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Abstract
In this paper, we introduce a hybrid subgradient method for finding a common
element of the set of solutions of a class of pseudomonotone equilibrium problems
and the set of fixed points of a finite family of multivalued nonexpansive mappings in
Hilbert space. The proposed method involves only one projection rather than two as
in the existing extragradient method and the inexact subgradient method for an
equilibrium problem. We establish some weak and strong convergence theorems of
the sequences generated by our iterative method under some suitable conditions.
Moreover, a numerical example is given to illustrate our algorithm and our results.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let
K be a nonempty closed convex subset of H . Let F : K × K → R be a bifunction, where
R denotes the set of real numbers. We consider the following equilibrium problem: Find
x ∈ K such that

F(x, y) ≥ , ∀y ∈ K . (.)

The set of solution of equilibrium problem is denoted by EP(F ,K ). It is well known that
some important problems such as convex programs, variational inequalities, fixed point
problems, minimax problems, and Nash equilibrium problem in noncooperative games
and others can be reduced to finding a solution of the equilibrium problem (.); see [–]
and the references therein.
Recall that a mapping T : K → K is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ K .

A subsetK ⊂H is called proximal if for each x ∈H , there exists an element y ∈ K such that

dist(x,K ) := ‖x – y‖ = inf
{‖x – z‖ : z ∈ K

}
.
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Wedenote byB(K ),C(K ), andP(K ) the collection of all nonempty closed bounded subsets,
nonempty compact subsets and nonempty proximal bounded subsets of K , respectively.
The Hausdorff metric H on B(H) is defined by

H(K,K) :=max
{
sup
x∈K

dist(x,K), sup
y∈K

dist(y,K)
}
, ∀K,K ∈ B(H).

Let T : H → H be a multivalued mapping, of which the set of fixed points is denoted
by Fix(T), i.e., Fix(T) := {x ∈ Tx : x ∈ K}. A multivalued mapping T : K → B(K ) is said to
be nonexpansive if

H(Tx,Ty) ≤ ‖x – y‖, ∀x, y ∈ K . (.)

T is said to be quasi-nonexpansive if, for all p ∈ Fix(T),

H(Tx,p) ≤ ‖x – p‖, ∀x ∈ K . (.)

Recently, the problem of finding a common element of the set of solutions of equilib-
rium problems and the set of fixed points of nonlinear mappings has become an attractive
subject, and various methods have been extensively investigated by many authors. It is
worth mentioning that almost all the existing algorithms for this problem are based on
the proximal point method applied to the equilibrium problem combining with a Mann
iteration to fixed point problems of nonexpansive mappings, of which the convergence
analysis has been considered if the bifunction F is monotone. This is because the proximal
point method is not valid when the underlying operator F is pseudomonotone. Another
basic idea for solving equilibrium problems is the projection method. However, Facchinei
and Pang [] show that the projection method is not convergent for monotone inequal-
ity, which is a special case of monotone equilibrium problems. In order to obtain con-
vergence of the projection method for equilibrium problems, Tran et al. [] introduced
an extragradient method for pseudomonotone equilibrium problems, which is computa-
tionally expensive because of the two projections defined onto the constrained set. Efforts
for deducing the computational costs in computing the projection have been made by us-
ing penalty functionmethods or relaxing the constrained convex set by polyhedral convex
ones; see, e.g., [–].
In , Santos and Scheimberg [] further proposed an inexact subgradient algorithm

for solving a wide class of equilibrium problems that requires only one projection rather
than two as in the extragradient method, and of which computational results show the
efficiency of this algorithm in finite dimensional Euclidean spaces. On the other hand, it-
erative schemes for multivalued nonexpansive mappings are far less developed than those
for nonexpansive mappings though they have more powerful applications in solving opti-
mization problems; see, e.g., [–] and the references therein.
In , Eslamian [] considered a proximal point method for nonspreading mappings

and multivalued nonexpansive mappings and equilibrium problems. To be more precise,
they proposed the following iterative method:

{
F(un, z) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ K ,
xn+ = αnun + βnfnun + γnzn, n ≥ ,

(.)
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where Tn = Tn(modN), zn ∈ Tnun, αn + βn + γn =  for all n ≥  and fi, Ti are finite families
of nonspreading mappings and multivalued nonexpansive mappings for i = , , . . . ,N , re-
spectively. Moreover, he further proved the weak and strong convergence theorems of the
iterative sequences under the condition of monotone defined on a bifunction F .
In this paper, inspired and motivated by research going on in this area, we introduce

a hybrid subgradient method for the pseudomonotone equilibrium problem and a finite
family of multivalued nonexpansive mappings, which is defined in the following way:

⎧⎪⎨
⎪⎩
wn ∈ ∂εnF(xn, ·)xn,
un = PK (xn – γnwn), γn = βn

max{σn ,‖wn‖} ,
xn+ = αnxn + ( – αn)zn, n≥ ,

(.)

where Tn = Tn(modN), zn ∈ Tnun, and {αn}, {βn}, {εn}, and {σn} are nonnegative real se-
quences.
Our purpose is not only to modify the proximal point iterative schemes (.) for the

equilibrium problem to a hybrid subgradient method for a class of pseudomonotone equi-
librium problems and a finite family of multivalued nonexpansive mappings, but also to
establishweak and strong convergence theorems involving only one projection rather than
two as in the extragradient method [] and the inexact subgradient method [] for the
equilibrium problem. Our theorems presented in this paper improve and extend the cor-
responding results of [, , , ].

2 Preliminaries
Let K be a nonempty closed convex subset of a real Hilbert space H with inner product
〈·, ·〉 and norm ‖ · ‖, respectively. For every point x ∈H , there exists a unique nearest point
in K , denoted by PK (x), such that

∥∥x – PK (x)
∥∥ ≤ ‖x – y‖, ∀y ∈ K .

Then PK is called the metric projection of H onto K . It is well known that PK is nonex-
pansive and satisfies the following properties:

〈
x – PK (x),PK (x) – y

〉 ≥ , ∀x ∈H , y ∈ K , (.)

‖x – y‖ ≥ ∥∥x – PK (x)
∥∥ +

∥∥y – PK (x)
∥∥, ∀x ∈H , y ∈ K . (.)

Recall also that a bifunction F : K ×K →R is said to be
(i) r-strongly monotone if there exists a number r >  such that

F(x, y) + F(y,x)≤ –r‖x – y‖, ∀x, y ∈ K ;

(ii) monotone on K if

F(x, y) + F(y,x)≤ , ∀x, y ∈ K ;

(iii) pseudomonotone on K with respect to x ∈ K if

F(x, y)≥  ⇒ F(y,x) ≤ , ∀y ∈ K . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/232
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It is clear that (i)⇒ (ii) ⇒ (iii), for every x ∈ K . Moreover, F is said to be pseudomonotone
on K with respect to A ⊆ K , if it is pseudomonotone on K with respect to every x ∈ A.
When A≡ K , F is called pseudomonotone on K .
The following example, taken from [], shows that a bifunction may not be pseu-

domonotone on K , but yet is pseudomonotone on K with respect to the solution set of
the equilibrium problem defined by F and K :

F(x, y) := y|x|(y – x) + xy|y – x|, ∀x, y ∈R, K := [–, ].

Clearly, EP(F ,K ) = {}. Since F(y, ) =  for every y ∈ K , this bifunction is pseudomono-
tone on K with respect to the solution x∗ = . However, F is not pseudomonotone on K .
In fact, both F(–., .) = . >  and F(., –.) = . > .
To study the equilibrium problem (.), we may assume that � is an open convex set

containing K and the bifunction F : � × � →R satisfy the following assumptions:
(C) F(x,x) =  for each x ∈ K and F(x, ·) is convex and lower semicontinuous on K ;
(C) F(·, y) is weakly upper semicontinuous for each y ∈ K on the open set �;
(C) F is pseudomonotone on K with respect to EP(F ,K ) and satisfies the strict

paramonotonicity property, i.e., F(y,x) =  for x ∈ EP(F ,K ) and y ∈ K implies
y ∈ EP(F ,K );

(C) if {xn} ⊆ K is bounded and εn →  as n→ ∞, then the sequence {wn} with
wn ∈ ∂εnF(xn, ·)xn is bounded, where ∂εF(x, ·)x stands for the ε-subdifferential of
the convex function F(x, ·) at x.

Throughout this paper, weak and strong convergence of a sequence {xn} in H to x are
denoted by xn ⇀ x and xn → x, respectively. In order to prove our main results, we need
the following lemmas.

Lemma . [] Let H be a real Hilbert space. For all x, y ∈H , we have the following iden-
tity:

‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉.

Lemma . [] Let H be a real Hilbert space and α,β ,γ ∈ [, ] with α + β + γ = . For
all x, y, z ∈H , we have the following identity:

‖αx + βy + γ z‖ = α‖x‖ + β‖y‖ + γ ‖z‖ – αβ‖x – y‖

– αγ ‖x – z‖ – βγ ‖y – z‖.

Lemma . [] Let {an} and {bn} be two sequences of nonnegative real numbers such that

an+ ≤ an + bn, n≥ ,

where
∑∞

n= bn < ∞. Then the sequence {an} is convergent.

Lemma. [] Let K be a nonempty closed convex subset of a real Hilbert space H . Let T :
K → C(K ) be a multivalued nonexpansive mapping. If xn ⇀ q and limn→∞ dist(xn,Txn) =
, then q ∈ Tq.

http://www.fixedpointtheoryandapplications.com/content/2014/1/232
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3 Weak convergence
Theorem . Let K be a nonempty closed convex subset of a Hilbert space H and F : K ×
K → R be a bifunction satisfying (C)-(C). Let {Ti}Ni= : K → C(K ) be a finite family of
multivalued nonexpansive mappings such that
 =

⋂N
i= Fix(Ti)∩EP(F ,K ) �= φ and Ti(q) =

{q} for i = , , . . . ,N and q ∈ 
. For a given point x ∈ K ,  < c < σn < σ , {αn}, {βn}, and {εn}
are nonnegative sequences satisfying the following conditions:

(i) αn ∈ [a,b]⊂ (, );
(ii)

∑∞
n= βn =∞,

∑∞
n= β

n < ∞, and
∑∞

n= βnεn <∞.
Then the sequence {xn} generated by (.) converges weakly to x ∈ 
.

Proof First, we show the existence of limn→∞ ‖xn–p‖ for every p ∈ 
. It follows from (.)
and Lemmas . and . that

‖xn+ – p‖ =
∥∥αn(xn – p) + ( – αn)(zn – p)

∥∥

= αn‖xn – p‖ + ( – αn)‖zn – p‖ – αn( – αn)‖xn – zn‖

= αn‖xn – p‖ + ( – αn)dist(zn,Tnp) – αn( – αn)‖xn – zn‖

≤ αn‖xn – p‖ + ( – αn)H(Tnun,Tnp) – αn( – αn)‖xn – zn‖

≤ αn‖xn – p‖ + ( – αn)‖un – p‖ – αn( – αn)‖xn – zn‖

= αn‖xn – p‖ + ( – αn)
(‖xn – p‖ – ‖un – xn‖ + 〈xn – un,p – un〉

)
– αn( – αn)‖xn – zn‖

≤ ‖xn – p‖ + ( – αn)〈xn – un,p – un〉 – αn( – αn)‖xn – zn‖. (.)

By un = PK (xn – γnwn) and (.), we have

〈xn – un,p – un〉 ≤ γn〈wn,p – un〉. (.)

Using un = PK (xn – γnwn) and xn ∈ K again, we obtain (note that γn = βn
max{σn ,‖wn‖} )

‖xn – un‖ = 〈xn – un,xn – un〉
≤ γn〈wn,xn – un〉
≤ γn‖wn‖‖xn – un‖
≤ βn‖xn – un‖, (.)

which implies that ‖xn – un‖ ≤ βn. Substituting (.) into (.) yields

‖xn+ – p‖ ≤ ‖xn – p‖ + ( – αn)γn〈wn,p – un〉 – αn( – αn)‖xn – zn‖

= ‖xn – p‖ + ( – αn)γn〈wn,p – xn〉 + ( – αn)γn〈wn,xn – un〉
– αn( – αn)‖xn – zn‖

≤ ‖xn – p‖ + ( – αn)γn〈wn,p – xn〉 + ( – αn)γn‖wn‖‖xn – un‖
– αn( – αn)‖xn – zn‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/232
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≤ ‖xn – p‖ + ( – αn)γn〈wn,p – xn〉 + ( – αn)β
n

– αn( – αn)‖xn – zn‖. (.)

Since wn ∈ ∂εnF(xn, ·)xn and F(x,x) =  for all x ∈ K , we have

〈wn,p – xn〉 ≤ F(xn,p) – F(xn,xn) + εn

≤ F(xn,p) + εn. (.)

On the other hand, since p ∈ EP(F ,K ), i.e., F(p,x) ≥  for all x ∈ K , by the pseudomono-
tonicity of F with respect to p, we have F(x,p) ≤  for all x ∈ K . Replacing x by xn ∈ K , we
get F(xn,p) ≤ . Then from (.) and (.), it follows that

‖xn+ – p‖ ≤ ‖xn – p‖ + ( – αn)γnF(xn,p) + ( – αn)γnεn + ( – αn)β
n

– αn( – αn)‖xn – zn‖

≤ ‖xn – p‖ + ( – αn)γnεn + ( – αn)β
n – αn( – αn)‖xn – zn‖

≤ ‖xn – p‖ + ( – αn)γnεn + ( – αn)β
n . (.)

Applying Lemma . to (.), by condition (ii), we obtain the existence of limn→∞ ‖xn –
p‖ = d.
Now, we claim that lim supn→∞ F(xn,p) =  for every p ∈ 
. Indeed, since F is pseu-

domonotone on K and F(p,xn) ≥ , we have –F(xn,p) ≥ . From (.), we have

( – αn)γn
[
–F(xn,p)

] ≤ ‖xn – p‖ – ‖xn+ – p‖

+ ( – αn)γnεn + ( – αn)β
n . (.)

Summing up (.) for every n, we obtain

 ≤ 
∞∑
n=

( – αn)γn
[
–F(xn,p)

]

≤ ‖x – p‖ + 
∞∑
n=

γnεn + 
∞∑
n=

β
n < +∞. (.)

By the assumption (C), we can find a real number w such that ‖wn‖ ≤ w for every n.
Setting L :=max{σ ,w}, where σ is a real number such that  < σn < σ for every n, it follows
from (i) that

 ≤ ( – b)
L

∞∑
n=

βn
[
–F(xn,p)

]

≤ 
∞∑
n=

( – αn)γn
[
–F(xn,p)

]
< +∞,

which implies that

∞∑
n=

βn
[
–F(xn,p)

]
< +∞. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/232
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Combining with –F(xn,p) ≥  and
∑∞

n= βn = ∞, we can deduced that lim supn→∞ F(xn,
p) =  as desired.
Next, we show that any weak subsequential limit of the sequence of {xn} is an element

of 
 =
⋂N

i= Fix(Ti)∩ EP(F ,K ). To do this, suppose that {xni} is a subsequence of {xn}. For
simplicity of notation, without loss of generality, we may assume that xni ⇀ x as i → ∞.
By convexity, K is weakly closed and hence x ∈ K . Since F(·,p) is weakly upper semicon-
tinuous for p ∈ 
, we have

F(x,p) ≥ lim sup
i→∞

F(xni ,p) = lim
i→∞F(xni ,p)

= lim sup
n→∞

F(xn,p) = . (.)

By the pseudomonotonicity of F with respect to p and F(p,x) ≥ , we obtain F(x,p) ≤ .
Thus F(x,p) = . Moreover, by the assumption (C), we can deduce that x is a solution of
EP(F ,K ). On the other hand, it follows from (.) and condition (ii) that

lim
n→∞‖xn – un‖ = . (.)

From (.) and conditions (i)-(ii), we have

αn( – αn)‖xn – zn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + ( – αn)γnεn + ( – αn)β
n ,

taking the limit as n→ ∞ yields

lim
n→∞‖xn – zn‖ = , (.)

and thus

lim
n→∞dist(xn,Tnun) ≤ lim

n→∞‖xn – zn‖ = . (.)

Using (.) again, we have

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – αn)‖xn – zn‖ = . (.)

It follows that

lim
n→∞‖xn+i – xn‖ = , i = , , . . . ,N . (.)

Note that

‖un+ – un‖ ≤ ‖un+ – xn+‖ + ‖xn+ – xn‖ + ‖xn – un‖.

Combining (.) and (.), we obtain

lim
n→∞‖un+ – un‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/232
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This also implies that

lim
n→∞‖un+i – un‖ = , i = , , . . . ,N . (.)

Observe that

dist(un,Tn+iun) ≤ ‖un – xn‖ + ‖xn – xn+i‖ + dist(xn+i,Tn+iun+i) +H(Tn+iun+i,Tn+iun)

≤ ‖un – xn‖ + ‖xn – xn+i‖ + dist(xn+i,Tn+iun+i) + ‖un+i – un‖.

Together with (.), (.), (.), and (.), we have

lim
n→∞dist(un,Tn+iun) = , i = , , . . . ,N , (.)

which implies that the sequence

N⋃
i=

{
dist(un,Tn+iun)

}
n≥ →  as n→ ∞. (.)

For i = , , . . . ,N , we note also that

{
dist(un,Tiun)

}
n≥ =

{
dist(un,Tn+(i–n)un)

}
n≥

=
{
dist(un,Tn+inun)

}
n≥

⊂
N⋃
i=

{
dist(un,Tn+iun)

}
n≥,

where i – n = in(modN) and in ∈ {, , . . . ,N}. Therefore, we have

lim
n→∞dist(un,Tiun) = , i = , , . . . ,N . (.)

Similarly, for i = , , . . . ,N , we obtain

dist(xn,Tixn)≤ ‖xn – un‖ + dist(un,Tiun) +H(Tiun,Tixn)

≤ ‖xn – un‖ + dist(un,Tiun).

It follows from (.) and (.) that

lim
n→∞dist(xn,Tixn) = , i = , , . . . ,N . (.)

Applying Lemma . to (.), we can deduce that x ∈ Fix(Ti) for i = , , . . . ,N and hence
x ∈ 
.
Finally, we prove that {xn} converges weakly to an element of 
. Indeed to verify that

the claim is valid it is sufficient to show that ωw(xn) is a single point set, where ωw(xn) =
{x ∈ H : xni ⇀ x} for some subsequence {xni} of {xn}. Indeed since {xn} is bounded and H
is reflexive, ωw(xn) is nonempty. Taking w,w ∈ ωw(xn) arbitrarily, let {xnk } and {xnj} be

http://www.fixedpointtheoryandapplications.com/content/2014/1/232
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subsequences of {xn} such that xnk ⇀ w and xnj ⇀ w, respectively. Since limn→∞ ‖xn–p‖
exists for all p ∈ 
 and w,w ∈ 
, we see that limn→∞ ‖xn – w‖ and limn→∞ ‖xn – w‖
exist. Now let w �= w, then by Opial’s property,

lim
n→∞‖xn –w‖ = lim

k→∞
‖xnk –w‖

< lim
k→∞

‖xnk –w‖ = lim
n→∞‖xn –w‖

= lim
j→∞‖xnj –w‖ < lim

j→∞‖xnj –w‖

= lim
n→∞‖xn –w‖,

which is a contradiction. Therefore, w = w. This shows that ωw(xn) is a single point set,
i.e., xn ⇀ x. This completes the proof. �

Theorem . Let K be a nonempty closed convex subset of a Hilbert space H and F :
K ×K → R be a bifunction satisfying (C)-(C). Let T : K → C(K ) be a multivalued non-
expansive mapping such that 
 = Fix(T)∩EP(F ,K ) �= φ and T(q) = {q} for all q ∈ 
. For a
given point x ∈ K ,  < c < σn < σ , let {xn} be defined by

⎧⎪⎨
⎪⎩
wn ∈ ∂εnF(xn, ·)xn,
un = PK (xn – γnwn), γn = βn

max{σn ,‖wn‖} ,
xn+ = αnxn + ( – αn)zn, n≥ ,

where zn ∈ Tun, {αn}, {βn}, and {εn} are nonnegative sequences satisfying the following con-
ditions:

(i) αn ∈ [a,b]⊂ (, );
(ii)

∑∞
n= βn =∞,

∑∞
n= β

n < ∞, and
∑∞

n= βnεn <∞.
Then the sequence {xn} converges weakly to x ∈ 
.

Proof Putting N = , then Ti = T , a single multivalued nonexpansive mapping, and the
conclusion follows immediately from Theorem .. This completes the proof. �

4 Strong convergence
To obtain strong convergence results, we either add the control condition limn→∞ αn = 

 ,
or we remove the condition T(q) = {q} for all q ∈ 
 and adjust the nonempty compact
subset C(K ) to a proximal bounded subset P(K ) of K as follows.

Theorem . Let K be a nonempty closed convex subset of a Hilbert space H and F : K ×
K → R be a bifunction satisfying (C)-(C). Let {Ti}Ni= : K → C(K ) be a finite family of
multivalued nonexpansive mappings such that
 =

⋂N
i= Fix(Ti)∩EP(F ,K ) �= φ and Ti(q) =

{q} for i = , , . . . ,N and q ∈ 
. For a given point x ∈ K ,  < c < σn < σ , let {xn} be defined
by

⎧⎪⎨
⎪⎩
wn ∈ ∂εnF(xn, ·)xn,
un = PK (xn – γnwn), γn = βn

max{σn ,‖wn‖} ,
xn+ = αnxn + ( – αn)zn, n≥ ,

(.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/232
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where Tn = Tn(modN), zn ∈ Tnun, {αn}, {βn}, and {εn} are nonnegative sequences satisfying
the following conditions:

(i) αn ∈ [a,b]⊂ (, ) and limn→∞ αn = 
 ;

(ii)
∑∞

n= βn =∞,
∑∞

n= β
n < ∞, and

∑∞
n= βnεn <∞.

Then the sequence {xn} generated by (.) converges strongly to x∗ ∈ 
.

Proof By a similar argument to the proof of Theorem . and (.), we have

∥∥zn – P
(xn)
∥∥ ≤ ‖zn – xn‖ –

∥∥xn – P
(xn)
∥∥. (.)

It follows from (.) that

∥∥xn+ – P
(xn+)
∥∥ ≤ ∥∥αn

(
xn – P
(xn)

)
+ ( – αn)

(
zn – P
(xn)

)∥∥

≤ αn
∥∥xn – P
(xn)

∥∥ + ( – αn)
∥∥zn – P
(xn)

∥∥

≤ (αn – )
∥∥xn – P
(xn)

∥∥ + ( – αn)‖zn – xn‖. (.)

Combining (.), limn→∞ αn = 
 , and the boundedness of the sequence {xn –P
(xn)}, we

obtain

lim
n→∞

∥∥xn+ – P
(xn+)
∥∥ = . (.)

By the assumptions (C) and (C), the set
 is convex (see the proof of Theorem  in []).
For allm > n, we have 

 (P
(xm) + P
(xn)) ∈ 
, and therefore

∥∥P
(xm) – P
(xn)
∥∥ = 

∥∥xm – P
(xm)
∥∥ + 

∥∥xm – P
(xn)
∥∥

– 
∥∥∥∥xm –



(
P
(xm) + P
(xn)

)∥∥∥∥


≤ 
∥∥xm – P
(xm)

∥∥ + 
∥∥xm – P
(xn)

∥∥ – 
∥∥xm – P
(xm)

∥∥

= 
∥∥xm – P
(xn)

∥∥ – 
∥∥xm – P
(xm)

∥∥. (.)

Using (.) with p = P
(xn), we have

∥∥xm – P
(xn)
∥∥ ≤ ∥∥xm– – P
(xn)

∥∥ + ( – αm–)γm–εm– + ( – αm–)β
m–

≤ ∥∥xm– – P
(xn)
∥∥ + ηm– + ηm–

≤ · · ·

≤ ∥∥xn – P
(xn)
∥∥ +

m–∑
j=n

ηj, (.)

where ηj = ( – αj)γjεj + ( – αj)β
j . It follows from (.) and (.) that

∥∥P
(xm) – P
(xn)
∥∥ ≤ 

∥∥xn – P
(xn)
∥∥ + 

m–∑
j=n

ηj – 
∥∥xm – P
(xm)

∥∥. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/232
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Together with (.) and
∑m–

j=n ηj < ∞, this implies that {P
(xn)} is a Cauchy sequence.
Hence {P
(xn)} strongly converges to some point x∗ ∈ 
. Moreover, we obtain

x∗ = lim
i→∞P
(xni ) = P
(x) = x, (.)

which implies that P
(xn) → x∗ = x ∈ 
. Then, from (.), (.), and (.), we can con-
clude that xn → x∗. This completes the proof. �

Theorem . Let K be a nonempty closed convex subset of a Hilbert space H and F : K ×
K → R be a bifunction satisfying (C)-(C). Let {Ti}Ni= : K → P(K ) be a finite family of
multivalued mappings such that PTi is nonexpansive, where PTi := {y ∈ Tix : dist(x,Tix) =
‖x – y‖} and 
 =

⋂N
i= Fix(Ti) ∩ EP(F ,K ) �= φ. For a given point x ∈ K ,  < c < σn < σ , let

{xn} be defined by

⎧⎪⎨
⎪⎩
wn ∈ ∂εnF(xn, ·)xn,
un = PK (xn – γnwn), γn = βn

max{σn ,‖wn‖} ,
xn+ = αnxn + ( – αn)zn, n≥ ,

(.)

where Tn = Tn(modN), zn ∈ PTnun, {αn}, {βn}, and {εn} are nonnegative sequences satisfying
the following conditions:

(i) αn ∈ [a,b]⊂ (, );
(ii)

∑∞
n= βn =∞,

∑∞
n= β

n < ∞, and
∑∞

n= βnεn <∞.
Then the sequence {xn} converges strongly to x∗ ∈ 
.

Proof Taking p ∈ 
, then PTn (p) = {p}. By substituting PT instead of T and similar argu-
ment as (.) in the proof of Theorem . we obtain

lim
n→∞dist

(
xn,Ti(xn)

) ≤ lim
n→∞dist

(
xn,PTi (xn)

)
= . (.)

By compactness of K , there exists a subsequence {xnk } of {xn} such that limk→∞ xnk = x∗,
for some x∗ ∈ K . Since PTi is nonexpansive for i = , , . . . ,N , we have

dist
(
x∗,Ti

(
x∗)) ≤ dist

(
x∗,PTi

(
x∗))

≤ ∥∥x∗ – xnk
∥∥ + dist

(
xnk ,PTi (xnk )

)
+H

(
PTi (xnk ),PTi

(
x∗))

≤ 
∥∥x∗ – xnk

∥∥ + dist
(
xnk ,PTi (xnk )

)
. (.)

It follows from (.) and (.) that

lim
k→∞

dist
(
x∗,Ti

(
x∗)) = , (.)

which implies that x∗ ∈ ⋂N
i= Fix(Ti). Since {xnk } converges strongly to x∗ and limn→∞ ‖xn–

x∗‖ exists (as in the proof of Theorem .), we find that {xn} converges strongly to x∗. This
completes the proof. �

In addition, we supply an example and numerical results to illustrate our method and
the main results of this paper.

http://www.fixedpointtheoryandapplications.com/content/2014/1/232
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Example . Let H =R and K := [, ] with usual metric. Consider the nonsmooth equi-
librium problem defined by the bifunction

F(x, y) = xy(y – x) + xy|y – x|, ∀x, y ∈ K .

Clearly, F is pseudomonotone on K . Note that F(x, ·) is convex for x ∈ K and ∂F(x, ·)x =
[x, x] by taking εn =  for all n ∈N.
(i) Let Tx := [ x ,

x
 ] defined on K := [, ]. Note that T is a multivalued nonexpansive

mapping and Fix(T)∩EP(F ,K ) = {}. SettingN = , σn = , αn = 
 , βn = 

n , and ‖xn –x∗‖ ≤
– as stop criteria, we obtain the results of algorithm (.) with different initial points in
Table .
(ii) Let Tx := [–x, –x] defined on [,∞) → R. Note that T is not nonexpansive but

PTx = {–x} is nonexpansive for all x ∈ [,∞). Indeed, for each u ∈ Tx, u = –ax,  ≤ a ≤ ,
choose v = –ay. Then

|u – v| = ∣∣–ax – (–ay)
∣∣ = a|x – y| ≤ |x – y| =H(Tx,Ty).

On the other hand, for any x, we have  ∈ [,∞) and T = {}. It follows that Fix(T) ∩
EP(F ,K ) = {}. Setting N = , σn = , αn = 

 , βn = 
n , and ‖xn – x∗‖ ≤ – as stop criteria,

we obtain the results of algorithm (.) with different initial points to be found in Table .
The computations are performed by Matlab Ra running on a PC Desktop Intel(R)

Core(TM) i-M, CPU @. GHz,  MHz, . GB,  GB RAM.

Remark . Our hybrid subgradient method improves the extragradient method of Tran
et al. [] and the inexact subgradient algorithm of Santos and Scheimberg [] for an equi-
librium problem in deducing the computational costs of an iterative process.

Table 1 Numerical results for an initial point x0 = 0.2, 0.5, 0.8

Iter. (n) x(1)n x(2)n x(3)n

0 0.2000 0.5000 0.8000
1 0.1459 0.3618 0.4782
2 0.0816 0.2157 0.2391
3 0.0314 0.1031 0.1206
4 0.0027 0.0351 0.0524
5 0.0000 0.0059 0.0093
6 0.0000 0.0000 0.0001

Table 2 Numerical results for an initial point x0 = 0.2, 0.5, 0.8

Iter. (n) x(1)n x(2)n x(3)n

0 0.2000 0.5000 0.8000
1 0.1683 0.4136 0.6839
2 0.1247 0.3914 0.5284
3 0.0925 0.2518 0.3855
4 0.0621 0.1492 0.2679
5 0.0319 0.0991 0.1732
6 0.0042 0.0427 0.1043
...

...
...

...
11 0.0000 0.0035 0.0086
12 0.0000 0.0001 0.0001

http://www.fixedpointtheoryandapplications.com/content/2014/1/232
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Remark . Our results generalize the results of Eslamian [], a proximal point method
for an equilibrium problem, to a hybrid subgradient method for a pseudomonotone equi-
librium problem.
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