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Abstract
We introduce an implicit method for finding an element of the set of common fixed
points of a representation of nonexpansive mappings. Then we prove the strong
convergence of the proposed implicit scheme to the common fixed point of a
representation of nonexpansive mappings.
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1 Introduction
Let C be a nonempty closed and convex subset of a Banach space E and E∗ be the dual
space of E. Let 〈·, ·〉 denote the pairing between E and E∗. The normalized duality mapping
J : E → E∗ is defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}

for all x ∈ E. In the sequel, we use j to denote the single-valued normalized duality map-
ping. Let U = {x ∈ E : ‖x‖ = }. E is said to be smooth or to have a Gâteaux differentiable
norm if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x, y ∈ U . E is said to have a uniformly Gâteaux differentiable norm if for
each y ∈ U , the limit is attained uniformly for all x ∈ U . E is said to be uniformly smooth
or is said to have a uniformly Féchet differentiable norm if the limit is attained uniformly
for x, y ∈ U . It is known that if the norm of E is uniformly Gâteaux differentiable, then
the duality mapping J is single-valued and uniformly norm to weak∗ continuous on each
bounded subset of E. A Banach space E is smooth if the duality mapping J of E is single-
valued. We know that if E is smooth, then J is norm to weak-star continuous; for more
details, see [].
Let C be a nonempty closed and convex subset of a Banach space E. A mapping T of C

into itself is called nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C, and a mapping f is
an α-contraction on E if ‖f (x) – f (y)‖ ≤ α‖x – y‖, x, y ∈ E such that  ≤ α < .
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In this paper, motivated by Lashkarizadeh Bami and Soori [] and Hussain and Taka-
hashi [], we introduce the following general implicit algorithm for finding a common
element of the set of fixed points of a representation S = {Tt : t ∈ S} of a semigroup S as
nonexpansivemappings fromC into itself, with respect to a left regular sequence ofmeans
defined on an appropriate subspace of bounded real-valued functions of the semigroup.
On the other hand, our goal is to prove that there exists a sunny nonexpansive retraction P
of C onto Fix(S) and x ∈ C such that the following sequence {zn} converges strongly to Px:

zn = εnf (zn) + ( – εn)Tμnzn (n ∈ N).

2 Preliminaries
Let S be a semigroup. We denote by B(S) the Banach space of all bounded real-valued
functions defined on S with supremum norm. For each s ∈ S and f ∈ B(S), we define ls and
rs in B(S) by

(lsf )(t) = f (st), (rsf )(t) = f (ts) (t ∈ S).

Let X be a subspace of B(S) containing , and let X∗ be its topological dual. An element μ

of X∗ is said to be a mean on X if ‖μ‖ = μ() = . We often write μt(f (t)) instead of μ(f )
for μ ∈ X∗ and f ∈ X. Let X be left invariant (resp. right invariant), i.e., ls(X) ⊂ X (resp.
rs(X) ⊂ X) for each s ∈ S. A mean μ on X is said to be left invariant (resp. right invariant)
if μ(lsf ) = μ(f ) (resp.μ(rsf ) = μ(f )) for each s ∈ S and f ∈ X. X is said to be left (resp. right)
amenable if X has a left (resp. right) invariant mean. X is amenable if X is both left and
right amenable. As is well known, B(S) is amenable when S is a commutative semigroup
(see p. of []). A net {μα} of means on X is said to be left regular if

lim
α

∥∥l∗s μα –μα

∥∥ = 

for each s ∈ S, where l∗s is the adjoint operator of ls.
Let f be a function of the semigroup S into a reflexive Banach space E such that the weak

closure of {f (t) : t ∈ S} is weakly compact, and letX be a subspace of B(S) containing all the
functions t → 〈f (t),x∗〉 with x∗ ∈ E∗. We know from [] that for any μ ∈ X∗, there exists
a unique element fμ in E such that 〈fμ,x∗〉 = μt〈f (t),x∗〉 for all x∗ ∈ E∗. We denote such fμ
by

∫
f (t) dμ(t). Moreover, if μ is a mean on X, then from [],

∫
f (t) dμ(t) ∈ co{f (t) : t ∈ S}.

Let C be a nonempty closed and convex subset of E. Then a family S = {Ts : s ∈ S} of
mappings from C into itself is said to be a representation of S as a nonexpansive mapping
on C into itself if S satisfies the following:
() Tstx = TsTtx for all s, t ∈ S and x ∈ C;
() for every s ∈ S, the mapping Ts : C → C is nonexpansive.

We denote by Fix(S) the set of common fixed points of S , that is, Fix(S) =
⋂

s∈S{x ∈ C :
Tsx = x}.

Theorem. [] Let S be a semigroup, let C be a closed, convex subset of a reflexive Banach
space E, S = {Ts : s ∈ S} be a representation of S as a nonexpansive mapping from C into
itself such that weak closure of {Ttx : t ∈ S} is weakly compact for each x ∈ C, and let X be
a subspace of B(S) such that  ∈ X and the mapping t → 〈T(t)x,x∗〉 be an element of X for
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each x ∈ C and x∗ ∈ E, and μ be a mean on X. If we write Tμx instead of
∫
Ttxdμ(t), then

the following hold.
(i) Tμ is a nonexpansive mapping from C into C.
(ii) Tμx = x for each x ∈ Fix(S).
(iii) Tμx ∈ co{Ttx : t ∈ S} for each x ∈ C.
(iv) If X is rs-invariant for each s ∈ S and μ is right invariant, then TμTt = Tμ for each

t ∈ S.

Remark From Theorem .. in [], every uniformly convex Banach space is strictly con-
vex and reflexive.

Let D be a subset of B, where B is a subset of a Banach space E, and let P be a retraction
of B onto D, that is, Px = x for each x ∈ D. Then P is said to be sunny if for each x ∈ B
and t ≥  with Px + t(x – Px) ∈ B, P(Px + t(x – Px)) = Px. A subset D of B is said to be
a sunny nonexpansive retract of B if there exists a sunny nonexpansive retraction P of B
onto D. We know that if E is smooth and P is a retraction of B onto D, then P is sunny
and nonexpansive if and only if for each x ∈ B and z ∈ D, 〈x – Px, J(z – Px)〉 ≤ . For more
details, see [].

Lemma . [] Let S be a semigroup, and let C be a compact convex subset of a real strictly
convex and smooth Banach space E. Suppose that S = {Ts : s ∈ S} is a representation of S as
a nonexpansive mapping from C into itself. Let X be a left invariant subspace of B(S) such
that  ∈ X, and the function t �→ 〈Ttx,x∗〉 is an element of X for each x ∈ C and x∗ ∈ E∗.
If μ is a left invariant mean on X, then Fix(Tμ) = TμC = Fix(S) and there exists a unique
sunny nonexpansive retraction from C onto Fix(S).

Throughout the rest of this paper, the open ball of radius r centered at  is denoted by Br .
Let C be a nonempty closed convex subset of a Banach space E. For ε >  and a mapping
T : C → C, we let Fε(T) be the set of ε-approximate fixed points of T , i.e., Fε(T) = {x ∈ C :
‖x – Tx‖ ≤ ε}.

3 Main result
In this section, we deal with a strong convergence approximation scheme for finding a
common element of the set of common fixed points of a representation of nonexpansive
mappings.

Theorem . Let S be a semigroup. Let C be a nonempty compact convex subset of a real
strictly convex and reflexive and smooth Banach space E. Suppose that S = {Ts : s ∈ S} is a
representation of S as a nonexpansive mapping from C into itself such that Fix(S) �= ∅. Let
X be a left invariant subspace of B(S) such that  ∈ X, and the function t �→ 〈Ttx,x∗〉 is an
element of X for each x ∈ C and x∗ ∈ E∗. Let {μn} be a left regular sequence of means on X.
Suppose that f is an α-contraction on C. Let εn be a sequence in (, ) such that limn εn = .
Then there exists a unique sunny nonexpansive retraction P of C onto Fix(S) and x ∈ C
such that the following sequence {zn} generated by

zn = εnf (zn) + ( – εn)Tμnzn (n ∈ N) ()

strongly converges to Px.
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Proof By Proposition .. and Theorem .. in [], any compact subset C of a reflexive
Banach space E is weakly compact, and from Proposition .. in [], any closed convex
subset of a weakly compact subset C of a Banach space E is itself weakly compact, and
by Proposition .. in [], any convex subset C of a normed space E is weakly closed if
and only if C is closed. Therefore, weak closure of {Ttx : t ∈ S} is weakly compact for each
x ∈ C.
We divide the proof into five steps.
Step . The existence of zn which satisfies ().
This follows immediately from the fact that for every n ∈ N, the mapping Nn given by

Nnx := εnf (x) + ( – εn)Tμnx (x ∈ C)

is a contraction. To see this, put βn = ( + εn(α – )), then ≤ βn <  (n ∈N). Then we have

‖Nnx –Nny‖ ≤ εn
∥∥f (x) – f (y)

∥∥ + ( – εn)‖Tμnx – Tμny‖
≤ εnα‖x – y‖ + ( – εn)‖x – y‖
=

(
 + εn(α – )

)‖x – y‖ = βn‖x – y‖.

Therefore, by the Banach contraction principle [], there exists a unique point zn ∈ C such
that Nnzn = zn.
Step . limn→∞ ‖zn – Ttzn‖ =  for all t ∈ S.
Consider t ∈ S and let ε > . By Lemma  in [], there exists δ >  such that coFδ(Tt) +

Bδ ⊆ Fε(Tt). By Corollary . in [], there also exists a natural number N such that

∥∥∥∥∥ 
N + 

N∑
i=

Ttisy – Tt

(


N + 

N∑
i=

Ttisy

)∥∥∥∥∥ ≤ δ ()

for all s ∈ S and y ∈ C. Let p ∈ Fix(S) andM be a positive number such that supy∈C ‖y‖ ≤
M. Let t ∈ S, since {μn} is strongly left regular, there existsN ∈ N such that ‖μn– l∗tiμn‖ ≤

δ
(M)

for n≥N and i = , , . . . ,N . Then we have

sup
y∈C

∥∥∥∥∥Tμny –
∫ 

N + 

N∑
i=

Ttisydμn(s)

∥∥∥∥∥
= sup

y∈C
sup

‖x∗‖=

∣∣∣∣∣〈Tμny,x
∗〉 –

〈∫ 
N + 

N∑
i=

Ttisydμn(s),x∗
〉∣∣∣∣∣

= sup
y∈C

sup
‖x∗‖=

∣∣∣∣∣ 
N + 

N∑
i=

(μn)s
〈
Tsy,x∗〉 – 

N + 

N∑
i=

(μn)s
〈
Ttisy,x∗〉∣∣∣∣∣

≤ 
N + 

N∑
i=

sup
y∈C

sup
‖x∗‖=

∣∣(μn)s
〈
Tsy,x∗〉 – (

l∗tiμn
)
s

〈
Tsy,x∗〉∣∣

≤ max
i=,,...,N

∥∥μn – l∗tiμn
∥∥(
M + ‖p‖)

≤ max
i=,,...,N

∥∥μn – l∗tiμn
∥∥(M)

≤ δ (n≥N). ()
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By Theorem . we have

∫ 
N + 

N∑
i=

Ttisydμn(s) ∈ co

{


N + 

N∑
i=

Tti (Tsy) : s ∈ S

}
. ()

It follows from ()-() that

Tμny ∈ co

{


N + 

N∑
i=

Ttisy : s ∈ S

}
+ Bδ

⊂ coFδ(Tt) + Bδ ⊂ Fε(Tt)

for all y ∈ C and n ≥N. Therefore, lim supn→∞ supy∈C ‖Tt(Tμny) – Tμny‖ ≤ ε. Since ε > 
is arbitrary, we have

lim sup
n→∞

sup
y∈C

∥∥Tt(Tμny) – Tμny
∥∥ = . ()

Let t ∈ S and ε > , then there exists δ >  which satisfies (). Take L = ( + α)M +
‖f (p)–p‖. Now, from the condition limn εn =  and from (), there exists a natural number
N such that Tμny ∈ Fδ(Tt) for all y ∈ C and εn < δ

L
for all n ≥ N. Since p ∈ Fix(S), we

have

εn
∥∥f (zn) – Tμnzn

∥∥ ≤ εn
(∥∥f (zn) – f (p)

∥∥ +
∥∥f (p) – p

∥∥ + ‖Tμnp – Tμnzn‖
)

≤ εn
(
α‖zn – p‖ + ∥∥f (p) – p

∥∥ + ‖A‖‖zn – p‖)
≤ εn

(
α‖zn – p‖ + ∥∥f (p) – p

∥∥ + ‖zn – p‖)
≤ εn

(
( + α)‖zn – p‖ + ∥∥f (p) – p

∥∥)
≤ εn

(
( + α)M +

∥∥f (p) – p
∥∥)

= εnL ≤ δ



for all n ≥N. Observe that

zn = εnf (zn) + ( – εn)Tμnzn

= Tμnzn + εn
(
f (zn) – Tμnzn

)
∈ Fδ(Tt) + B δ



⊆ Fδ(Tt) + Bδ

⊆ Fε(Tt)

for all n ≥N. This shows that

‖zn – Ttzn‖ ≤ ε (n≥N).

Since ε >  is arbitrary, we get limn→∞ ‖zn – Ttzn‖ = .
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Step .S{zn} ⊂ Fix(S), whereS{zn} denotes the set of strongly limit points of {zn}.
Let z ∈S{zn}, and let {znj} be a subsequence of {zn} such that znj → z,

‖Ttz – z‖ ≤ ‖Ttz – Ttznj‖ + ‖Ttznj – znj‖ + ‖znj – z‖
≤ ‖znj – z‖ + ‖Ttznj – znj‖,

then by Step ,

‖Ttz – z‖ ≤  lim
j

‖znj – z‖ + lim
j

‖Ttznj – znj‖ = ,

therefore z ∈ Fix(S).
Step . There exists a unique sunny nonexpansive retraction P of C onto Fix(S) and

x ∈ C such that

� := lim sup
n

〈
x – Px, J(zn – Px)

〉 ≤ . ()

By Lemma . there exists a unique sunny nonexpansive retraction P of C onto Fix(S).
The Banach contraction mapping principle guarantees that fP has a unique fixed point
x ∈ C. We show that

� := lim sup
n

〈
x – Px, J(zn – Px)

〉 ≤ .

Note that from the definition of � and the fact that C is a compact subset of E, we can
select a subsequence {znj} of {zn} with the following properties:

(i) limj〈x – Px, J(znj – Px)〉 = �;
(ii) {znj} converges strongly to a point z.

By Step , we have z ∈ Fix(S). Since E is smooth, we have

� = lim
j

〈
x – Px, J(znj – Px)

〉
=

〈
x – Px, J(z – Px)

〉 ≤ .

Since fPx = x, we have (f – I)Px = x – Px. From Theorem ..(v) in [], for x, y ∈ E and
f ∈ J(y), ‖x‖ – ‖y‖ ≥ (x – y, f ). Therefore, for each n ∈N, we have

εn(α – )‖zn – Px‖

≥ [
εnα‖zn – Px‖ + ( – εn)‖zn – Px‖] – ‖zn – Px‖

≥ [
εn

∥∥f (zn) – f (Px)
∥∥ + ( – εn)‖Tμnzn – Px‖] – ‖zn – Px‖

≥ 
〈
εn

(
f (zn) – f (Px)

)
+ ( – εn)(Tμnzn – Px) – (zn – Px), J(zn – Px)

〉
= –εn

〈
(f – I)Px, J(zn – Px)

〉
= –εn

〈
x – Px, J(zn – Px)

〉
.

Hence

‖zn – Px‖ ≤ 
 – α

〈
x – Px, J(zn – Px)

〉
. ()
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Step . {zn} strongly converges to Px.
Indeed, from (), () and Px ∈ Fix(S), we conclude

lim sup
n

‖zn – Px‖ ≤ 
 – α

lim sup
n

〈
x – Px, J(zn – Px)

〉 ≤ .

That is, zn → Px. �

Remark . It would be an interesting problem to prove Theorem . for continuous
representations instead of nonexpansive.
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