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1 Introduction
Let E be a smooth and real Banach space with the dual space E∗. For x ∈ E and x∗ ∈ E∗, we
denote the value of x∗ at x by 〈x,x∗〉. The function φ : E × E →R [, ] is defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖ for all x, y ∈ E, (.)

where J is the normalized duality mapping from E to E∗. Let C be a nonempty closed
convex subset of E. For a mapping T : C → E, the set of fixed points of T is denoted by
Fix(T). A point a inC is called an asymptotic fixed point ofT if there exists a sequence {xn}
such that xn ⇀ a and limn→∞ ‖xn –Txn‖ = . The set of asymptotic fixed points is denoted
by F̂ix(T). A mapping T : C → E is relatively nonexpansive (see [–]) if the following
properties are satisfied:

(i) Fix(T) 	= ∅;
(ii) φ(p,Tx) ≤ φ(p,x) for all p ∈ Fix(T), x ∈ C;
(iii) F̂ix(T) = Fix(T).

IfT satisfies (i) and (ii), thenT is called relatively quasi-nonexpansive (see []). In aHilbert
space, relatively quasi-nonexpansive mappings coincide with quasi-nonexpansive map-
pings. Quasi-nonexpansive mappings are investigated by Chuang et al. [], Yamada and
Ogura [], Kim [], etc.
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Iterative methods for finding the fixed points of relatively nonexpansive mappings have
been studied by many researchers. Matsushita and Takahashi [] established the Mann-
type iteration for relatively nonexpansive mappings. Nilsrakoo and Saejung [] con-
structed the Halpern-Mann iterative methods for relatively nonexpansive mappings and
proved the strong convergence theorem. Matsushita and Takahashi [] presented the hy-
brid methods for relatively nonexpansive mappings.
Let A be a maximal monotone operator from E to E∗ . Several problems in nonlinear

analysis and optimization can be formulated to find a point x ∈ E such that  ∈ Ax. We
denote by A– the set of all x ∈ E with  ∈ Ax. There has been tremendous interest in de-
veloping themethod for solving zero point problems of maximal monotone operators and
related topics (see [–]). Zeng et al. [–] proposed hybrid proximal-type and hy-
brid shrinking projection algorithms for maximal monotone operators, relatively nonex-
pansive mappings and equilibrium problems. Klin-Eam et al. [] introduced the Halpern
iterative method for finding a common element of the zero point set of a maximal mono-
tone operator and the fixed point set of a relatively nonexpansive mapping in a Banach
space by using hybrid methods. It is helpful to point out that the methods in [–] in-
volve the generalized projections. However, even in Hilbert spaces, sometimes it is hard
to compute the generalized projection.
Motivated by Chuang et al. [] and Nilsrakoo and Saejung [], we present the modified

Halpern-type iterative method for finding a common element of the fixed point set of a
relatively nonexpansive mapping and the zero set of a maximal monotone operator. This
iterative method is practicable since it does not involve the generalized projections. Our
results extend and improve the recent results of some authors.
The paper is organized as follows. Section  contains some important concepts and

facts. Section  is devoted to introducing an iterative scheme and proving a strong con-
vergence theorem. Section  provides some examples and numerical results.

2 Preliminaries
Throughout this paper, let all Banach spaces be real. Let E be a Banach space with the dual
space E∗. The normalized duality mapping J : E → E∗ is defined by

Jx =
{
x∗ ∈ E∗ :

〈
x,x∗〉 = ‖x‖ = ∥∥x∗∥∥} (.)

for every x ∈ E. By the Hahn-Banach theorem, Jx is nonempty for all x ∈ E. In a Hilbert
space, the normalized duality mapping J is the identity (see [] for more details).
A Banach space E is said to be strictly convex if ‖ x+y

 ‖ <  for all x, y ∈ Ewith ‖x‖ = ‖y‖ = 
and x 	= y. It is said to be uniformly convex if for every ε ∈ (, ], there exists δ >  such that
‖ x+y

 ‖ <  – δ for all x, y ∈ E with ‖x‖ = ‖y‖ =  and ‖x – y‖ ≥ ε. Let SE be the unit sphere
of E, that is, SE := {x ∈ E : ‖x‖ = }. A Banach space E is said to be smooth if

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for x, y ∈ SE . It is said to be uniformly smooth if the limit (.) exists uniformly for
x, y ∈ SE . Let us list some well-known facts (see [, ]).
(p) A Banach space E is uniformly smooth if and only if E∗ is uniformly convex.
(p) If E is strictly convex, then J is one-to-one.
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(p) If E is smooth, then J is single-valued.
(p) If E is reflexive, then J is onto.
(p) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each

bounded subset of E.
Let E be a smooth, strictly convex and reflexive Banach space. The function φ : E×E →

R defined by (.) satisfies

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖) (.)

and

φ
(
x, J–

(
λJy + ( – λ)Jz

)) ≤ λφ(x, y) + ( – λ)φ(x, z) (.)

for λ ∈ [, ] and x, y, z ∈ E.
Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive

Banach space E. From Alber [] and Kamimura and Takahashi [], the generalized projec-
tion �C from E onto C is defined by �C(x) = argminz∈C φ(z,x) for all x ∈ E. In a Hilbert
space H , the generalized projection coincides with the nearest metric projection from H
onto C.
Let A be a set-valued mapping from E to E∗ with graph G(A) = {(x,x∗) : x∗ ∈ Ax} and

domain D(A) = {x ∈ E : Ax 	= ∅}. It is said to be monotone if 〈x – y,x∗ – y∗〉 ≥  for all
(x,x∗), (y, y∗) ∈ G(A). A monotone operator is maximal if its graph is not properly con-
tained in the graph of any other monotone operator. For a maximal monotone operator A
and r > , the resolvent of A is defined by Jrx = (J + rA)–Jx for x ∈ E. It is easy to see that
A– = Fix(Jr). The Yosida approximation Ar of A is defined by Arx = Jx–JJrx

r for x ∈ E. Note
that (Jrx,Arx) ∈ G(A).
The following lemmas are useful in the sequel.

Lemma . [] Let E be a reflexive, strictly convex and smooth Banach space, and let
V : E × E∗ →R be defined by

V
(
x,x∗) = ‖x‖ – 

〈
x,x∗〉 + ∥∥x∗∥∥.

Then

V
(
x,x∗) + 

〈
J–

(
x∗) – x, y∗〉 ≤ V

(
x,x∗ + y∗) for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma . [] If E is a uniformly smooth Banach space and r > , then there exists a
continuous, strictly increasing and convex function g : [, r] → [,∞) such that g() = 
and

φ
(
x, J–

(
λJy + ( – λ)Jz

)) ≤ λφ(x, y) + ( – λ)φ(x, z) – λ( – λ)g
(‖Jy – Jz‖)

for all λ ∈ [, ], x ∈ E and y, z ∈ Br = {υ ∈ E : ‖υ‖ ≤ r}.

Lemma . [] Let E be a uniformly convex and smooth Banach space. Suppose that {xn}
and {yn} are two sequences of E such that {xn} or {yn} is bounded. If φ(xn, yn) → , then
xn – yn → .
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Lemma . [] Let C be a nonempty closed convex subset of a reflexive, strictly convex and
smooth Banach space E. If x ∈ E and x̂ ∈ E, then
() If x̂ =�Cx if and only if 〈y – x̂, Jx̂ – Jx〉 ≥  for all y ∈ C;
() φ(y,�Cx) + φ(�Cx,x)≤ φ(y,x) for all y ∈ C.

Lemma . [] Let E be a strictly convex, smooth and reflexive Banach space, and let
A : E → E∗ be a maximal monotone operator with A– 	= ∅. Let Jr = (J + rA)–J for all
r > . Then

φ(y, Jrx) + φ(Jrx,x)≤ φ(y,x) for y ∈ T–,x ∈ E.

Lemma . [] Let {an} be a sequence of nonnegative real numbers satisfying an+ ≤
( – αn)an + αnβn, where

(i) {αn} ⊂ (, ),
∑∞

n= αn =∞;
(ii) lim supn→∞ βn ≤ .

Then limn→∞ an = .

Lemma . [] Let {�n} be a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {�nj} of {�n} such that �nj < �nj+ for all j ∈ N.
Define the sequence {τ (n)}n≥n of integers as follows:

τ (n) =max
k

{k ≤ n : �k < �k+},

where n ∈N such that {k ≤ n : �k < �k+} 	= ∅. Then the following hold:
() τ (n) ≤ τ (n + )≤ · · · and τ (n) → ∞;
() �τ (n) ≤ �τ (n)+ and �n ≤ �τ (n)+ for all n ∈N.

3 Strong convergence theorems
In this section, we present the modified Halpern-type iterative method for a relatively
nonexpansive mapping and amaximal monotone operator in a uniformly convex and uni-
formly smooth Banach space.

Theorem . Let C be a nonempty closed convex subset of a uniformly smooth and uni-
formly convex Banach space E, and let A : E → E∗ be a maximal monotone operator with
D(A) ⊂ C. Assume that the mapping T : C → E is a relatively nonexpansive mapping such
that Fix(T)∩A– 	= ∅. Let q ∈ E be arbitrary, and let {xn} be generated by{

xn = Jrnqn,
qn+ = J–(αnJun + ( – αn)(βnJxn + ( – βn)JTxn)),

(.)

where {αn} and {βn} are sequences in (, ) and the sequence {un} is contained in E. Suppose
that the following conditions are satisfied:
(c) limn→∞ αn =  and

∑∞
n= αn =∞;

(c) lim infn→∞ βn( – βn) > ;
(c) limn→∞ un = u for some u ∈ E;
(c)  < b ≤ rn < ∞.

Then the sequence {xn} converges strongly to �Fix(T)∩A–u.

http://www.fixedpointtheoryandapplications.com/content/2014/1/237
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Proof It follows from [, Proposition .] that the set Fix(T) is closed and convex. The
set Fix(T)∩A– is closed and convex since A– is closed and convex. For simplicity, we
write 
 := Fix(T)∩A–.
Set yn = J–(βnJxn + ( – βn)JTxn). For every ω ∈ 
, we have

φ(ω, yn) ≤ βnφ(ω,xn) + ( – βn)φ(ω,Txn) ≤ φ(ω,xn)

and

φ(ω,xn+) = φ(ω, Jrn+qn+)

≤ φ(ω,qn+)

= φ
(
ω, J–

(
αnJun + ( – αn)Jyn

))
≤ αnφ(ω,un) + ( – αn)φ(ω, yn)

≤ αnφ(ω,un) + ( – αn)φ(ω,xn)

≤max
{
φ(ω,un),φ(ω,xn)

}
.

The sequence {un} is bounded according to condition (c). It follows that there exists a
positive numberM such that φ(ω,un)≤M. Hence, by an easy inductive process, we have

φ(ω,xn+)≤max
{
φ(ω,x),M

}
,

which yields that {xn} is bounded. So are {yn} and {qn}.
Let x =�Fix(T)∩A–u and zn = qn+ = J–(αnJun + ( – αn)Jyn). Lemma . implies that

φ(x,xn+)

= φ(x, Jrn+qn+)

≤ φ
(
x, J–

(
αnJun + ( – αn)Jyn

))
= V

(
x,αnJun + ( – αn)Jyn

)
≤ V

(
x,αnJun + ( – αn)Jyn – αn(Jun – Jx)

)
– 

〈
J–

(
αnJun + ( – αn)Jyn

)
– x, –αn(Jun – Jx)

〉
= V

(
x,αnJx + ( – αn)Jyn

)
+ αn〈zn – x, Jun – Jx〉

= φ
(
x, J–

(
αnJx + ( – αn)Jyn

))
+ αn〈zn – x, Jun – Jx〉

≤ ( – αn)φ(x,xn) + αn〈zn – x, Jun – Ju + Ju – Jx〉
= ( – αn)φ(x,xn) + αn

(〈zn – x, Jun – Ju〉 + 〈zn – x, Ju – Jx〉). (.)

We divide the rest of the proof into two cases.
Case . Suppose that there exists n ∈ N such that φ(x,xn+) ≤ φ(x,xn) for all n ≥ n.

Then the limit limn→∞ φ(x,xn) exists and

lim
n→∞

(
φ(x,xn+) – φ(x,xn)

)
= . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/237
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It follows from Lemma . that there exists a continuous, strictly increasing and convex
function g : [, r]→ [,∞) such that g() =  and

φ(x, yn) ≤ φ(x,xn) – βn( – βn)g
(‖JTxn – Jxn‖

)
,

where r = supn{‖xn‖,‖Txn‖}. Hence, we have

φ(x,xn+)

≤ αnφ(x,un) + ( – αn)φ(x, yn)

≤ αnφ(x,un) + ( – αn)
[
φ(x,xn) – βn( – βn)g

(‖JTxn – Jxn‖
)]

≤ φ(x,xn) + αnL – ( – αn)βn( – βn)g
(‖JTxn – Jxn‖

)
,

where L = supn{φ(x,un) – φ(x,xn)}. This yields that

( – αn)βn( – βn)g
(‖JTxn – Jxn‖

) ≤ φ(x,xn) – φ(x,xn+) + αnL. (.)

Therefore, we conclude that

lim
n→∞‖JTxn – Jxn‖ = .

This together with property (p) gives that

lim
n→∞‖Txn – xn‖ = . (.)

Observe that

φ(Txn, yn) ≤ βnφ(Txn,xn) + ( – βn)φ(Txn,Txn) → 

and

φ(yn, zn) ≤ αnφ(yn,un) + ( – αn)φ(yn, yn) → .

Lemma . implies that Txn – yn →  and yn – zn → . Thus, we get

lim
n→∞‖xn – zn‖ = . (.)

Next, we prove that

lim sup
n→∞

〈zn – x, Ju – Jx〉 ≤ . (.)

Thanks to (.), we have

lim sup
n→∞

〈zn – x, Ju – Jx〉 = lim sup
n→∞

〈xn – x, Ju – Jx〉.

http://www.fixedpointtheoryandapplications.com/content/2014/1/237
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We choose a subsequence {xnj} of {xn} such that

lim sup
n→∞

〈zn – x, Ju – Jx〉 = lim
j→∞〈xnj – x, Ju – Jx〉. (.)

In view of the boundedness of {xnj}, without loss of generality, we assume that xnj ⇀ p.
Now we show that p ∈ 
. According to the definition of T and (.), one has p ∈ Fix(T).
It is sufficient to show that p ∈ A–. For all (h,h∗) ∈G(A), one has

〈
h – Jrnj qnj ,h

∗ –Arnj qnj
〉 ≥ .

Lemma . implies that

φ(xn+,qn+) ≤ φ(x,qn+) – φ(x,xn+)

≤ αnφ(x,un) + ( – αn)φ(x,xn) – φ(x,xn+)

≤ αn
[
φ(x,un) – φ(x,xn)

]
+ φ(x,xn) – φ(x,xn+), (.)

which yields that xn+ – qn+ → , i.e.,

lim
n→∞‖xn – qn‖ = . (.)

Consequently, we get

Arnj qnj =
‖Jqnj – Jxnj‖

rnj
→ .

Recall that xnj = Jrnj qnj ⇀ p. Thus, the maximality of A implies p ∈ A–. Indeed, we have
p ∈ 
. By (.) and Lemma ., we have

lim sup
n→∞

〈zn – x, Ju – Jx〉 = lim
j→∞〈xnj – x, Ju – Jx〉

= 〈p – x, Ju – Jx〉
≤ .

Thus, inequality (.) holds.
Using (.), (.) and Lemma ., we see that the sequence {xn} converges strongly to x.
Case . Suppose that there exists a subsequence {nj} of {n} such that

φ(x,xnj ) < φ(x,xnj+)

for all j ∈N. By Lemma ., there is a nondecreasing sequence such that τ (n)→ ∞,

φ(x,xτ (n)) ≤ φ(x,xτ (n)+) and φ(x,xn)≤ φ(x,xτ (n)+)

for all n ∈N. Expression (.) implies that

( – ατ (n))βτ (n)( – βτ (n))g
(‖JTxτ (n) – Jxτ (n)‖

)
≤ φ(x,xτ (n)) – φ(x,xτ (n)+) + ατ (n)M. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/237
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Hence, we have

lim
n→∞‖Txτ (n) – xτ (n)‖ = . (.)

It follows from (.) that

lim
n→∞‖xτ (n) – qτ (n)+‖ = . (.)

By (.), one has

lim
n→∞‖xτ (n)+ – qτ (n)+‖ = . (.)

Combining (.) and (.) gives

lim
n→∞‖xτ (n)+ – xτ (n)‖ = . (.)

It follows from (.) and (.) that

lim sup
n→∞

〈zτ (n) – x, Ju – Jx〉

= lim
j→∞〈xτ (nj) – x, Ju – Jx〉

= lim
j→∞〈xτ (nj)+ – x, Ju – Jx〉. (.)

An argument similar to the one in Case  shows that

lim sup
n→∞

〈zτ (n) – x, Ju – Jx〉 ≤ . (.)

By (.), we have

φ(x,xτ (n)+)

≤ ( – ατ (n))φ(x,xτ (n)) + ατ (n)
(〈zτ (n) – x, Juτ (n) – Ju〉 + 〈zτ (n) – x, Ju – Jx〉), (.)

which yields that

φ(x,xτ (n)) ≤ 
(〈zτ (n) – x, Juτ (n) – Ju〉 + 〈zτ (n) – x, Ju – Jx〉).

This together with (.) implies that φ(x,xτ (n)) → . It follows from (.) that
φ(x,xτ (n)+) → . Then we have xn → x according to the fact that φ(x,xn) ≤ φ(x,xτ (n)+).
The proof is completed. �

Remark  Letting u =  in our result, we obtain the algorithm forminimal-norm solutions
of the corresponding problem.

Remark  When A = ∂δC (that is, the subdifferential of the indicator function of C) and
q = x, Theorem . improves and extends the result of Nilsrakoo and Saejung [, The-
orem .] in which the variable un is reduced to the constant u.

http://www.fixedpointtheoryandapplications.com/content/2014/1/237
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Now, we apply our result to the equilibrium problem. Let C be a nonempty closed con-
vex subset of a uniformly smooth and uniformly convex Banach space E, and let f be a
bifunction from C ×C to R. The equilibrium problem is to find x ∈ C such that

f (x, y) ≥  for all y ∈ C. (.)

The set of solutions of (.) is denoted by EP(f ). Numerous problems in physics, opti-
mization and economics can be reduced to finding a solution of the equilibrium problem
(for instance, see []). The equilibrium problem has been studied extensively (see [, ,
–]).
For solving the equilibrium problem, we assume that the bifunction f satisfies the fol-

lowing conditions:
(a) f (x,x) =  for all x ∈ C;
(a) f is monotone, i.e., f (x, y) + f (y,x) ≤  for all x, y ∈ C;
(a) For every x, y, z ∈ C, lim supt↓ f (tz + ( – t)x, y) ≤ f (x, y);
(a) f (x, ·) is convex and lower semicontinuous for all x ∈ C.
Takahashi and Zembayashi [] obtained the following result.

Proposition . [] Let C be a nonempty closed convex subset of a uniformly smooth
and strictly convex Banach space E, and let f be a bifunction from C × C to R satisfying
(a)-(a). For r > , define a mapping Tr : E → C as follows:

Tr(x) =
{
z ∈ C : f (z, y) +


r
〈y – z, Jz – Jx〉 ≥  for all y ∈ C

}

for all x ∈ E. Then the following hold:
(r) Tr is single-valued;
(r) Tr is a firmly nonexpansive-type mapping, i.e., for x, y ∈ E,

〈Trx – Try, Jx – Jy〉 ≥ 〈Trx – Try, JTrx – JTry〉;
(r) Fix(Tr) = EP(f );
(r) EP(f ) is closed and convex.

We call Tr the resolvent of f for r > . The following result is a specialized case of the
result of Aoyama et al. [, Theorem .].

Proposition . Let C be a nonempty closed convex subset of a uniformly smooth and
uniformly convex Banach space E, and let f be a bifunction from C × C to R satisfying
(a)-(a). Let Af be a set-valued mapping of E into E∗ defined by

Af x =

{
{x∗ ∈ E∗ : f (x, y) ≥ 〈y – x,x∗〉 for all y ∈ C} if x ∈ C,
∅ if x /∈ C.

(.)

Then Af is a maximal monotone operator with D(Af ) ⊂ C and EP(f ) = A–
f . Furthermore,

for r > , the resolvent Tr of f coincides with the resolvent (J + rAf )–J of Af .

Using Theorem . and Proposition ., we get the following result.
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Corollary . Let C be a nonempty closed convex subset of a uniformly smooth and uni-
formly convex Banach space E, and let f be a bifunction from C × C to R satisfying (a)-
(a). Assume that the mapping T : C → E is a relatively nonexpansive mapping such that
Fix(T)∩ EP(f ) 	= ∅. Let q ∈ E and {xn} be generated by{

xn ∈ C such that f (xn, y) + 
rn 〈y – xn, Jxn – Jqn〉 ≥  for all y ∈ C,

qn+ = J–(αnJun + ( – αn)(βnJxn + ( – βn)JTxn)),
(.)

where {αn} and {βn} are sequences in (, ) and the sequence {un} is contained in E. If con-
ditions (c)-(c) are satisfied, then the sequence {xn} converges strongly to �Fix(T)∩EP(f )u.

Remark  Corollary . improves and extends Theorem . of Chuang et al. [].

4 Numerical experiments
In this section, we give some examples and numerical results to illustrate our result in the
preceding section.

Example . Let E =R and C = [–, ]. The mapping T : C → E is defined by

Tx =

{
 if x = ,
x
 cos


x if x ∈ C \ {}. (.)

We claim that T is a relatively nonexpansive mapping. In fact, it follows from Fix(T) =
{} that

|Tx – | ≤
∣∣∣∣x cos


x
– 

∣∣∣∣ ≤ |x – | for all x ∈ [–, ].

However, T is not nonexpansive. To show this, it is sufficient to take x = 
π and y = 

π

(for more details, see []). Let A be the subdifferential of the indicator function of C. It
follows from [, Theorem A] that A is a maximal monotone operator. The resolvent J ()r

is the metric projection onto C, namely, for all r > ,

J ()r x =

⎧⎪⎨⎪⎩
 if x≥ ,
x if – < x < ,
– if x≤ –.

(.)

Let αn = 
n+ , βn = 

 –


n+ , un =
n–
n , and rn = 

 . Then all the assumptions and conditions
in Theorem . are satisfied. Given q = –., the numerical result is shown in Figure .

Example . Let E =R and C = [–., .]. The mapping T : C → E is defined by

Tx = x for x ∈ [–., .]. (.)

It is a relatively nonexpansive mapping. Moreover, the mapping T is nonexpansive. For
all x, y ∈ [–., .], we see that

|Tx – Ty| ≤
∣∣x – y

∣∣ ≤ |x + y| · |x – y| ≤ |x – y|.

http://www.fixedpointtheoryandapplications.com/content/2014/1/237
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Figure 1 Numerical result for Example 4.1.

Figure 2 Numerical result for Example 4.2.

Let A be the subdifferential of the indicator function of C. By an argument similar to the
one in Example ., the resolvent J ()r is defined as follows.

J ()r x =

⎧⎪⎨⎪⎩
. if x≥ .,
x if –. < x < .,
–. if x≤ –..

(.)

Let αn = 
ln(n+) , βn = 

 –


n+ , un =
sinn
n+ , and rn = 

 . Putting q = ., the numerical result is
given in Figure .

Remark  Figures  and  show that when an iteration step n is greater than  and  in
Examples . and . respectively, the term xn is close to the desired element. Therefore,
our iterative method is effective.
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