df (p,x) for all x ∈ C and p ∈ F(T). T is said to be quasi-Bregman rela-
tively nonexpansive if F(T) �= ∅, and Df (p,T(x)) ≤ Df (p,x) for all x ∈ C and p ∈ F(T). In
[] quasi-Bregman relatively nonexpansive is called left quasi-Bregman relatively non-
expansive. A map T : C → C is called right quasi-Bregman relatively nonexpansive []
if F(T) �= ∅, and Df (T(x),p) ≤ Df (x,p) for all x ∈ C and p ∈ F(T). T is said to be quasi-
Bregman strictly pseudocontractive if there exist a constant k ∈ [, ) and F(T) �= ∅ such
that Df (p,Tx) ≤ Df (p,x) + kDf (x,Tx) for all x ∈ C and p ∈ F(T). In particular, T is said
to be quasi-Bregman relatively nonexpansive if k =  and T is said to be quasi-Bregman
pseudocontractive if k = .
Very recently, Zhou and Gao [] introduced this definition of a quasi-strict pseudocon-

traction related to the function φ and proved the convergence of a hybrid projection al-
gorithm to a fixed point of a closed and quasi-strict pseudocontraction in a smooth and
uniformly convex Banach space. They studied the strong convergence of the following
scheme:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ∈ E,
C = C,
x =

∏
C
(x),

Cn+ = {z ∈ Cn : φ(xn,Txn) ≤ 
–k 〈xn – z, Jxn – JTxn〉},

xn+ =
∏

Cn+
(x),

where
∏

Cn+
is the generalized projection fromE ontoCn+. They proved that the sequence

{xn} converges strongly to ∏
F(T)(x).

Recently, Zegeye and Shahzad [] proved a strong convergence theorem for the com-
mon fixed point of a finite family of right Bregman strongly nonexpansive mappings in
a reflexive Banach space. Alghamdi et al. [] proved a strong convergence theorem for
the common fixed point of a finite family of quasi-Bregman nonexpansivemappings. Pang
et al. [] proved weak convergence theorems for Bregman relatively nonexpansive map-
pings. Shahzad and Zegeye [] proved a strong convergence theorem for multivalued
Bregman relatively nonexpansive mappings, while Zegeye and Shahzad [] proved a
strong convergence theorem for a finite family of Bregman weak relatively nonexpansive
mappings.
Motivated and inspired by the above works, in this paper, we prove a new strong con-

vergence theorem for a finite family of closed quasi-Bregman strictly pseudocontractive
mapping and a system of equilibrium problems in a real reflexive Banach space. These
results generalize and improve several recent results. We showed by an example that the
class of quasi-Bregman strictly pseudocontractive mappings is a proper generalization of
the class of quasi-φ-Bregman strictly pseudocontractive mappings.
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2 Preliminaries
The next lemma will be useful in the proof of our main results.

Lemma . Let f : E →R be a Legendre function which is uniformly Fréchet differentiable
and bounded on subsets of E, let C be a nonempty, closed, and convex subset of E and let
T : C → C be a quasi-Bregman strictly pseudocontractive mapping with respect to f . Then,
for any x ∈ C, p ∈ F(T) and k ∈ [, ) the following hold:

Df (x,Tx)≤ 
 – k

〈∇f (x) –∇f (Tx),x – p
〉
. (.)

Proof Let x ∈ C, p ∈ F(T) and k ∈ [, ), by definition of T , we have

Df (p,Tx) ≤Df (p,x) + kDf (x,Tx)

and, from (.), we obtain

Df (p,x) +Df (x,Tx) +
〈∇f (x) –∇f (Tx),p – x

〉 ≤Df (p,x) + kDf (x,Tx),

which implies

Df (x,Tx)≤ 
 – k

〈∇f (x) –∇f (Tx),x – p
〉
.

This completes the proof. �

Lemma . [] Let E be a real reflexive Banach space, f : E → (–∞, +∞] be a proper
lower semi-continuous function, then f ∗ : E∗ → (–∞, +∞] is a proper weak∗ lower semi-
continuous and convex function. Thus, for all z ∈ E, we have

Df

(
z,∇f ∗

( N∑
i=

ti∇f (xi)

))
≤

N∑
i=

tiDf (z,xi). (.)

In order to solve the equilibrium problem, let us assume that a bifunction g : C×C →R

satisfies the following conditions []:
(A) g(x,x) = , ∀x ∈ C;
(A) g is monotone, i.e., g(x, y) + g(y,x) ≤ , ∀x, y ∈ C;
(A) lim supt↓ g(x + t(z – x), y)≤ g(x, y), ∀x, z, y ∈ C;
(A) the function y �→ g(x, y) is convex and lower semi-continuous.

The resolvent of a bifunction g [] is the operator Resfg : E → C defined by

Resfg(x) =
{
z ∈ C : g(z, y) +

〈∇f (z) –∇f (x), y – z
〉 ≥ ,∀y ∈ C

}
. (.)

From Lemma , in [], if f : (–∞, +∞] → R is a strongly coercive and Gâteaux differen-
tiable function, and g satisfies conditions (A)-(A), then dom(Resfg) = E. The following
lemma gives some characterization of the resolvent Resfg .

Lemma. [] Let E be a real reflexive Banach space and C be a nonempty closed convex
subset of E. Let f : E → (–∞, +∞] be a Legendre function. If the bifunction g : C × C → R

satisfies the conditions (A)-(A), then the following hold:

http://www.fixedpointtheoryandapplications.com/content/2014/1/231
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(i) Resfg is single-valued;
(ii) Resfg is a Bregman firmly nonexpansive operator;
(iii) F(Resfg) = EP(g);
(iv) EP(g) is closed and convex subset of C;
(v) for all x ∈ E and for all q ∈ F(Resfg), we have

Df
(
q,Resfg(x)

)
+Df

(
Resfg(x),x

) ≤Df (q,x). (.)

3 Main result
Lemma . Let f : E →R be a Legendre function which is uniformly Fréchet differentiable
on bounded subsets of E, let C be a nonempty, closed, and convex subset of E and let T : C →
C be a quasi-Bregman strictly pseudocontractive mapping with respect to f . Then F(T) is
closed and convex.

Proof Let F(T) be nonempty set. First we show that F(T) is closed. Let {xn} be a sequence
in F(T) such that xn → z as n → ∞, we need to show that z ∈ F(T). From Lemma ., we
obtain

Df (z,Tz) ≤ 
 – k

〈∇f (z) –∇f (Tz), z – xn
〉
. (.)

From (.), we have Df (z,Tz) ≤ , and from [], Lemma ., it follows that Tz = z. There-
fore F(T) is closed.
Next, we show that F(T) is convex. Let z, z ∈ F(T), for any t ∈ (, ); putting z = tz +

( – t)z, we need to show that z ∈ F(T). From Lemma ., we obtain, respectively,

Df (z,Tz) ≤ 
 – k

〈∇f (z) –∇f (Tz), z – z
〉

(.)

and

Df (z,Tz) ≤ 
 – k

〈∇f (z) –∇f (Tz), z – z
〉
. (.)

Multiplying (.) by t and (.) by ( – t) and adding the results, we obtain

Df (z,Tz) ≤ 
 – k

〈∇f (z) –∇f (Tz), z – z
〉
, (.)

which implies Df (z,Tz) ≤ , and from [], Lemma ., it follows that Tz = z. Therefore
F(T) is also convex. This completes the proof. �

We now prove the following theorem.

Theorem . Let C be a nonempty, closed, and convex subset of a real reflexive Banach
space E and f : E → R a strongly coercive Legendre function which is bounded, uniformly
Fréchet differentiable and totally convex on bounded subset of E. For each k = , , . . . ,m, let
gk be a bifunction from C × C to R satisfying (A)-(A) and let {TN

i=} be a finite family of
Li-Lipschitzian, i = , , , . . . ,N , closed and quasi-Bregman strictly pseudocontractive self

http://www.fixedpointtheoryandapplications.com/content/2014/1/231
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mappings of C such that F := (
⋂m

k= EP(gk)) ∩ (
⋂N

i= F(Ti)) �= ∅. Let {xn}∞n= be a sequence
generated by x = x ∈ C, C = C and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,
yn =∇f ∗(αn∇f (xn) + ( – αn)∇f (Tnxn)),
uj,n = Resfgj yn, j = , , , . . . ,m,
wn =∇f ∗(

∑m
j= βj,n∇f (uj,n)),

Cn+ = {w ∈ Cn :Df (xn,wn)≤ 
–k 〈∇f (xn)

–∇f (Tnxn),xn –w〉 + 〈∇f (Tnxn) –∇f (wn),xn –w〉},
xn+ = Pf

Cn+
(x), n ∈N,

(.)

where Tn = Tn(modN), and k ∈ [, ), for each i = , , . . . ,N , Ti is uniformly continuous; sup-
pose {αn}∞n= and {βj,n}∞n=, j = , , . . . ,m are sequences in (, ) such that (i) lim infn→∞( –
αn) > , (ii)

∑m
j= βj,n = , n ≥ . Then {xn}∞n= converges strongly to Pf

F (x), where P
f
F is the

Bregman projection of E onto F .

Proof The proof is divided into six steps.
Step I. Show that F = (

⋂m
j= EP(gj))∩ (

⋂N
i= F(Ti)) is closed and convex. From Lemma .,⋂N

i= F(Ti) is closed and convex and from (iv) of Lemma .,
⋂m

j= EP(gj) is closed and con-
vex. So, F = (

⋂m
j= EP(gj))∩ (

⋂N
i= F(Ti)) is closed and convex.

Step II. Show that Cn is closed and convex for all n ≥ . For n = , C = C is closed and
convex. Assume that Ch is closed and convex for some h > . For w ∈ Ch+, one obtains

Df (xh,wh) ≤ 
 – k

〈∇f (xh) –∇f (Thxh),xh –w
〉

+
〈∇f (Thxh) –∇f (wh),xh –w

〉
;

using the fact that 〈∇f (xh) – ∇f (Thxh), ·〉 and 〈∇f (Thxh) – ∇f (wh), ·〉 are continuous and
linear in E, for h≥ , Ch+ is closed and convex.
Step III. Show that F ⊂ Cn for every n ≥ . Note that F ⊂ C = C. Suppose F ⊂ Ch, for

h ≥ , then for all w ∈ F ⊂ Ch, since uj,h = Resfgj (yh) for each j = , , . . . ,m, from (.) and
Lemma ., we have

Df (w,wh) = Df

(
w,∇f ∗

( m∑
j=

βj,n∇f (uj,n)

))

≤
m∑
j=

βjhDf (w,ujh)

≤
m∑
j=

βjhDf (w, yh)

= Df (w, yh); (.)

also from (.) and (.), we obtain

Df (w, yh) = Df
(
w,∇f ∗(αh∇f (xh) + ( – αh)∇f (Thxh)

))
≤ αhDf (w,xh) + ( – αh)Df (w,Thxh)

http://www.fixedpointtheoryandapplications.com/content/2014/1/231
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≤ αhDf (w,xh) + ( – αh)
[
Df (w,xh) + kDf (xh,Thxh)

]
≤ Df (w,xh) + kDf (xh,Thxh)

≤ Df (w,xh) +
k

 – k
〈∇f (xh) –∇f (Thxh),xh –w

〉
. (.)

But, from (.),

Df (w,wh) =Df (w,xh) +Df (xh,wh) +
〈∇f (xh) –∇f (wh),w – xh

〉
. (.)

From (.), (.), and (.), we obtain

Df (xh,wh) ≤ k
 – k

〈∇f (xh) –∇f (Thxh),xh –w
〉

+
〈∇f (xh) –∇f (wh),xh –w

〉
=

k
 – k

〈∇f (xh) –∇f (Thxh),xh –w
〉

+
〈∇f (xh) –∇f (Thxh),xh –w

〉
+

〈∇f (Thxh) –∇f (wh),xh –w
〉

=
(

k
 – k

+ 
)〈∇f (xh) –∇f (Thxh),xh –w

〉
+

〈∇f (Thxh) –∇f (wh),xh –w
〉

=


 – k
〈∇f (xh) –∇f (Thxh),xh –w

〉
+

〈∇f (Thxh) –∇f (wh),xh –w
〉
. (.)

This shows that w ∈ Ch+, which implies F ⊂ Cn for every n≥ .
Step IV. Show that limn→∞ Df (xn,x) exists. From (.), xn = Pf

Cnx, which from (a) of
Lemma . implies

〈∇f (x) –∇f (xn), y – xn
〉 ≤ , ∀y ∈ Cn.

Since F ⊂ Cn, we have

〈∇f (x) –∇f (xn),w – xn
〉 ≤ , ∀w ∈ F . (.)

From (b) of Lemma . we have

Df (xn,x) = Df
(
Pf
Cnx,x

) ≤Df (w,x) –Df
(
w,Pf

Cnx
)

≤ Df (w,x), ∀n≥ ,w ∈ F . (.)

This implies that {Df (xn,x)} is bounded, from Lemma ., {xn} is bounded. By the con-
struction of Cn, we have xm ∈ Cm ⊂ Cn, and xn = Pf

Cnx, for any positive integer m ≥ n.
Then we obtain

Df (xm,xn) =Df
(
xm,P

f
Cnx

) ≤Df (xm,x) –Df
(
Pf
Cnx,x

)
=Df (xm,x) –Df (xn,x). (.)
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In particular,

Df (xn+,xn) ≤Df (xn+,x) –Df (xn,x).

Since xn = Pf
Cnx and xn+ = Pf

Cn+
x ∈ Cn+ ⊂ Cn, we obtain Df (xn,x) ≤ Df (xn+,x), ∀n ≥ .

This shows that {Df (xn,x)} is nondecreasing and hence the limit limn→∞ Df (xn,x) exists.
Thus from (.), taking the limit as m,n → ∞, we obtain limn→∞ Df (xm,xn) = . Since f
is totally convex on bounded subsets of E, f is sequentially consistent (see []). It follows
that ‖xm – xn‖ →  as m,n → ∞. Hence {xn} is Cauchy sequence in C. As {xn} is Cauchy
in a complete space E, there exists p ∈ E such that xn → p as n→ ∞. Clearly p ∈ C.
Since Df (xm,xn) → , asm,n→ ∞, we have in particular

lim
n→∞Df (xn+,xn) = , (.)

and this further implies that

lim
n→∞‖xn+ – xn‖ = . (.)

Step V. Next we show that xn → p ∈ F .
Since xn+ = Pf

Cn+
x ∈ Cn+, we have from (.)

Df (xn,wn) ≤ 
 – k

〈∇f (xn) –∇f (Tnxn),xn – xn+
〉

(.)

+
〈∇f (Tnxn) –∇f (wn),xn – xn+

〉
, (.)

which implies that limn→∞ Df (xn,wn) = . Since f is totally convex on bounded subsets of
E, f is sequentially consistent (see []). It follows that

lim
n→∞‖xn –wn‖ = . (.)

From (.) and (.), we have

lim
n→∞‖xn+ –wn‖ = . (.)

Since f is uniformly Fréchet differentiable, it follows from Lemma . that ∇f is uniformly
continuous and f is uniformly continuous on bounded subsets ofE (see [], Theorem .).
Hence

lim
n→∞

∥∥∇f (xn+) –∇f (wn)
∥∥ =  (.)

and

lim
n→∞

∣∣f (xn+) – f (wn)
∣∣ = . (.)

Since xn+ ∈ Cn+, it follows from (.), (.) that

f (xn+) – f (wn) –
〈∇f (wn),xn+ –wn

〉
=Df (xn+,wn) ≤Df (xn+, yn) ≤Df (xn+,xn) +

k
 – k

〈∇f (xn) –∇f (Tnxn),xn – xn+
〉
,
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which implies from (.), (.), (.), and (.) that

lim
n→∞Df (xn+, yn) = .

From the sequential consistency of f , we have

lim
n→∞‖xn+ – yn‖ = ; (.)

from (.) and (.), we obtain

lim
n→∞‖xn – yn‖ = , (.)

which implies that yn → p ∈ C, since xn → p ∈ C. From the uniform continuity of ∇f , we
have

lim
n→∞

∥∥∇f (xn) –∇f (yn)
∥∥ = . (.)

From (.), we have

∥∥∇f (Tnxn) –∇f (xn)
∥∥ =


 – αn

∥∥∇f (xn) –∇f (yn)
∥∥,

which implies from (.) that

lim
n→∞

∥∥∇f (Tnxn) –∇f (xn)
∥∥ = . (.)

Since f is strongly coercive and uniformly convex on bounded subsets of E, f ∗ is uniformly
Fréchet differentiable on bounded sets. Moreover, f ∗ is bounded on bounded sets, and
from (.) we obtain

lim
n→∞‖Tnxn – xn‖ = . (.)

On the other hand, we see that

‖xn – Tn+lxn‖ ≤ ‖xn – xn+l‖ + ‖xn+l – Tn+lxn+l‖
+ ‖Tn+lxn+l – Tn+lxn‖

≤ ( + L)‖xn – xn+l‖ + ‖xn+l – Tn+lxn+l‖

for all l ∈ {, , . . . ,N}, where L := sup≤i≤N Li. It follows from (.) and (.) that

lim
n→∞‖xn – Tn+lxn‖ = 

for all l ∈ {, , . . . ,N}. Thus

lim
n→∞‖xn – Tlxn‖ =  (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/231
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for all l ∈ {, , . . . ,N}. Since xn → p as n → ∞, by the closedness of Tl for each l ∈
{, , . . . ,N}, we obtain p ∈ ⋂N

l= F(Tl).
Also, since yn → p as n→ ∞, we have from Lemma ., for each j = , , . . . ,m,

 ≤Df (p,ujn) =Df
(
p,Resfgj yn

) ≤Df (p, yn) →  as n→ ∞.

Then we have from Lemma . that limn→∞ ‖p – ujn‖ = , for each j = , , . . . ,m. Conse-
quently, we have

‖ujn – yn‖ ≤ ‖ujn – p‖ + ‖p – yn‖ →  as n→ ∞. (.)

From the uniform continuity of ∇f , for each j = , , . . . ,m we have

lim
n→∞

∥∥∇f (ujn) –∇f (yn)
∥∥ = . (.)

From (.), we have, for j = , , . . . ,m,

gj(ujn, y) +
〈∇f (ujn) –∇f (yn), y – ujn

〉 ≥ , ∀y ∈ C.

Furthermore, using (A) in the last inequality, we obtain

〈∇f (ujn) –∇f (yn), y – ujn
〉 ≥ gj(y,ujn), ∀y ∈ C.

By (A), (.), and ujn → p as n→ ∞, we have

gj(y,p) ≤ , ∀y ∈ C. (.)

Let zt := ty+(– t)p for t ∈ (, ] and y ∈ C. This implies that zt ∈ C. This yields gj(zt ,p) ≤ .
It follows from (A) and (A) that

 = gj(zt , zt) ≤ tgj(zt , y) + ( – t)gj(zt ,p)

≤ tgj(zt , y),

and hence

 ≤ gj(zt , y).

From condition (A), we obtain

gj(p, y) ≥ , ∀y ∈ C and ∀j ∈ {, , , . . . ,m}.

This implies that p ∈ EP(gj), for each j = , , . . . ,m. Thus, p ∈ ⋂m
j= EP(gj). Hence we have

p ∈ F = (
⋂N

i= F(Ti))∩ (
⋂m

j= EP(gj)).
Step VI. Finally, we show that p = Pf

Fx. Setting n→ ∞ in (.), we obtain

〈∇f (x) –∇f (p),w – p
〉 ≤ , ∀w ∈ F .

By (a) of Lemma ., we have p = Pf
Fx. �
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Here we give an example of a quasi-Bregman strictly peudocontractive mapping which
is not quasi-φ strictly pseudocontractive mapping; this shows that the former class is a
generalization of the latter.

Example . Let E = R, C = [–, ] and define T , f : [–, ] → R by f (x) = x and Tx = x,
for all x ∈ [–, ]. We want to show that T is a quasi-Bregman strictly pseudocontractive
but not quasi-φ strictly pseudocontractive.

Proof From the definition it is clear that f is proper, lower semi-continuous, and convex,
and also F(T) = {}. By the definition of quasi-Bregman strict pseudocontractivity, we find
k ∈ [, ) such that Df (p,Tx)≤Df (p,x) + kDf (x,Tx) for all x ∈ C and p ∈ F(T). Now,

D(,Tx) = f () – f (Tx) –
〈∇f (Tx),  – Tx

〉
=  – x –

〈∇f (x),  – x
〉

= –x – 〈,–x〉
= –x + x = x, (.)

D(,x) = f () – f (x) –
〈∇f (x),  – x

〉
=  – x – 〈,–x〉
= –x + x =  (.)

and

D(x,Tx) = f (x) – f (Tx) –
〈∇f (Tx),x – Tx

〉
= x – x – 〈,x – x〉
= –x + x = x. (.)

From (.), (.), and (.), we obtain

D(,Tx) = x≤ x

≤  + kx, ∀x ∈ [–, ],k ∈ [, )

≤ D(,x) + kD(x,Tx), ∀x ∈ [–, ],k ∈ [, ).

Therefore

D(,Tx)≤D(,x) + kD(x,Tx), ∀x ∈ [–, ],k ∈ [, ).

Hence, T is a quasi-Bregman strictly pseudocontractive map.
Further,

φ(,Tx) = || – 
〈
, J(Tx)

〉
+ |Tx|

=  – 
〈
, J(x)

〉
+ |x|

= |x|, (.)
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φ(,x) = || – 
〈
, J(x)

〉
+ |x|

=  – 
〈
, J(x)

〉
+ |x|

= |x| (.)

and

φ(x,Tx) = |x| – 
〈
x, J(Tx)

〉
+ |Tx|

= |x| – 
〈
x, J(x)

〉
+ |x|

= |x| – 
〈
x, J(x)

〉
+ |x|

= |x| – |x| + |x|

= |x|. (.)

Since |x| > |x| + k|x|, for all k ∈ [, ) and for all x ∈ [–, ],

φ(,Tx)≤ φ(,x) + kφ(x,Tx), ∀x ∈ [–, ]

cannot hold for any k ∈ [, ). Hence, T is not a quasi-φ strictly pseudocontractive map.
�

4 Numerical example
In this section we discuss the direct application of Theorem . on a typical example on a
real line. Consider the following:

E =R, C = [–, ], g(z, y) = y + yz – z,

f (x) =


x, ∇f (x) =



x, Tx = –x,

f ∗(x∗) = sup
{〈
x∗,x

〉
– f (x) : x ∈ E

}
,

f ∗(z) =


z, ∇f ∗(z) =



z, αn =

n + 
n

,

αn∇f (xn) + ( – αn)∇f (Txn) =
–(n – )

n
xn,

k = /, x = / ∈ C,

then the scheme can be simplified as

yn =∇f ∗(αn∇f (xn) + ( – αn)∇f (Txn)
)
,

∴ yn =
–(n – )

n
xn,

un = Resfg yn =



yn,

wn =∇f ∗(∇f (un)
)
= un,

Cn+ =
{
w ∈ Cn : w≤ xn –

( – k)(xn –wn)

[( + k)xn – ( – k)wn]

}
,

xn+ = Pf
Cn+

(x) = xn –
( – k)(xn –wn)

[( + k)xn – ( – k)wn]
.
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