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Abstract
In a quasi-gauge space (X ,P ) with quasi-gauge P , using the left (right) J -families of
generalized quasi-pseudodistances on X (J -families on X generalize quasi-gauge P ),
the left (right) quasi-distancesDL–J

η (DR–J
η ) of Hausdorff type on 2X are defined,

η ∈ {1, 2, 3}, the three kinds of left (right) set-valued contractions of Nadler type are
constructed, and, for such contractions, the left (right) P-convergence of dynamic
processes starting at each point w0 ∈ X is studied and the existence and localization
of periodic and fixed point results are proved. As implications, two kinds of left (right)
single-valued contractions of Banach type are defined, and, for such contractions, the
left (right) P-convergence of Picard iterations starting at each point w0 ∈ X is studied,
and existence, localization, periodic point, fixed point and uniqueness results are
established. Appropriate tools and ideas of studying based on J -families and also
presented examples showed that the results: are new in quasi-gauge, topological,
gauge, quasi-uniform and quasi-metric spaces; are new even in uniform and metric
spaces; do not require completeness and Hausdorff properties of the spaces (X ,P ),
continuity of contractions, closedness of values of set-valued contractions and
propertiesDL–J

η (U,V) =DL–J
η (V ,U) (DR–J

η (U,V) =DR–J
η (V ,U)) andDL–J

η (U,U) = 0
(DR–J

η (U,U) = 0), η ∈ {1, 2, 3}, U,V ∈ 2X ; provide information concerning localizations
of periodic and fixed points; and substantially generalize the well-known theorems of
Nadler and Banach types.
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1 Introduction
There are in the literature many different versions of the well-known theorems due to Ba-
nach [] and Nadler [] concerning fixed points for single-valued and set-valued dynamic
systems, respectively, in complete metric spaces. Especially, their analogues in more gen-
eral spaces and concerning nontrivial problems and more complicated situations are im-
portant, fascinating and challenging (cf. [–]).
Recall that a set-valued dynamic system is defined as a pair (X,T), where X is a certain

space and T is a set-valued map T : X → X ; here X denotes the family of all nonempty
subsets of a space X. In particular, a set-valued dynamic system includes the single-valued
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dynamic system (X,T) where T is a single-valued map T : X → X, i.e., ∀x∈X{T(x) ∈ X}. For
m ∈ {} ∪N, define T [m] = T ◦T ◦ · · · ◦T (m-times) and T [] = IX (an identity map on X).
Let (X,T) be a set-valued dynamic system. By Fix(T) and Per(T) we denote the sets of

all fixed points and periodic points of T , respectively, i.e., Fix(T) = {w ∈ X : w ∈ T(w)} and
Per(T) = {w ∈ X : w ∈ T [s](w) for some s ∈ N}. A dynamic process or a trajectory starting
at w ∈ X or amotion of the system (X,T) at w is a sequence (wm :m ∈ {} ∪N) defined
by wm ∈ T(wm–) form ∈N (see Aubin and Siegel [], Aubin and Ekeland [], Aubin and
Frankowska [] and Yuan []).
Let (X,T) be a single-valued dynamic system. For each w ∈ X, a sequence (wm : m ∈

{}∪N) such that ∀m∈{}∪N{wm = T [m](w)} is called a Picard iteration starting at w of the
system (X,T).
The notion of Banach’s contraction belongs to themost fundamentalmathematical ideas

and a classic result of Banach, from , is the milestone in the history of fixed point
theory and its applications.

Theorem . (Banach []) Let (X,d) be a complete metric space. Assume that the single-
valued dynamic system (X,T) is (d,λ)-contraction, i.e.,

∃λ∈[;)∀x,y∈X
{
d
(
T(x),T(y)

) ≤ λd(x, y)
}
. (.)

Then T has a unique fixed point w in X (i.e., T(w) = w and Fix(T) = {w}) and, for each
w ∈ X, the sequence (wm = T [m](w) :m ∈ {} ∪N) satisfies limm→∞ d(w,wm) = .

Recall that the Hausdorff metric Hd on the class of all nonempty closed and bounded
subsets CB(X) of the metric space (X,d) is defined as

∀U ,V∈CB(X)
{
Hd(U ,V ) =max

{
sup
u∈U

d(u,V ), sup
v∈V

d(v,U)
}}

, (.)

where ∀u∈X∀V∈CB(X){d(u,V ) = infv∈V d(u, v)}.
In a slightly different direction is the following elegant result of Nadler on set-valued

dynamic systems.

Theorem . (Nadler [, Theorem ]) Let (X,d) be a complete metric space. Assume that
the set-valued dynamic system (X,T) satisfying T : X → CB(X) is (Hd,λ)-contraction, i.e.,

∃λ∈[;)∀x,y∈X
{
Hd(T(x),T(y)) ≤ λd(x, y)

}
. (.)

Then Fix(T) 
=∅ (i.e., there exists w ∈ X such that w ∈ T(w)).

Remark . Clearly, (X,d) and (CB(X),Hd), as metrics, are Hausdorff spaces, and the
completeness of (X,d) implies the completeness of (CB(X),Hd). Observe that in the proofs
of Theorems . and . the following play an important role: (a) the continuity of d and
Hd ; (b) the completeness and the separability of the spaces (X,d) and (CB(X),Hd); (c) the
continuity of maps T : (X,d) → (X,d) and T : (X,d) → (CB(X),Hd) satisfying conditions
(.) and (.), respectively; (d) in Theorem . the assumption that for each x ∈ X, T(x) is
closed in X; (e) the properties Hd(U ,V ) =Hd(V ,U) and Hd(U ,U) = , U ,V ∈ CB(X).
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By analyzing Theorems . and ., one may build many examples without properties
(a)-(e) and such that the assertions are obtainable and remain valid. These remarks sug-
gest that more subtle investigations and modifications of structures on X, and the con-
cept of distance of Hausdorff defined by (.), and the concepts of contractions of Banach
and Nadler defined by (.) and (.) respectively are necessary. The aim of this paper is
to provide new modifications of Theorems . and . removing the assumptions (a)-(e)
mentioned in Remark . and leaving the assertions such as in Theorems . and ., even
in more general forms.
More precisely, let X be a nonempty set, let the family P = {pα : α ∈ A} of quasi-

pseudometrics pα : X × X → [,∞), α ∈ A, be a quasi-gauge on X such that (X,P) is
a quasi-gauge space (in the sense of Dugundji [] and Reilly []), and let the family
J = {Jα : α ∈ A} of generalized quasi-pseudodistances Jα : X × X → [,∞), α ∈ A, be
a left (right) J -family on X (J -families on X generalize quasi-gauge P on X). Then, in
(X,P), using the left (right)J -families on X, the left (right) quasi-distancesDL–J

η (DR–J
η ),

η ∈ {, , }, of Hausdorff type on X are defined, the three kinds of left (right) set-valued
contractions of Nadler type are constructed, and, for such contractions, the left (right)
P-convergence of dynamic processes starting at each point w ∈ X is studied and the ex-
istence and localization of periodic and fixed point results are proved. As implications, two
kinds of left (right) single-valued contractions of Banach type are defined, the left (right)
P-convergence of Picard iterations starting at each point w ∈ X is studied, and existence,
localization, periodic point, fixed point and uniqueness results for such contractions are
established.
The left (right) set-valued and single-valued contractions are studied here on X, on

{w} ∪ BL–J (w, r) and on {w} ∪ BR–J (w, r), where BL–J (w, r) (BR–J (w, r)) are left
(right) J -balls centered in w ∈ X of radius r = {rα}α∈A ∈ (;∞)A.
Moreover, in our investigations, we assume additionally that these left (right) contrac-

tions are left (right) J -admissible or left (right) partially J -admissible. Also, the cases
when these left (right) contractions are left (right) P-quasi-closed maps are described.
Appropriate tools and ideas of studying based on asymmetric structures determined by

J -families and also presented examples showed that the results: are new in quasi-gauge,
topological, gauge, quasi-uniform and quasi-metric spaces; are new even in uniform
and metric spaces; do not require completeness and Hausdorff properties of the spaces
(X,P), continuity of contractions, closedness of values of set-valued contractions and
properties DL–J

η (U ,V ) = DL–J
η (V ,U) (DR–J

η (U ,V ) = DR–J
η (V ,U)) and DL–J

η (U ,U) = 
(DR–J

η (U ,U) = ), η ∈ {, , },U ,V ∈ X ; provide information concerning localizations of
periodic and fixed points; and substantially generalize the well-known theorems of Nadler
and Banach types.

2 Quasi-gauge spaces
Before proceeding further, let us record the following.

Definition . Let X be a nonempty set.
(A) A quasi-pseudometric on X is a map p : X ×X → [,∞) such that:

(a) ∀u∈X{p(u,u) = }; and (b) ∀u,v,w∈X{p(u,w) ≤ p(u, v) + p(v,w)}. For given
quasi-pseudometric p on X , a pair (X,p) is called quasi-pseudometric space.
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A quasi-pseudometric space (X,p) is called Hausdorff if

∀u,v∈X
{
u 
= v ⇒ p(u, v) > ∨ p(v,u) > 

}
. (.)

(B) Each family P = {pα : α ∈A} of quasi-pseudometrics pα : X ×X → [,∞), α ∈A, is
called a quasi-gauge on X .

(C) Let the family P = {pα : α ∈A} be a quasi-gauge on X . The topology T (P) having
as a subbase the family B(P) = {B(u, εα) : u ∈ X, εα > ,α ∈A} of all balls
B(u, εα) = {v ∈ X : pα(u, v) < εα}, u ∈ X , εα > , α ∈A, is called the topology induced
by P on X .

(D) (Dugundji [], Reilly [, ]) A topological space (X,T ) such that there is a
quasi-gauge P on X with T = T (P) is called a quasi-gauge space and is denoted by
(X,P).

(E) A quasi-gauge space (X,P) is called Hausdorff if the quasi-gauge P has the
property:

∀u,v∈X
{
u 
= v ⇒ ∃α∈A

{
pα(u, v) > ∨ pα(v,u) > 

}}
. (.)

(F) Let the family P = {pα : α ∈A} be a quasi-gauge on X , and let (X,P) be a
quasi-gauge space. If P ′ = {p′

α : α ∈A}, where ∀α∈A∀u,v∈X{p′
α(u, v) = pα(v,u)}, then

(X,P ′) is a quasi-gauge space and (X,P ′) is called the conjugate of (X,P).

Remark . Each quasi-uniform space and each topological space is a quasi-gauge space
(Reilly [, Theorems . and .]). The quasi-gauge spaces are the greatest general spaces
with asymmetric structures.

3 Left (right)J -families
Historically, the first work on the distances in metric spaces (X,d) was done by Tataru
[].Next, the concepts ofw-distances, τ -functions and τ -distances in these spaces, which
generalize Tataru distances andmetrics d, were introduced by Kada et al. [], Lin and Du
[] and Suzuki [], respectively. Distances in uniform spaces had first been formulated
by Vályi []. From rich literature it follows that the above distances provide useful and
powerful tools for investigating problems of fixed point theory. Using these ideas, more
general and various distances have been demonstrated in [–].
For a different purpose, in quasi-gauge spaces (X,P) with quasi-gauges P = {pα : α ∈

A} on X, we recall the left (right) J -families of generalized quasi-pseudodistances on X
(left (right) J -families generalize quasi-gauges P).

Definition . ([, Section ]) Let (X,P) be a quasi-gauge space.
(A) The family J = {Jα : α ∈A} of maps Jα : X ×X → [,∞), α ∈A, is said to be a left

(right) J -family of generalized quasi-pseudodistances on X (left (right) J -family
on X , for short) if the following two conditions hold:

(J ) ∀α∈A∀u,v,w∈X{Jα(u,w) ≤ Jα(u, v) + Jα(v,w)}; and
(J ) for any sequences (um :m ∈N) and (vm :m ∈N) in X satisfying

∀α∈A
{
lim

m→∞ sup
n>m

Jα(um,un) = 
}

(.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/239


Włodarczyk Fixed Point Theory and Applications 2014, 2014:239 Page 5 of 27
http://www.fixedpointtheoryandapplications.com/content/2014/1/239

(
∀α∈A

{
lim

m→∞ sup
n>m

Jα(un,um) = 
})

(.)

and

∀α∈A
{
lim

m→∞ Jα(vm,um) = 
}

(.)(
∀α∈A

{
lim

m→∞ Jα(um, vm) = 
})

, (.)

the following holds:

∀α∈A
{
lim

m→∞pα(vm,um) = 
}

(.)(
∀α∈A

{
lim

m→∞pα(um, vm) = 
})

. (.)

(B) Define

J
L
(X,P) =

{
J : J = {Jα : α ∈A} is a left J -family on X

}
,

J
R
(X,P) =

{
J : J = {Jα : α ∈A} is a right J -family on X

}
.

In the following remark, we list some basic properties of left (right)J -families in (X,P).

Remark . Let (X,P) be a quasi-gauge space. The following hold:
(a) P ∈ JL(X,P) ∩ JR(X,P).
(b) Let J ∈ JL(X,P) or J ∈ JR(X,P). If ∀α∈A∀u∈X{Jα(u,u) = }, then for each α ∈A, Jα is

quasi-pseudometric.
(c) There are examples of J ∈ JL(X,P) and J ∈ JR(X,P) such that the maps Jα , α ∈A, are

not quasi-pseudometrics. Indeed, in Example . below, if u /∈ E, then
∀α∈A{Jα(u,u) = cα > }.

(d) ([, Proposition .]) If (X,P) is a Hausdorff quasi-gauge space and J ∈ JL(X,P) or
J ∈ JR(X,P), then ∀u,v∈X{u 
= v ⇒ ∃α∈A{Jα(u, v) > ∨ Jα(v,u) > }}.

4 Left (right)J -balls
In this section we define and characterize the left (right) J -balls in (X,P).

Definition . Let (X,P) be a quasi-gauge space, and let the family J = {Jα : α ∈ A} of
maps Jα : X → [;∞), α ∈ A, be a left (right) J -family on X. We define the left (right)
J -ball centered in w ∈ X of radius r = {rα}α∈A ∈ (;∞)A by

BL–J (
w, r

)
=

{
x ∈ X : ∀α∈A

{
Jα

(
w,x

) ≤ rα
}}

(
BR–J (

w, r
)
=

{
x ∈ X : ∀α∈A

{
Jα

(
x,w) ≤ rα

}})
.

Remark . Notice, however, that there exist a quasi-gauge space (X,P), a left (right)
J -family on X, w ∈ X and r = {rα}α∈A ∈ (;∞)A such that w /∈ BL–J (w, r) (w /∈
BR–J (w, r)). This follows from Example . below.

http://www.fixedpointtheoryandapplications.com/content/2014/1/239
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Example . Let X contain at least two different points, let the family P = {pα : α ∈A} of
quasi-pseudometrics pα : X ×X → [,∞), α ∈A, be a quasi-gauge on X, and let (X,P) be
a quasi-gauge space.
Let the set E ⊂ X containing at least two different points be arbitrary and fixed, and let

{cα}α∈A ∈ (;∞)A satisfy ∀α∈A{δα(E) < cα}, where ∀α∈A{δα(E) = sup{pα(x, y) : x, y ∈ E}}.
Let the family J = {Jα : α ∈A}, Jα : X ×X → [,∞), α ∈A, be defined by the formula:

Jα(x, y) =

{
pα(x, y) if E ∩ {x, y} = {x, y},
cα if E ∩ {x, y} 
= {x, y}, x, y ∈ X. (.)

Then J ∈ JL(X,P) ∩ JR(X,P).
Indeed, we see that condition (J ) does not hold only if there exist some α ∈ A and

u, v,w ∈ X such that Jα(u,w) = cα , Jα(u, v) = pα(u, v), Jα(v,w) = pα(v,w) and pα(u, v) +
pα(v,w) < cα . However, then we conclude that there exists z ∈ {u,w} such that z /∈ E and
u, v,w ∈ E, which is impossible. Therefore, ∀α∈A∀u,v,w∈X{Jα(u,w) ≤ Jα(u, v) + Jα(v,w)}, i.e.,
condition (J ) holds.
Now suppose that the sequences {um} and {vm} in X satisfy (.) and (.). Then, in

particular, (.) yields

∀α∈A∀<ε<cα∃m=m(α)∈N∀m≥m

{
Jα(vm,um) < ε

}
. (.)

By (.) and (.), denoting m′ =min{m(α) : α ∈A}, we conclude that

∀m≥m′
{
E ∩ {vm,um} = {vm,um}}. (.)

From (.), the definition of J and (.), we get

∀α∈A∀<ε<cα∃m′∈N∀m≥m′
{
pα(vm,um) = Jα(vm,um) < ε

}
.

The result is that the sequences {um} and {vm} satisfy (.). Therefore,J is a leftJ -family.
Analogously, we prove that if {um} and {vm} in X satisfy (.) and (.), then also (.)

holds, therefore J is a right J -family.

5 Left (right)J -convergences and left (right)J -sequential completeness
Now, using left (right) J -families, we define the following natural concept of left (right)
J -completeness in (X,P).

Definition . Let (X,P) be a quasi-gauge space, and let J = {Jα : α ∈A} be a left (right)
J -family on X.
(A) We say that a sequence (um :m ∈N) in X is left (right) J -Cauchy sequence in X if

∀α∈A
{
lim

m→∞ sup
n>m

Jα(um,un) = 
}

(
∀α∈A

{
lim

m→∞ sup
n>m

Jα(un,um) = 
})

.
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(B) Let u ∈ X and let (um :m ∈N) be a sequence in X . We say that (um :m ∈N) is left
(right) J -convergent to u if limL–J

m→∞ um = u (limR–J
m→∞ um = u), where

L–J
lim

m→∞um = u ⇔ ∀α∈A
{
lim

m→∞ Jα(u,um) = 
}

( R–J
lim

m→∞um = u⇔ ∀α∈A
{
lim

m→∞ Jα(um,u) = 
})

.

(C) We say that a sequence (um :m ∈N) in X is left (right) J -convergent in X if
SL–J(um :m∈N) 
=∅ (SR–J(um :m∈N) 
=∅), where

SL–J(um :m∈N) =
{
u ∈ X :

L–J
lim

m→∞um = u
}

(
SR–J(um :m∈N) =

{
u ∈ X :

R–J
lim

m→∞um = u
})

.

(D) If every left (right) J -Cauchy sequence (um :m ∈N) in X is left (right)
J -convergent in X (i.e., SL–J(um :m∈N) 
=∅ (SR–J(um :m∈N) 
=∅)), then (X,P) is called a left
(right) J -sequentially complete quasi-gauge space.

Remark . Let (X,P) be a quasi-gauge space.
(a) It is clear that if (um :m ∈ N) is left (right) J -convergent in X , then

SL–J(um :m∈N) ⊂ SL–J(vm :m∈N)
(
SR–J(um :m∈N) ⊂ SR–J(vm :m∈N)

)
for each subsequence (vm :m ∈ N) of (um :m ∈N).

(b) There exist examples of quasi-gauge spaces (X,P) and left (right) J -families J
on X , J 
=P , such that (X,P) are left (right) J -sequentially complete, but not left
(right) P-sequentially complete.

6 Left (right)J -closed sets
Definition . Let (X,P) be a quasi-gauge space, and let the family J = {Jα : α ∈ A} of
maps Jα : X → [;∞), α ∈A, be a left (right) J -family on X.
(A) We say that a set Y ∈ X is a left (right) J -closed in X if Y = clL–JX (Y )

(Y = clR–JX (Y )), where clL–JX (Y ) (clR–JX (Y )), the left (right) J -closure in X , denotes
the set of all x ∈ X for which there exists a sequence (xm :m ∈N) in Y which left
(right) J -converges to x.

(B) Define ClL–J (X) = {Y ∈ X : Y = clL–JX (Y )} (ClR–J (X) = {Y ∈ X : Y = clR–JX (Y )});
that is, ClL–J (X) (ClR–J (X)) denotes the class of all nonempty left (right) J -closed
subsets of X .

Remark . If (X,P) is a left (right) J -sequentially complete quasi-gauge space and a set
Y ∈ ClL–J (X) (Y ∈ ClR–J (X)), then (Y ,P) is a left (right) J -sequentially complete quasi-
gauge space.

7 Left (right)J -admissible and left (right) partiallyJ -admissible set-valued
maps

The following terminologies will be much used in the sequel.

http://www.fixedpointtheoryandapplications.com/content/2014/1/239
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Definition . Let (X,P) be a quasi-gauge space, let the family J = {Jα : α ∈ A} of maps
Jα : X ×X → [,∞), α ∈A, be a left (right) J -family on X, and let Y ∈ X .
(A) We say that a set-valued map T : Y → X is left (right) J -admissible in a point

w ∈ Y if for each sequence (wm :m ∈ {} ∪N) satisfying the properties
∀m∈{}∪N{wm+ ∈ T(wm)∩ Y 
=∅} and

∀α∈A
{
lim

m→∞ sup
n>m

Jα
(
wm,wn) = 

} (
∀α∈A

{
lim

m→∞ sup
n>m

Jα
(
wn,wm)

= 
})

,

there exists w ∈ X such that

∀α∈A
{
lim

m→∞ Jα
(
w,wm)

= 
} (

∀α∈A
{
lim

m→∞ Jα
(
wm,w

)
= 

})
.

We say that a set-valued map T : Y → X is left (right) J -admissible in Y if
T : Y → X is left (right) J -admissible in each point w ∈ Y .

(B) We say that a set-valued map T : Y → X is left (right) partially J -admissible in a
point w ∈ Y if for each sequence (wm :m ∈ {} ∪N) satisfying the properties
∀m∈{}∪N{wm+ ∈ T(wm)∩ Y 
=∅} and

∀α∈A
{
lim

m→∞ sup
n>m

Jα
(
wm,wn) = 

} (
∀α∈A

{
lim

m→∞ sup
n>m

Jα
(
wn,wm)

= 
})

,

there exists w ∈ X such that

∀α∈A
{
lim

m→∞ Jα
(
w,wm)

= lim
m→∞ Jα

(
wm,w

)
= 

}
.

We say that a set-valued map T : Y → X is left (right) partially J -admissible in Y
if T : Y → X is left (right) partially J -admissible in each point w ∈ Y .

Remark . Let (X,P) be a quasi-gauge space, and let the family J = {Jα : α ∈A} of maps
Jα : X ×X → [,∞), α ∈A, be a left (right) J -family on X.
(a) If (X,P) is a left (right) J -sequentially complete quasi-gauge space, then a

set-valued dynamic system (X,T), T : X → X , is left (right) J -admissible on X .
(b) If (X,P) is a left (right) J -sequentially complete quasi-gauge space and J is

symmetric, i.e., ∀α∈A∀u,v∈X{Jα(u, v) = Jα(v,u)}, then (X,T) is left (right) partially
J -admissible on X .

(c) It is evident that each left (right) partially J -admissible on X a set-valued dynamic
system (X,T) is left (right) J -admissible on X but the converse not necessarily
holds.

8 Left (right)P-quasi-closedmaps
We can define the following generalizations of continuity.

Definition . Let (X,P) be a quasi-gauge space, let (X,T) be a set-valued dynamic sys-
tem, T : X → X , and let s ∈N. The map T [s] is said to be a left (right) P-quasi-closed map
on X if for every sequence (xm : m ∈ N) in T [s](X), left (right) P-converging in X (thus
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SL–P(xm :m∈N) 
=∅ (SR–P(xm:m∈N) 
=∅)) and having subsequences (vm :m ∈ N) and (um :m ∈ N) sat-
isfying

∀m∈N
{
vm ∈ T [s](um)

}
,

the following property holds: there exists x ∈ SL–P(xm :m∈N) (x ∈ SR–P(xm :m∈N)) such that x ∈ T [s](x)
(x ∈ T [s](x)).

Definition . Let (X,P) be a quasi-gauge space, let Y be a nonempty subset of X, and
let T : Y → X be a set-valued map. The map T is said to be a left (right) P-quasi-closed
map on Y if for every sequence (xm :m ∈ N) in T(Y ), left (right) P-converging in X (thus
SL–P(xm :m∈N) 
=∅ (SR–P(xm:m∈N) 
=∅)) and having subsequences (vm :m ∈ N) and (um :m ∈ N) sat-
isfying

∀m∈N
{
vm ∈ T(um)

}
,

the following property holds: there exists x ∈ SL–P(xm :m∈N) (x ∈ SR–P(xm :m∈N)) such that x ∈ T(x)
(x ∈ T(x)).

9 Left (right) quasi-distances of Hausdorff type and three kinds of set-valued
left (right) contractions of Nadler type

In not necessarilyHausdorff quasi-gauge spaces, we define the left (right)Hausdorff quasi-
distances (Definition .(A)) and the set-valued left (right) contractions of Nadler type
(Definition .(B)).

Definition . Let (X,P) be a quasi-gauge space, let the family J = {Jα : α ∈ A} of maps
Jα : X → [;∞), α ∈A, be a left (right) J -family on X, let η ∈ {, , }, and let

∀α∈A∀u∈X∀V∈X
{
Jα(u,V ) = inf

{
Jα(u, z) : z ∈ V

}
∧ Jα(V ,u) = inf

{
Jα(z,u) : z ∈ V

}}
. (.)

(A) Define on X the left (right) quasi-distance DL–J
η = {DL–J

η;α ,α ∈A}
(DR–J

η = {DR–J
η;α ,α ∈A}) of Hausdorff type, where DL–J

η;α : X × X → [;∞], α ∈A
(DR–J

η;α : X × X → [;∞], α ∈A) are defined as follows:

(A.) ∀α∈A∀U ,V∈X {DL–J
;α (U ,V ) =max{supu∈U Jα(u,V ), supv∈V Jα(U , v)}},

∀α∈A∀U ,V∈X {DL–J
;α (U ,V ) =max{supu∈U Jα(u,V ), supv∈V Jα(v,U)}} and

∀α∈A∀U ,V∈X {DL–J
;α (U ,V ) = supu∈U Jα(u,V )} if J ∈ JL(X,P);

(A.) ∀α∈A∀U ,V∈X {DR–J
;α (U ,V ) =max{supu∈U Jα(u,V ), supv∈V Jα(U , v)}},

∀α∈A∀U ,V∈X {DR–J
;α (U ,V ) =max{supu∈U Jα(u,V ), supv∈V Jα(v,U)}} and

∀α∈A∀U ,V∈X {DR–J
;α (U ,V ) = supu∈U Jα(u,V )} if J ∈ JR(X,P).

(B) Let λ = {λα}α∈A ∈ [; )A and let Y ∈ X . We say that a set-valued map T : Y → X

is left (right) (DL–J
η ,λ)-contraction on Y ((DR–J

η ,λ)-contraction on Y ) if:

(B.) ∀α∈A∀x,y∈Y {DL–J
η;α (T(x),T(y))≤ λαJα(x, y)} if J ∈ JL(X,P);

(B.) ∀α∈A∀x,y∈Y {DR–J
η;α (T(x),T(y))≤ λαJα(x, y)} if J ∈ JR(X,P).

http://www.fixedpointtheoryandapplications.com/content/2014/1/239


Włodarczyk Fixed Point Theory and Applications 2014, 2014:239 Page 10 of 27
http://www.fixedpointtheoryandapplications.com/content/2014/1/239

Remark . Let (X,P) be a quasi-gauge space, and let the family J = {Jα : α ∈A} of maps
Jα : X → [;∞), α ∈A, be a left (right) J -family on X.
(a) Generally, DL–J

η;α (DR–J
η;α ) are not symmetric, i.e., DL–J

η;α (U ,V ) =DL–J
η;α (V ,U)

(DR–J
η;α (U ,V ) =DR–J

η;α (V ,U)) not necessarily hold. Moreover, DL–J
η (U ,U) = 

(DR–J
η (U ,U) = ) not necessarily hold; see Remarks . and ..

(b) Each (DL–J
η ,λ)-contraction on Y ((DR–J

η ,λ)-contraction on Y ), η ∈ {, }, is
(DL–J

 ,λ)-contraction on Y ((DR–J
 ,λ)-contraction on Y ) but the converse not

necessarily holds.

10 Convergence, existence, fixed point, periodic point and localization results
for left (right) set-valued contractions of Nadler type

We have the following theorem.

Theorem . Let (X,P) be a quasi-gauge space, let the family J = {Jα : α ∈ A} of maps
Jα : X → [;∞), α ∈ A, be a left (right) J -family on X, and suppose that η ∈ {, , }.
Assume, moreover, that λ = {λα}α∈A ∈ [; )A and a set-valued dynamic system (X,T),
T : X → X , satisfy the following:

(i) T is (DL–J
η ,λ)-contraction on X (T is (DR–J

η ,λ)-contraction on X); and
(ii) For every x ∈ X and for every γ = {γα}α∈A ∈ (;∞)A, there exists y ∈ T(x) such that

∀α∈A
{
Jα(x, y) < Jα

(
x,T(x)

)
+ γα

}
(.)(∀α∈A

{
Jα(y,x) < Jα

(
T(x),x

)
+ γα

})
. (.)

(A) If (X,T) is left (right) J -admissible in a point w ∈ X , then there exist a dynamic
process (wm :m ∈ {} ∪N) of the system (X,T) starting at w, a point w ∈ X and
r = {rα}α∈A ∈ (;∞)A such that ∀m∈N{wm ∈ BL–J (w, r)} (∀m∈N{wm ∈ BR–J (w, r)})
and (wm :m ∈ {} ∪N) is left (right) P-convergent to w.
If,moreover, (X,T) is left (right) partially J -admissible in a point w ∈ X , then the

point w above satisfies w ∈ BL–J (w, r) (w ∈ BR–J (w, r)).
(B) If (X,T) is left (right) J -admissible in a point w ∈ X and if, for some s ∈N, T [s] is

left (right) P-quasi-closed on X , then Fix(T [s]) 
=∅ and there exist a dynamic process
(wm :m ∈ {} ∪N) of the system (X,T) starting at w, a point w ∈ Fix(T [s]) and
r = {rα}α∈A ∈ (;∞)A such that ∀m∈N{wm ∈ BL–J (w, r)} (∀m∈N{wm ∈ BR–J (w, r)})
and (wm :m ∈ {} ∪N) is left (right) P-convergent to w.
If,moreover, (X,T) is left (right) partially J -admissible in a point w ∈ X , then the

point w above satisfies w ∈ BL–J (w, r) (w ∈ BR–J (w, r)).

Proof Weprove Theorem . only in the case whenJ is a leftJ -family onX, (X,T) is left
J -admissible on X or left partiallyJ -admissible on X, and T [s] is leftP-quasi-closedmap
on X, respectively. We omit the proof in the case of ‘right’, which is based on an analogous
technique.
Part . Assume that (X,T) is left J -admissible in a point w ∈ X.
By (.) and the fact that Jα : X → [;∞), α ∈A, we choose

r = {rα}α∈A ∈ (;∞)A (.)
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such that

∀α∈A
{
Jα

(
w,T

(
w)) < ( – λα)rα

}
. (.)

Put

∀α∈A
{
γ ()

α = ( – λα)rα – Jα
(
w,T

(
w))}. (.)

In view of (.) and (.), this implies γ () = {γ ()
α }α∈A ∈ (;∞)A, and we apply (.) to

find w ∈ T(w) such that

∀α∈A
{
Jα

(
w,w) < Jα

(
w,T

(
w)) + γ ()

α

}
. (.)

We see from (.) and (.) that

∀α∈A
{
Jα

(
w,w) < ( – λα)rα

}
. (.)

Observe that (.) implies w ∈ BL–J (w, r).
Put now

∀α∈A
{
γ ()

α = λα

[
( – λα)rα – Jα

(
w,w)]}. (.)

Then, in view of (.), we get γ () = {γ ()
α }α∈A ∈ (;∞)A, and applying again (.) we find

w ∈ T(w) such that

∀α∈A
{
Jα

(
w,w) < Jα

(
w,T

(
w)) + γ ()

α

}
. (.)

Also note that

∀α∈A
{
Jα

(
w,w) < λα( – λα)rα

}
. (.)

Indeed, from (.), (.), Definition . and (.), we get

∀α∈A
{
Jα

(
w,w) < Jα

(
w,T

(
w)) + γ ()

α ≤ sup
u∈T(w)

Jα
(
u,T

(
w)) + γ ()

α

≤DL–J
η;α

(
T

(
w),T(

w)) + γ ()
α ≤ λαJα

(
w,w) + γ ()

α

= λα( – λα)rα
}
, η ∈ {, , }.

Thus (.) holds. Further, by (J ), (.) and (.), we observe that

∀α∈A

{
Jα

(
w,x

)
< ( – λα)rα( + λα) ≤ ( – λα)rα

∞∑
k=

λk
α = rα

}
.

Hence w ∈ BL–J (w, r).
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Proceeding as before, using Definition . and property (.), we get that there exists a
sequence (wm :m ∈N) in X satisfying

∀m∈N
{
wm+ ∈ T

(
wm)}

. (.)

For calculational purposes, upon letting ∀m∈N{γ (m) = {γ (m)
α }α∈A}, where

∀α∈A∀m∈N
{
γ (m)

α = λα

[
λm–

α ( – λα)rα – Jα
(
wm–,wm)]}

,

we observe that ∀m∈N{γ (m) ∈ (;∞)A},

∀α∈A∀m∈N
{
Jα

(
wm,wm+) < Jα

(
wm,T

(
wm))

+ γ (m)
α

}
,

∀α∈A∀m∈N
{
Jα

(
wm,wm+) < λm

α ( – λα)rα
}

(.)

and

∀α∈A∀m∈N∪{}

{
Jα

(
w,wm+) < ( – λα)rα

m∑
k=

λk
α < ( – λα)rα

∞∑
k=

λk
α = rα

}
. (.)

We see from (.) that ∀m∈N{wm ∈ BL–J (w, r)}.
Let nowm > n. Using (J ) and (.), we get

lim
m→∞ sup

n>m
Jα

(
wm,wn) ≤ lim

m→∞ sup
n>m

n–∑
j=m

Jα
(
wj,wj+) ≤ ( – λα)rα lim

m→∞ sup
n>m

n–∑
j=m

λj
α

≤ rα lim
m→∞λm

α .

This means that

∀w∈X∃(wm :m∈N)∀m∈{}∪N
{
wm+ ∈ T

(
wm)}

(.)

and

∀α∈A
{
lim

m→∞ sup
n>m

Jα
(
wm,wn) = 

}
. (.)

Now, since (X,T) is left J -admissible on X, by Definition .(A), properties (.) and
(.) imply that there exists w ∈ X such that

∀α∈A
{
lim

m→∞ Jα
(
w,wm)

= 
}
. (.)

Next, defining vm = w and um = wm for m ∈ N, by (.) and (.) we see that con-
ditions (.) and (.) hold for the sequences (um :m ∈ N) and (vm :m ∈ N) in X. Conse-
quently, by (J ) we get (.) which implies that

∀α∈A
{
lim

m→∞pα

(
w,wm)

= lim
m→∞pα(vm,um) = 

}

and so, in particular, we see that w ∈ SL–P(wm :m∈N) = {x ∈ X : limL–P
m→∞ wm = x}.
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Additionally, by (J ) and (.), we note that

∀α∈A∀m∈N
{
Jα

(
w,w

) ≤ Jα
(
w,wm)

+ Jα
(
wm,w

)
< rα + Jα

(
wm,w

)}
. (.)

Part . Assume that (X,T) is left J -admissible in a point w ∈ X and, for some s ∈ N,
T [s] is left P-quasi-closed on X.
By Part , SL–P(wm :m∈{}∪N) 
= ∅ and since by (.), w(m+)s ∈ T [s](wms) for m ∈ {} ∪ N,

thus defining (xm = wm–+s : m ∈ N) we see that (xm : m ∈ N) ⊂ T [s](X), SL–P(xm :m∈{}∪N) =
SL–P(wm :m∈{}∪N) 
= ∅, the sequences (vm = w(m+)s : m ∈ N) ⊂ T [s](X) and (um = wms : m ∈
N) ⊂ T [s](X) satisfy ∀m∈N{vm ∈ T [s](um)} and, as subsequences of (xm : m ∈ {} ∪ N),
are left P-converging to each point of the set SL–P(wm :m∈{}∪N). Moreover, by Remark .(a),
SL–P(wm :m∈N) ⊂ SL–P(vm :m∈N) and SL–P(wm :m∈N) ⊂ SL–P(um :m∈N). By above, since T

[s] is left P-quasi-closed,
we conclude that ∃w∈SL–P(wm :m∈{}∪N)=S

L–P
(xm :m∈N)

{w ∈ T [s](w)}.
Part . Assume that (X,T) is left partially J -admissible in a point w ∈ X.
Using Part , (.) and (.), by Definition .(B), we have that there exists w ∈ X

such that

∀α∈A
{
lim

m→∞ Jα
(
wm,w

)
= lim

m→∞ Jα
(
w,wm)

= 
}
. (.)

The consequence of (.) and (.) is w ∈ BL–J (w, r).
Part . The result now follows at once from Parts -. �

Theorem . and its proof immediately yields the following theorem.

Theorem . Let (X,P) be a quasi-gauge space, let the family J = {Jα : α ∈ A} of maps
Jα : X → [;∞), α ∈ A, be a left (right) J -family on X, and suppose that η ∈ {, , }.
Assume, moreover, that w ∈ X, λ = {λα}α∈A ∈ [; )A, r = {rα}α∈A ∈ (;∞)A and a set-
valued map

T :
{
w} ∪ BL–J (

w, r
) → X

(
T :

{
w} ∪ BR–J (

w, r
) → X

)
satisfy:

(i) T is (DL–J
η ,λ)-contraction on {w} ∪ BL–J (w, r) (T is (DR–J

η ,λ)-contraction on
{w} ∪ BR–J (w, r));

(ii) ∀α∈A{Jα(w,T(w)) < ( – λα)rα} (∀α∈A{Jα(T(w),w) < ( – λα)rα}); and
(iii) for every x ∈ {w} ∪ BL–J (w, r) (x ∈ {w} ∪ BR–J (w, r)) and for every

γ = {γα}α∈A ∈ (;∞)A, there exists y ∈ T(x) such that

∀α∈A
{
Jα(x, y) < Jα

(
x,T(x)

)
+ γα

} (∀α∈A
{
Jα(y,x) < Jα

(
T(x),x

)
+ γα

})
.

(A) If T is left (right) partially J -admissible in w, then there exist a dynamic process
(wm :m ∈ {} ∪N) of the system (X,T) starting at w and a point w ∈ BL–J (w, r)
(w ∈ BR–J (w, r)) such that ∀m∈N{wm ∈ BL–J (w, r)} (∀m∈N{wm ∈ BR–J (w, r)}) and
(wm :m ∈ {} ∪N) is left (right) P-convergent to w.

(B) If T is left (right) partially J -admissible in w and if T is left (right) P-quasi-closed
on {w} ∪ BL–J (w, r) (on {w} ∪ BR–J (w, r)), then Fix(T) 
=∅ and there exist a
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dynamic process (wm :m ∈ {} ∪N) of the system (X,T) starting at w and a point
w ∈ Fix(T) such that ∀m∈N{wm ∈ BL–J (w, r)} (∀m∈N{wm ∈ BR–J (w, r)}),
(wm :m ∈ {} ∪N) is left (right) P-convergent to w and w ∈ BL–J (w, r)
(w ∈ BR–J (w, r)).

11 Convergence, existence, periodic point, fixed point, localization and
uniqueness results for single-valued left (right) contractions of Banach type

In this section we indicate how to extend the results of the preceding section to single-
valued maps.

Definition . Let (X,P) be a quasi-gauge space, let the family J = {Jα : α ∈A} of maps
Jα : X → [;∞), α ∈A, be a left (right) J -family on X, and let η ∈ {, }.
(A) Define on X the left (right) distance DL–J

η = {DL–J
η;α : X → [;∞),α ∈A}

(DR–J
η = {DR–J

η;α : X → [;∞),α ∈A}) as follows:
(A.) ∀α∈A∀u,v∈X{DL–J

;α (u, v) = max{Jα(u, v), Jα(v,u)}} and ∀α∈A∀u,v∈X{DL–J
;α (u, v) =

Jα(u, v)} if J ∈ JL(X,P);
(A.) ∀α∈A∀u,v∈X{DR–J

;α (u, v) = max{Jα(u, v), Jα(v,u)}} and ∀α∈A∀u,v∈X{DR–J
;α (u, v) =

Jα(u, v)} if J ∈ JR(X,P).

(B) Let λ = {λα}α∈A ∈ [; )A and let Y ∈ X . We say that a single-valued map
T : Y → X is (DL–J

η ,λ)-contraction on Y ((DR–J
η ,λ)-contraction on Y ) if:

(B.) ∀α∈A∀x,y∈Y {DL–J
η;α (T(x),T(y))≤ λαJα(x, y)} if J ∈ JL(X,P);

(B.) ∀α∈A∀x,y∈Y {DR–J
η;α (T(x),T(y))≤ λαJα(x, y)} if J ∈ JR(X,P).

As a consequence of Definition . and Theorems . and ., we have the following
results.

Theorem . Let (X,P) be a quasi-gauge space, let the family J = {Jα : α ∈ A} of maps
Jα : X → [;∞), α ∈A, be a left (right) J -family on X, and suppose that η ∈ {, }. Let λ =
{λα}α∈A ∈ [; )A and let a single-valued dynamic system (X,T), T : X → X, be (DL–J

η ,λ)-
contraction on X ((DR–J

η ,λ)-contraction on X).
(A) If (X,T) is left (right) J -admissible in a point w ∈ X , then there exist a point w ∈ X

and r = {rα}α∈A ∈ (;∞)A such that the sequence (wm = T [m](w) :m ∈ {} ∪N) is
left (right) P-convergent to w and ∀m∈N{wm ∈ BL–J (w, r)}
(∀m∈N{wm ∈ BR–J (w, r)}).
If,moreover, (X,T) is left (right) partially J -admissible in a point w ∈ X , then the

point w above satisfies w ∈ BL–J (w, r) (w ∈ BR–J (w, r)).
(B) If (X,T) is left (right) J -admissible in a point w ∈ X and if, for some s ∈N, T [s] is

left (right) P-quasi-closed on X , then Fix(T [s]) 
=∅ and there exist a point
w ∈ Fix(T [s]) and r = {rα}α∈A ∈ (;∞)A such that the sequence
(wm = T [m](w) :m ∈ {} ∪N) is left (right) P-convergent to w,
∀m∈N{wm ∈ BL–J (w, r)} (∀m∈N{wm ∈ BR–J (w, r)}) and

∀α∈A∀v∈Fix(T [s])
{
Jα

(
v,T(v)

)
= Jα

(
T(v), v

)
= 

}
. (.)

If,moreover, (X,T) is left (right) partially J -admissible in a point w ∈ X , then the
point w above satisfies w ∈ BL–J (w, r) (w ∈ BR–J (w, r)).
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(C) If (X,T) is left (right) J -admissible in a point w ∈ X , if, for some s ∈N, T [s] is left
(right) P-quasi-closed on X and if (X,P) is a Hausdorff space, then there exists a
point w ∈ X such that Fix(T [s]) = Fix(T) = {w}, the sequence
(wm = T [m](w) :m ∈ {} ∪N) is left (right) P-convergent to w,
∀m∈N{wm ∈ BL–J (w, r)} (∀m∈N{wm ∈ BR–J (w, r)}) and

∀α∈A
{
Jα(w,w) = 

}
. (.)

If,moreover, (X,T) is left (right) partially J -admissible in a point w ∈ X , then the
point w above satisfies w ∈ BL–J (w, r) (w ∈ BR–J (w, r)).

Proof We prove only (.) and (.) and only in the case when J is a left J -family on X,
(X,T) is left J -admissible in w or left partially J -admissible in w, and T [s] is left P-
closed map on X, respectively. We omit the proof in the case of ‘right’, which is based on
an analogous technique.
Part . Property (.) holds.
Indeed, first suppose that ∃α∈A∃v∈Fix(T [s]){Jα (v,T(v)) > }. Of course, v = T [s](v), T(v) =

T [s](T(v)) and, for η ∈ {, }, by Definition .,  < Jα (v,T(v)) = Jα (T [s](v),T [s](T(v)))≤
DL–J

η;α (T
[s](v),T [s](T(v))) ≤ λα Jα (T [s–](v),T [s–](T(v))) ≤ λαDL–J

η;α (T
[s–](v),

T [s–](T(v))) ≤ λ
α Jα (T

[s–](v),T [s–](T(v))) ≤ · · · ≤ λs
α Jα (v,T(v)) < Jα (v,T(v)), which

is impossible.
Suppose now that ∃α∈A∃v∈Fix(T [s]){Jα (T(v), v) > }. Then, by Definition ., using the

fact that v = T [s](v) = T [s](v), we get, for η ∈ {, },  < Jα (T(v), v) = Jα (T [s+](v),T [s](v))≤∑s–
k=s+ Jα (T [k](v),T [k+](v)) ≤ ∑s–

k=s+DL–J
η;α (T

[k](v),T [k+](v)) ≤ ∑s–
k=s+ λ

k
α Jα (v,T(v)) = ,

which is impossible.
Therefore, (.) holds.
Part . Property (.) holds.
If (X,P) is a Hausdorff space, then Remark .(d) and property (.) imply

∀v∈Fix(T [s]){T(v) = v} and ∀α∈A∀v∈Fix(T [s]){Jα(v, v) ≤ Jα(v,T(v)) + Jα(T(v), v) = }. Therefore,
Fix(T [s]) = Fix(T) and

∀v∈Fix(T [s])=Fix(T)
{
Jα(v, v) = 

}
.

Suppose now that u,w ∈ Fix(T) and u 
= w. Then, by Remark .(d), ∃α∈A{Jα (u,w) >
 ∨ Jα (w,u) > }. Of course, for η ∈ {, }, we then have ∃α∈A{[Jα (u,w) >  ∧ Jα (u,w) =
Jα (T(u),T(w))≤DL–J

η;α (T(u),T(w))≤ λα Jα (u,w) < Jα (u,w)]∨ [Jα (w,u) > ∧ Jα (w,u) =
Jα (T(w),T(u)) ≤ DL–J

η;α (T(w),T(u)) ≤ λα Jα (w,u) < Jα (w,u)]}, which is impossible. This
gives that Fix(T) is a singleton.
Therefore, (.) holds. �

Theorem . Let (X,P) be a quasi-gauge space, let the family J = {Jα : α ∈ A} of maps
Jα : X → [;∞), α ∈ A, be a left (right) J -family on X, and suppose that η ∈ {, }. Let
w ∈ X, λ = {λα}α∈A ∈ [; )A, r = {rα}α∈A ∈ (;∞)A and a single-valued map T : {w} ∪
BL–J (w, r)→ X (T : {w} ∪ BR–J (w, r) → X) be such that

T is
(
DL–J

η ,λ
)
-contraction on

{
w} ∪ BL–J (

w, r
)
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(
T is

(
DR–J

η ,λ
)
-contraction on

{
w} ∪ BR–J (

w, r
))

and ∀α∈A{Jα(w,T(w)) < ( – λα)rα} (∀α∈A{Jα(T(w),w) < ( – λα)rα}).
(A) If T is left (right) partially J -admissible in w, then there exists a point w ∈ X such

that the sequence (wm = T [m](w) :m ∈ {} ∪N) is left (right) P-convergent to w,
∀m∈N{wm ∈ BL–J (w, r)} (∀m∈N{wm ∈ BR–J (w, r)}) and w ∈ BL–J (w, r)
(w ∈ BR–J (w, r)).

(B) If T is left (right) partially J -admissible in w and if T is left (right) P-quasi-closed
on BL–J (w, r) (BR–J (w, r)), then Fix(T) 
=∅, and there exists a point w ∈ Fix(T)
such that the sequence (wm = T [m](w) :m ∈ {} ∪N) is left (right) P-convergent
to w, ∀m∈N{wm ∈ BL–J (w, r)} (∀m∈N{wm ∈ BR–J (w, r)}), w ∈ BL–J (w, r)
(w ∈ BR–J (w, r)) and

∀α∈A∀v∈Fix(T)
{
Jα

(
v,T(v)

)
= Jα

(
T(v), v

)
= 

}
.

(C) If T is left (right) partially J -admissible in w, if T is left (right) P-quasi-closed on
BL–J (w, r) (BR–J (w, r)) and if (X,P) is a Hausdorff space, then there exists w ∈ X
such that Fix(T) = {w}, the sequence (wm = T [m](w) :m ∈ {} ∪N) is left (right)
P-convergent to w, ∀m∈N{wm ∈ BL–J (w, r)} (∀m∈N{wm ∈ BR–J (w, r)}),
w ∈ BL–J (w, r) (w ∈ BR–J (w, r)) and

∀α∈A
{
Jα(w,w) = 

}
.

12 Examples illustrating Theorem 10.1 and comparison of Theorem 10.1 with
Theorem 1.2 of Nadler

Example . Let (X,d), X = [; ], be a metric space with a metric d : X → [;∞) of the
form d(x, y) = |x – y|, x, y ∈ X, and let P = {d}. Let T : X → X be of the form

T(x) =

⎧⎪⎨
⎪⎩
[; ] for x ∈ (; )∪ (; ),
[; ]∪ [; ] for x = ,
[; ] for x ∈ {,},

x ∈ X. (.)

Let E = (; )∪ (; ) and let J = {J}, where J is of the form

J(x, y) =

{
d(x, y) if E ∩ {x, y} = {x, y},
 if E ∩ {x, y} 
= {x, y}, x, y ∈ X. (.)

(I.) (X,P) is a quasi-gauge space and (X,P) is left and right P-sequentially complete.
(I.) The property T : X → ClL–P (X) = ClR–P (X) holds.
(I.) J is symmetric and J = {J} ∈ JL(X,P) ∩ JR(X,P). See Example ..
(I.)The set-valued dynamic system (X,T) is a (DL–J

 =DR–J
 ,λ = /)-contraction onX,

i.e., ∀x,y∈X{DL–J
 (T(x),T(y))≤ (/)J(x, y)}, where

DL–J
 (U ,V ) =DR–J

 (U ,V ) =max
{
sup
u∈U

J(u,V ), sup
v∈V

J(U , v)
}
, U ,V ∈ X .

Indeed, denoting DL–J
 = DR–J

 = D, we see that this follows from (I.)-(I.) and from
Cases I..-I.. below.
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Case I... If x, y ∈ (; ) ∪ (; ), then x, y ∈ E and T(x) = T(y) = [; ] ⊂ E. Hence,
∀u∈T(x)=[;]{inf{J(u, v) : v ∈ T(y) = [; ]} = d(u,u) = } and, consequently, D(T(x),T(y)) =
 ≤ λJ(x, y).
Case I... If x ∈ (; ) ∪ (; ) and y = , then x ∈ E, y /∈ E, J(x, y) = , T(x) = [; ] ⊂

E, T(y) = [; ] ∪ [; ] ⊂ E, supu∈T(x) J(u,T(y)) =  since ∀u∈T(x)=[;]{inf{J(u, v) : v ∈ T(y) =
[; ]∪ [; ]} = d(u,u) = }, and supv∈T(y) J(T(x), v) =  since v ∈ T(y) = [; ]∪ [; ] implies

inf
{
J(u, v) : u ∈ T(x) = [; ]

}
=

{
d(v, v) =  if v ∈ [; ],
d(, v) = v –  if v ∈ [; ].

Therefore, D(T(x),T(y)) =  = λJ(x, y).
Case I... If x ∈ (; ) ∪ (; ) and y ∈ {,}, then x ∈ E, y /∈ E, T(x) = [; ] ⊂

E, T(y) = [; ] ⊂ E and J(x, y) = . We calculate: (a) If u ∈ T(x), then J(u,T(y)) =
d(u, [; ]) =  – u and, consequently, sup{J(u,T(y)) : u ∈ T(x)} = ; (b) If v ∈ T(y), then
J(T(x), v) = d([; ], v) = v –  and, consequently, sup{J(T(x), v) : v ∈ T(y)} = ; (c) Inequal-
ity D(T(x),T(y)) =  = λ = λJ(x, y) is a consequence of (a) and (b).
Case I... If x =  and y ∈ {,}, then x /∈ E, y /∈ E, T(x) = [; ] ∪ [; ] ⊂ E, T(y) =

[; ] ⊂ E and J(x, y) = . We calculate: (a) If u ∈ T(x), then

J
(
u,T(y)

)
= d

(
u, [; ]

)
=

{
 – u if u ∈ [; ],
 if u ∈ [; ],

and, consequently, sup{J(u,T(y)) : u ∈ T(x)} = ; (b) If v ∈ T(y), then J(T(x), v) = d(T(x),
v) = ; (c) The consequence of (a) and (b) is that D(T(x),T(y)) =  = λ = λJ(x, y).
Case I... If x = y = , then x /∈ E, y /∈ E, T(x) = T(y) = [; ] ∪ [; ] ⊂ E, J(u,T(y)) =

J(T(x), v) =  for u ∈ T(x) and v ∈ T(y), J(x, y) =  and D(T(x),T(y)) =  < λJ(x, y).
Case I... If x, y ∈ {,}, then x /∈ E, y /∈ E, T(x) = T(y) = [; ] ⊂ E, J(u,T(y)) =

J(T(x), v) =  for u ∈ T(x) and v ∈ T(y), J(x, y) =  and D(T(x),T(y)) =  < λJ(x, y).
(I.) Property (.) holds, i.e., ∀x∈X∀γ∈(;∞)∃y∈Tx{J(x, y) < J(x,T(x)) + γ }. Indeed, this fol-

lows from Cases I..-I.. below.
Case I... If x ∈ {, , } and y ∈ T(x) ⊂ E, then, since T(x) ⊂ E, J(x, y) =

J(x,T(x)) = . Hence, ∀γ∈(;∞){J(x, y) < J(x,T(x)) + γ }.
Case I... If x ∈ (; ] and y =  ∈ T(x) = [; ], then J(x, y) = J(x,T(x)) =  – x

and ∀γ∈(;∞){J(x, y) < J(x,T(x)) + γ }.
Case I... If x ∈ (; ] and y = x ∈ T(x) = [; ], then J(x, y) = J(x,T(x)) =  and

∀γ∈(;∞){J(x, y) < J(x,T(x)) + γ }.
Case I... If x ∈ (; ) ∪ (; ) and y =  ∈ T(x) = [; ], then J(x, y) = J(x,T(x)) =

x –  and ∀γ∈(;∞){J(x, y) < J(x,T(x)) + γ }.
(I.) The set-valued dynamic system (X,T) is partially J -admissible in X. In fact, ob-

serving that T [m](X) = [; ] ⊂ E for m ≥ , it remains to verify that if w ∈ X and (wm :
m ∈ {}∪N) are such that ∀m∈{}∪N{wm+ ∈ T(wm)} and limm→∞ supn>m J(wm,wn) = , then
∃w∈[;]⊂X{limm→∞ J(wm,w) = limm→∞ J(w,wm) = }. One way to check this is as follows:
We see that ∃m∈N∀m≥m{wm ∈ [; ] ⊂ E} and, in view of (.), limm→∞ supn>m J(wm,wn) =
 implies limm→∞ supn>m d(wm,wn) = . Moreover, [; ] ∈ ClL–P (X) = ClR–P (X). From
this information we deduce that ∃w∈[;]⊂X{limm→∞ d(wm,w) = limm→∞ J(wm,w) =
limm→∞ J(w,wm) = }.

http://www.fixedpointtheoryandapplications.com/content/2014/1/239


Włodarczyk Fixed Point Theory and Applications 2014, 2014:239 Page 18 of 27
http://www.fixedpointtheoryandapplications.com/content/2014/1/239

(I.) The set-valued dynamic system (X,T) is a left and right P-quasi-closed map in X.
Indeed, let (xm :m ∈N) ⊂ T(X) = [; ]∪ [; ] be a left (thus also right) P-converging se-
quence in X. Since T(X) ∈ ClL–P (X) = ClR–P (X), thus ∃x∈T(X){limm→∞ d(xm,x) = }. Then
we remark that the following two cases hold.
Case I... If x ∈ [; ], then ∃m∈N∀m≥m{xm ∈ [; ]} and if (vm : m ∈ N) and (um :

m ∈ N) are subsequences of (xm : m ∈ N) satisfying ∀m∈N{vm ∈ T(um)}, then we get
∃m∈N∀m≥m{um ∈ [; ]∧ vm ∈ T(um) = [; ]}. Moreover, x ∈ T(x).
Case I... Suppose now that x ∈ [; ]. Then ∃m∈N∀m≥m{xm ∈ [; ]} and if (vm :m ∈N)

and (um :m ∈ N) are subsequences of (xm :m ∈ N) satisfying ∀m∈N{vm ∈ T(um)}, then we
get ∃m∈N∀m≥m{um, vm ∈ [; ]∧ vm ∈ T(um) = [; ]}, which is impossible. Let us observe,
additionally, that then also x /∈ T(x).
(I.) All the assumptions of Theorem . are satisfied. This follows from (I.)-(I.).
We conclude that Fix(T) = [; ] and one shows the following.
Claim I... If w ∈ {, , } and w ∈ [; ] are arbitrary and fixed, then defining wm = w

form ∈N we get that w ∈ T(w), ∀m∈N{wm ∈ BL–J (w, )} and limm→∞ d(wm,w) = .
Claim I... If w ∈ (; ) and w ∈ [; ] are arbitrary and fixed, then defining wm = w for

m ∈N we get that w ∈ T(w), ∀m∈N{wm ∈ BL–J (w, |w –w|)} and limm→∞ d(wm,w) = .
Claim I... If w ∈ [; ) and w ∈ [; ) are arbitrary and fixed, then defining wm = w for

m ∈N we get that w ∈ T(w), ∀m∈N{wm ∈ BL–J (w,w –w)} and limm→∞ d(wm,w) = .
Claim I... If w ∈ (; ) and w ∈ [; ] are arbitrary and fixed, then defining wm = w for

m ∈N we get that w ∈ T(w), ∀m∈N{wm ∈ BL–J (w,w –w)} and limm→∞ d(wm,w) = .

Remark . Let U = {, , }. By (.),  =DL–J
 (U ,U) 
= .

Example . Let (X,d) be a complete metric space where X = [; ] and d : X → [;∞)
is of the form d(x, y) = |x – y|, x, y ∈ X, and let (X,T) be defined by

T(x) =

⎧⎪⎨
⎪⎩
[; ] for x ∈ (; )∪ (; ),
[; ]∪ [; ] for x = ,
[; ] for x ∈ {,},

x ∈ X.

We see that, for each x ∈ X, T(x) ∈ ClL–P (X) = ClR–P (X) where P = {d}. Moreover,
Fix(T) = [; ]. However, for each λ ∈ [; ), condition (.) for (X,T) does not hold. We
argue by contradiction and suppose that

∃λ∈[;)∀x,y∈X
{
Hd(T(x),T(y)) ≤ λd(x, y)

}
.

Consider then the case when x =  and y = . Then we deduce the following: (i) For u ∈
T(x) = [; ], we have d(u,T(y)) = d(u, [; ]) =  – u and sup{d(u,T(y)) : u ∈ T(x)} = ;
(ii) For v ∈ T(y) = [; ], we have d(v,T(x)) = d(v, [; ]) = v –  and sup{d(v,T(x)) : v ∈
T(y)} = ; (iii) Consequently,

∀λ∈[;)
{
 =Hd(T(x),T(y)) =max

{
sup

u∈T(x)
d
(
u,T(y)

)
, sup
v∈T(y)

d
(
T(x), v

)}

≤ λd(x, y) < d(x, y) = d(, ) = 
}
,

which is absurd.
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Remark . Observe that (X,d) and (X,T) defined in Examples . and . are iden-
tical. However, Example . shows that we may apply Theorem . with J defined by
(.) and satisfying J 
= P = {d}, and Example . shows that we do not apply Theo-
rem . of Nadler since (.) does not hold.

Example . LetX = [; ] and letP = {p}where p is a quasi-pseudometric onX defined
by

p(x, y) =

{
 if x ≥ y,
 if x < y.

(.)

Let E = [; )∪ (; ] and let J = {J} where J is of the form

J(x, y) =

{
p(x, y) if E ∩ {x, y} = {x, y},
 if E ∩ {x, y} 
= {x, y}. (.)

Define (X,T) by

T(x) =

{
[; ] for x ∈ [; )∪ (; ],
[; ] for x = .

(.)

(III.) J is not symmetric. In fact, by (.), J(, ) =  and J(, ) = .
(III.) (X,P) is a quasi-gauge space and J = {J} ∈ JL(X,P) ∩ JR(X,P). See Example ..
(III.)The property T : X → ClL–P (X) holds. This follows from (.) andDefinitions .

and .(C).
(III.) The set-valued dynamic system (X,T) is a (DL–J

 ,λ = /)-contraction on X, i.e.,
∀x,y∈X{DL–J

 (T(x),T(y))≤ (/)J(x, y)}, where

DL–J
 (U ,V ) =max

{
sup
u∈U

J(u,V ), sup
v∈V

J(U , v)
}
, U ,V ∈ X .

Indeed, denoting DL–J
 = D, we see that this follows from (III.)-(III.) and from

Cases III..-III.. below.
Case III... If x, y ∈ [; ) ∪ (; ], then x, y ∈ E, T(x) = T(y) = [; ] = U ⊂ E and, by

(.), ∀u∈U{inf{J(u, v) : v ∈U} = J(u,u) = p(u,u) = }. Thus D(T(x),T(y)) = ≤ λJ(x, y).
Case III... If x ∈ [; ) ∪ (; ] and y = , then x ∈ E, y /∈ E, J(x, y) = , T(x) = [; ] =

U ⊂ E and T(y) = [; ] = V ⊂ E. Hence, by (.), u ∈U implies

inf
{
J(u, v) = p(u, v) : v ∈ V

}
=

{
 whenever u ∈ [; ),
 whenever u ∈ [; ].

On the other hand, v ∈ V implies inf{J(u, v) = p(u, v) : u ∈ U} = . Therefore, D(T(x),
T(y)) =  = λJ(x, y).
Case III... If x =  and y ∈ [; )∪ (; ], then x /∈ E, y ∈ E, J(x, y) = ,T(x) = [; ] =U ⊂

E and T(y) = [; ] = V ⊂ E. Consequently, by (.), u ∈U implies inf{J(u, v) = p(u, v) : v ∈
V } = . Next, by (.), v ∈ V implies inf{J(u, v) : u ∈ U} ≤ . Therefore, D(T(x),T(y)) =
 = λJ(x, y).
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Case III... If x = y = , then J(x, y) = , T(x) = T(y) = [; ] = U ⊂ E and ∀u∈U{inf{J(u,
v) = p(u, v) : v ∈U} = p(u,u) = }. Thus, D(T(x),T(y)) =  < λJ(x, y).
(III.) Property (.) holds, i.e., ∀x∈X∀γ∈(;∞)∃y∈T(x){J(x, y) < J(x,T(x)) + γ }. Indeed, this

follows from Cases III..-III.. below.
Case III... If x ∈ [; ) ∪ (; ) and y =  ∈ T(x) = [; ], then J(x, y) = p(x, ) = ,

J(x,T(x)) =  and ∀γ∈(;∞){J(x, y) < J(x,T(x)) + γ }.
Case III... If x ∈ [; ] and y =  ∈ T(x) = [; ], then J(x, y) = p(x, y) = ,

J(x,T(x)) =  and ∀γ∈(;∞){J(x, y) < J(x,T(x)) + γ }.
Case III... If x =  and y ∈ T(x) = [; ], then J(x, y) = J(x,T(x)) =  and

∀γ∈(;∞){J(x, y) < J(x,T(x)) + γ }.
(III.) The set-valued dynamic system (X,T) is left J -admissible in X. We verify that if

w ∈ X and (wm :m ∈ {} ∪N) are arbitrary and fixed and such that

∀m∈{}∪N
{
wm+ ∈ T

(
wm)}

(.)

and

lim
m→∞ sup

n>m
J
(
wm,wn) = , (.)

then

lim
m→∞ J

(
w,wm)

=  where w = . (.)

In fact, first note that

T [m](X) = [; ] ⊂ E form≥ . (.)

Next we see that (.) is equivalent to ∀ε>∃m∈N∀n>m≥m{J(wm,wn) < ε} and so, in partic-
ular in view of (.), (.) and (.), this implies

∀<ε<∃m≥m∀n>m≥m

{
J
(
wm,wn) = p

(
wm,wn) =  < ε

}
. (.)

Now in view of (.), (.), (.) and (.), we conclude that ∀m≥m{wm ≥ wm+} and
hence, since ∀m{ ≥ wm} and  ∈ E, we must have limm→∞ p(w,wm) =  where w = , and
this implies (.). Therefore (X,T) is left J -admissible in X.
(III.)The set-valued dynamic system (X,T) is a leftP-quasi-closedmap in X. Indeed, let

(xm :m ∈N) ⊂ T(X) = [; ] be a leftP-converging sequence in X. Since [; ] ∈ ClL–P (X),
thus ∃x∈T(X)=[;]{limm→∞ p(x,xm) = }. In other words, ∃x∈T(X)=[;]∀ε>∃m∀m≥m{p(x,
xm) < ε} and thus, by (.) and (.), we obtain ∃x∈T(X)=[;]∀<ε<∃m≥m∀m≥m{p(x,xm) =
 < ε} or, equivalently, ∃x∈T(X)=[;]∃m∀m≥m{x ≥ xm}. Of course, then also [x; ] ⊂
SL–P(xm :m∈N). We remark that the considerations above show that if (vm : m ∈ N) and (um :
m ∈N) are arbitrary and fixed subsequences of (xm :m ∈N) satisfying ∀m∈N{vm ∈ T(um)},
then ∃m

∀m≥m∀w∈[x;]{um ∈ [; ]∧ vm ∈ T(um)∧w≥ um ∧w≥ vm ∧w ∈ T(w)}.
(III.) For J = {J} defined by (.) and (.), all the assumptions of Theorem . in the

case of left are satisfied. This follows from (III.)-(III.).
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We conclude that Fix(T) = [; ], and we claim that if w ∈ X, w ∈ T(w), w ∈ T(w)
and x ∈ [; ] are arbitrary and fixed, and ∀m≥{wm = x}, then the sequence (wm : m ∈
{} ∪ N) is a dynamic process of T starting at w and left P-converging to each point
w ∈ [x; ] and these points w satisfy w ∈ T(w).

Remark . Let a quasi-gauge space (X,P) and J = {J}-family be as in Example ..
(a) From Cases III.. and III.. it follows that  =DL–J

 (U ,V ) 
=DL–J
 (V ,U) =  for

U = [; ] and V = [; ].
(b) Observe that  =DL–J

 (U ,U) 
=  if U = {}.

Example . Let a quasi-pseudometric space (X,P), P = {p}, and a set-valued dy-
namic system (X,T) be as in Example .. Observe that ∃λ∈[;)∀x,y∈X{DL–P

 (T(x),T(y))≤
λp(x, y)} does not hold; here DL–P

 (U ,V ) =max{supu∈U p(u,V ), supv∈V p(U , v)}, U ,V ∈ X .
In fact, we argue by contradiction and suppose that the above condition holds. Then
we remark that for x =  and y = , we have p(x, y) = , T(x) = [; ] and T(y) =
[; ]. Thus, for u =  ∈ T(x), we get inf{p(, v) : v ∈ T(y)} = . This shows that  =
DL–P

 (T(x),T(y)) ≤ λp(x, y) = , which is absurd.

Remark . Observe that (X,p) and (X,T) defined in Examples . and . are identi-
cal, note that wemay apply Theorem . withJ defined by (.) and (.) and satisfying
J 
=P = {p} and note, however, that we do not apply Theorem . withJ =P = {p}. Thus
the existence of a J -family such that J 
=P is essential.

Example . Let X = [; ] and let (X,d) be a metric space where d : X → [;∞) is of
the form

d(x, y) = |x – y|, x, y ∈ X. (.)

Defining the set

A =
{
/n : n ∈N

}
, (.)

we consider two maps Ti : X → X , i ∈ {, }, defined by:

T(x) = (; )\A for x ∈ X, (.)

T(x) = A for x ∈ X. (.)

Observe that

∀i∈{,}∀λ∈[;)∀x,y∈X
{
Hd(Ti(x),Ti(y)

)
=  ≤ λd(x, y)

}
. (.)

Remark . We claim that for (X,d) and for (X,Ti), i ∈ {, }, defined in Example .,
we do not use Theorem . of Nadler. Indeed, we note that (X,d) is complete, (.) holds,
Fix(T) = (; )\A and Fix(T) = A, whereas, for each x ∈ X and for each i ∈ {, }, Ti(x) is
not closed in (X,d).
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Example . Let X = [; ]. Define p : X → [;∞) by

p(x, y) =

{
 if x = y or A∩ {x, y} = {x, y},
 if x 
= y and A∩ {x, y} 
= {x, y}; (.)

here A is defined by (.). Let (X,Ti), i = , , be as in (.) and (.).
(VI.) The map p defined by (.) is quasi-pseudometric on X and (X,P), P = {p}, is a

quasi-gauge space. See [, (VIII.), p.].
(VI.) The space (X,P) is a left P-sequentially complete. See [, (IX.), p.].
(VI.) For i ∈ {, }, (X,Ti) has the property Ti : X → ClL–P (X) = ClR–P (X). Indeed, let

i ∈ {, }, let x ∈ X be an arbitrary and fixed point of X, and let (xm :m ∈N) be an arbitrary
and fixed sequence in the set Ti(x) which is leftP-convergent to each point of a nonempty
set SL–P(xm :m∈N) ⊂ X. Thus we see that limm→∞ p(w,xm) =  if w ∈ SL–P(xm :m∈N) and, by (.), we
conclude that ∀<ε<∃m∀m≥m{p(w,xm) =  < ε}.
As a consequence we have the following cases.
Case VI... If i = , then (xm :m ∈ N) ⊂ T(x) = (; )\A and, by (.), ∃m∀m≥m{xm =

w} and SL–P(xm :m∈N) = {w} ⊂ (; )\A = T(x);
Case VI... If i = , then (xm :m ∈ N) ⊂ T(x) = A and, by (.), SL–P(xm :m∈N) = A = T(x);

i.e., ∀w∈A{limm→∞ p(w,xm) = }.
(VI.) For i = , , the set-valued dynamic system (X,Ti) is left partially P-admissible

in X. In fact, observing that T [m]
 (X) = (; )\A and T [m]

 (X) = A for m ∈ N, it remains to
verify that if w ∈ X and (wm :m ∈ {} ∪N) are such that

∀m∈{}∪N
{
wm+ ∈ T

(
wm) ⊂ (; )\A}

(.)

or

∀m∈{}∪N
{
wm+ ∈ T

(
wm) ⊂ A

}
(.)

and

lim
m→∞ sup

n>m
p
(
wm,wn) = , (.)

then

∃w∈X
{
lim

m→∞p
(
w,wm)

= lim
m→∞p

(
wm,w

)
= 

}
; (.)

here we remark that by (.) property (.) shows that

∀<ε<∃m≥m∀n>m≥m

{
p
(
wm,wn) =  < ε

}
. (.)

One way to check this is as follows: If i = , then by (.), (.) and (.),
∃w∈(;)\A∃m∈N∀m≥m{wm = w} and limm→∞ p(w,wm) = . If i = , then by (.), (.)
and (.), we have ∀w∈A{limm→∞ p(w,wm) = }. By symmetry of p, this shows that (.)
holds.
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(VI.) Let i ∈ {, }. For each λ ∈ [; ), the set-valued dynamic system (X,Ti) is a
(DL–P

 ,λ)-contraction on X. Indeed, we see that, for each x, y ∈ X,

∀u∈T(x)=(;)\A
{
inf

{
p(u, v) : v ∈ T(y) = (; )\A}

= p(u,u) = 
}
,

∀u∈T(x)=A
{
inf

{
p(u, v) : v ∈ T(y) = A

}
= p(u, v) = 

}
.

Therefore, ∀i∈{,}∀λ∈[;)∀x,y∈X{DL–P
 (Ti(x),Ti(y)) =  ≤ λp(x, y)}.

(VI.) For i ∈ {, }, the set-valued dynamic system (X,Ti) is left P-quasi-closed on X.
Indeed, let i ∈ {, }. Let (xm : m ∈ N) be an arbitrary and fixed sequence in Ti(X), left
P-convergent to each point of a nonempty set SL–P(xm :m∈N) ⊂ X and having subsequences
(vm : m ∈ N) and (um : m ∈ N) satisfying ∀m∈N{vm ∈ Ti(um)}. Of course, SL–P(xm :m∈N) ⊂
SL–P(vm :m∈N) and SL–P(xm :m∈N) ⊂ SL–P(um :m∈N). Let now w ∈ SL–P(xm :m∈N) be arbitrary and fixed. Since
limm→∞ p(w,xm) = limm→∞ p(w, vm) = limm→∞ p(w,um) = , thus, by (.),

∀<ε<∃m∀m≥m

{
p(w,xm) =  < ε ∧ p(w, vm) =  < ε ∧ p(w,um) =  < ε

}
. (.)

As a consequence, we have the following cases.
Case VI... If i = , then by (.), (.) and (.), ∃m∀m≥m{xm = vm = um = w}.

Hence, w ∈ (; )\A, SL–P(xm :m∈N) = SL–P(vm :m∈N) = SL–P(um :m∈N) = {w} and w ∈ T(w). This gives, by
Section , that T is left P-quasi-closed on X.
Case VI... If i = , then by (.), (.) and (.), ∃m∀m≥m{xm, vm,um ∈ A}.

Hence, w ∈ A = SL–P(xm :m∈N) = SL–P(vm :m∈N) = SL–P(um :m∈N) and w ∈ T(w). This gives, by Section ,
that T is left P-quasi-closed on X.
(VI.) For each i ∈ {, }, property (.) holds, i.e.,

∀x∈X∀γ∈(;∞)∃y∈Ti(x)
{
p(x, y) < p

(
x,Ti(x)

)
+ γ

}
.

Indeed, this follows from Cases VI.. and VI.. below.
Case VI... Let x ∈ A.
If y = / ∈ T(x) = (; )\A, then p(x, y) = , p(x,T(x)) =  and ∀γ∈(;∞){p(x, y) <

p(x,T(x)) + γ }.
If y ∈ T(x) = A, then p(x, y) = , p(x,T(x)) =  and ∀γ∈(;∞){p(x, y) < p(x,

T(x)) + γ };
Case VI... Let x ∈ (; )\A.
If y = x ∈ T(x) = (; )\A, then p(x, y) = , p(x,T(x)) =  and ∀γ∈(;∞){p(x, y) <

p(x,T(x)) + γ }.
If y ∈ T(x) = A, then p(x, y) = , p(x,T(x)) =  and ∀γ∈(;∞){p(x, y) < p(x,

T(x)) + γ }.
(VI.) All the assumptions of Theorem .(B) when s =  are satisfied. This is proved in

(VI.)-(VI.).
We conclude that Fix(T) = (; )\A and Fix(T) = A, and one shows the following.
Claim VI... Let w ∈ X. If w ∈ (; )\A and wm+ ∈ T(wm), m ∈ {} ∪ N, satisfies

∀m∈N{wm = w}, then the sequence (wm : m ∈ {} ∪ N) is left P-convergent to w and w ∈
T(w). Moreover, (wm : m ∈ N) ⊂ BL–P (w, ) and w,w ∈ BL–P (w, ) whenever w 
= w,
and, for each r ∈ (;∞), (wm : m ∈ N) ⊂ BL–P (w, r) and w,w ∈ BL–P (w, r) whenever
w = w;
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Claim VI... Let w ∈ X. If w ∈ A and wm+ ∈ T(wm),m ∈ {} ∪N, satisfies ∀m∈N{wm ∈
A}, then the sequence (wm :m ∈ {} ∪N) is left P-convergent to w and w ∈ T(w). More-
over, (wm : m ∈ N) ⊂ BL–P (w, ) and w,w ∈ BL–P (w, ) whenever w ∈ X\A, and, for
each r ∈ (;∞), (wm :m ∈N) ⊂ BL–P (w, r) and w,w ∈ BL–P (w, r) whenever w ∈ A.

Remark . Let X = [; ], let (X,Ti), i ∈ {, }, be defined by (.) and (.), let d be
of the form (.) and let p be of the form (.). We point out some facts concerning
Examples . and ..
(a) (X,P) is not Hausdorff. Indeed, if x, y ∈ A and x 
= y, then p(x, y) = p(y,x) = , and we

notice that evidently (.) does not hold.
(b) The basic idea of Example . is as follows. First, in Example ., in the metric

space (X,d), we showed that it is not possible to use the metric structure on X
determined by d despite the fact that (.) and thus also (.) holds for (X,Ti),
i ∈ {, }. Next, by a suitable choice of the not Hausdorff structure on X , defined by
P = {p}, we proved that for (X,P) and (X,Ti), i ∈ {, }, the assumptions of
Theorem .(B) when s =  hold and we can then apply this theorem.

Example . Let X = [; ] and let A and p : X → [;∞) be defined by (.) and
(.), respectively. ForW ⊂ A,W 
=∅,W 
= A, we define the map

T(x) =

{
W for x ∈ X\W ,
A\W for x ∈ W .

(.)

(VII.)We claim that, for each λ ∈ [; ), (X,T) is a (DL–P
 ,λ)-contraction and (DR–P

 ,λ)-
contraction on X. In view of (.), this follows from the fact that ∀λ∈[;)∀x,y∈X{DL–P

 (T(x),
T(y)) =DR–P

 (T(x),T(y))≤ λp(x, y)}. Indeed, by (.), x ∈ X implies T(x)⊂ A. Hence, by
(.) we have that

∀x,y∈X
{
DL–P


(
T(x),T(y)

)
=DR–P


(
T(x),T(y)

)
=max

{
sup

u∈T(x)⊂A
p
(
u,T(y)

)
, sup
v∈T(y)⊂A

p
(
T(x), v

)}
= 

}
.

(VII.) The set-valued dynamic system (X,T) is left and right partially P-admissible
in X. In fact, since T [m](X) = A for m ∈ N, thus if w ∈ X and (wm : m ∈ {} ∪ N) are
arbitrary and fixed and such that ∀m∈{}∪N{wm+ ∈ T(wm)}, then ∀m∈{}∪N{wm+ ∈ A} and
limm→∞ supn>m p(wm,wn) =  (thus also limm→∞ supn>m p(wn,wm) = ). Consequently, by
(.), ∀w∈A{limm→∞ p(w,wm) = limm→∞ p(wm,w) = }. By Definition .(B), (X,T) is left
and right partially P-admissible in X.
(VII.) The set-valued dynamic system (X,T []),

T [](x) =

{
A\W for x ∈ X\W ,
W for x ∈W ,

is left and right P-quasi-closed on X. Indeed, let (xm : m ∈ N) be an arbitrary and fixed
sequence in T [](X) = A, left P-convergent to each point w of a nonempty set SL–P(xm :m∈N)
and having subsequences (vm : m ∈ N) and (um : m ∈ N) satisfying ∀m∈N{vm ∈ T [](um)}.
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It follows from (.) that then w ∈ SL–P(xm :m∈N) = SL–P(vm :m∈N) = SL–P(um :m∈N) = A and w ∈ T [](w).
Analogously, we prove that (X,T []) is right P-quasi-closed on X.
(VII.) Properties (.) and (.) hold. Indeed, this follows from Cases VII..-VII..

below.
Case VII... If x ∈ A and y ∈ T(x), then T(x) ⊂ A, p(x, y) = , p(x,T(x)) =  and

∀γ∈(;∞){p(x, y) < p(x,T(x)) + γ };
Case VII... If x ∈ X\A and y ∈ T(x), then T(x) ⊂ A, p(x, y) = , p(x,T(x)) = 

and ∀γ∈(;∞){p(x, y) < p(x,T(x)) + γ }.
Case VII... Finally, p(x, y) = p(y,x) and p(x,T(x)) = p(T(x),x) follow from the

fact that P is symmetric.
(VII.) All the assumptions of Theorem .(B) when s =  are satisfied. This is proved in

(VII.)-(VII.).
We conclude that Fix(T) =∅ and Fix(T []) = A, and one shows the following.
Claim VII... If w ∈ A, w ∈ Fix(T []) and wm+ ∈ T(wm), m ∈ {} ∪ N, then w ∈ A,

∀m∈N{wm ⊂ A}, the sequence (wm :m ∈ {} ∪N) is left and right P-convergent to w, and,
for each r ∈ (;∞), (wm :m ∈N) ⊂ B and w,w ∈ B; here B = BL–P (w, r) = BR–P (w, r)
Claim VII... If w ∈ X\A, w ∈ Fix(T []) and wm+ ∈ T [](wm),m ∈ {} ∪N, then w ∈ A,

∀m∈N{wm ∈ A}, the sequence (wm :m ∈ {}∪N) is leftP-convergent tow, (wm :m ∈N) ⊂ B
and w,w ∈ B; here B = BL–P (w, ) = BR–P (w, ).

Remark . We point out some facts concerning Example ..
(a) (X,P) is not Hausdorff; see Remark .(a).
(b) Noting that P is symmetric, we see that ClL–P (X) = ClR–P (X) holds.
(c) The property T : X → ClL–P (X) does not hold. In fact, it is not hard to see that, for

x ∈ X\W , T(x) =W 
= clL–JX (T(x)) = A and for x ∈ X\W ,
T(x) = A\W 
= clL–JX (T(x)) = A.

(d) Fix(T) =∅ and Fix(T []) 
=∅.
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