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1 Introduction
There are in the literature many different versions of the well-known theorems due to Ba-
nach [1] and Nadler [2] concerning fixed points for single-valued and set-valued dynamic
systems, respectively, in complete metric spaces. Especially, their analogues in more gen-
eral spaces and concerning nontrivial problems and more complicated situations are im-
portant, fascinating and challenging (cf. [3-59]).

Recall that a set-valued dynamic system is defined as a pair (X, T'), where X is a certain
space and T is a set-valued map T : X — 2%; here 2X denotes the family of all nonempty

subsets of a space X. In particular, a set-valued dynamic system includes the single-valued
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dynamic system (X, T) where T is a single-valued map T : X — X, i.e., Vsex{T(x) € X}. For
m e {0}UN, define T" = To T o---o T (m-times) and T% = I (an identity map on X).

Let (X, T) be a set-valued dynamic system. By Fix(7) and Per(7) we denote the sets of
all fixed points and periodic points of T, respectively, i.e., Fix(T) = {w e X : w € T(w)} and
Per(T) = {w € X : w € T¥(w) for some s € N}. A dynamic process or a trajectory starting
at wy € X or a motion of the system (X, T) at w° is a sequence (w" : m € {0} UN) defined
by w" € T(w" 1) for m € N (see Aubin and Siegel [5], Aubin and Ekeland [60], Aubin and
Frankowska [4] and Yuan [58]).

Let (X, T) be a single-valued dynamic system. For each w° € X, a sequence (" : m €
{0} UN) such that V,,,c(ojun{w™ = T (w°)} is called a Picard iteration starting at w° of the
system (X, T).

The notion of Banach’s contraction belongs to the most fundamental mathematical ideas
and a classic result of Banach, from 1922, is the milestone in the history of fixed point
theory and its applications.

Theorem 1.1 (Banach [1]) Let (X, d) be a complete metric space. Assume that the single-

valued dynamic system (X, T) is (d, 1.)-contraction, i.e.,
T Vayex{d(T), T(y)) < rd(x,y)}. (L1)

Then T has a unique fixed point w in X (i.e., T(w) = w and Fix(T) = {w}) and, for each
w0 € X, the sequence (W" = T (wy) : m € {0} UN) satisfies lim,,,_, o d(w, w™) = 0.

Recall that the Hausdorff metric H* on the class of all nonempty closed and bounded
subsets CB(X) of the metric space (X, d) is defined as

Yu,vecsw) {Hd(L[, V)= max{sup d(u, V),supd(v, L[)} }, (1.2)
uel veV

where V,exVvecaid(u, V) = infyey d(u,v)}.
In a slightly different direction is the following elegant result of Nadler on set-valued

dynamic systems.

Theorem 1.2 (Nadler [2, Theorem 5]) Let (X, d) be a complete metric space. Assume that
the set-valued dynamic system (X, T) satisfying T : X — CB(X) is (H?, A)-contraction, i.e.,

3xe[0;1)Vx,yeX{Hd(T(x), T(y) < )»d(x,y)}. (1.3)
Then Fix(T) # & (i.e., there exists w € X such that w € T(w)).

Remark 1.1 Clearly, (X,d) and (CB(X), H?), as metrics, are Hausdorff spaces, and the
completeness of (X, d) implies the completeness of (CB(X), H?). Observe that in the proofs
of Theorems 1.1 and 1.2 the following play an important role: (a) the continuity of 4 and
H? (b) the completeness and the separability of the spaces (X, d) and (CB(X), H%); (c) the
continuity of maps T : (X,d) — (X,d) and T : (X,d) — (CB(X), H?) satisfying conditions
(1.1) and (1.3), respectively; (d) in Theorem 1.2 the assumption that for each x € X, T'(x) is
closed in X; (e) the properties H4(Ul, V) = H*(V, U) and H*(U,U) = 0, U,V € CB(X).
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By analyzing Theorems 1.1 and 1.2, one may build many examples without properties
(a)-(e) and such that the assertions are obtainable and remain valid. These remarks sug-
gest that more subtle investigations and modifications of structures on X, and the con-
cept of distance of Hausdorff defined by (1.2), and the concepts of contractions of Banach
and Nadler defined by (1.1) and (1.3) respectively are necessary. The aim of this paper is
to provide new modifications of Theorems 1.1 and 1.2 removing the assumptions (a)-(e)
mentioned in Remark 1.1 and leaving the assertions such as in Theorems 1.1 and 1.2, even
in more general forms.

More precisely, let X be a nonempty set, let the family P = {p, : « € A} of quasi-
pseudometrics p, : X X X — [0,00), a € A, be a quasi-gauge on X such that (X,P) is
a quasi-gauge space (in the sense of Dugundji [61] and Reilly [62]), and let the family
J ={Ju : @ € A} of generalized quasi-pseudodistances J, : X x X — [0,00), « € A, be
a left (right) J-family on X (J-families on X generalize quasi-gauge P on X). Then, in
(X, P), using the left (right) 7 -families on X, the left (right) quasi-distances Dﬁ‘j (Dg‘j ),
n € {1,2,3}, of Hausdorff type on 2% are defined, the three kinds of left (right) set-valued
contractions of Nadler type are constructed, and, for such contractions, the left (right)
P-convergence of dynamic processes starting at each point w° € X is studied and the ex-
istence and localization of periodic and fixed point results are proved. As implications, two
kinds of left (right) single-valued contractions of Banach type are defined, the left (right)
P-convergence of Picard iterations starting at each point w? € X is studied, and existence,
localization, periodic point, fixed point and uniqueness results for such contractions are
established.

The left (right) set-valued and single-valued contractions are studied here on X, on
{(w°} U B9 (w0, 7) and on {w°} U BRI (w0, r), where B~ (w°,r) (BT (wP,r)) are left
(right) J -balls centered in w° € X of radius 7 = {ry}aca € (0; o0)A.

Moreover, in our investigations, we assume additionally that these left (right) contrac-
tions are left (right) J-admissible or left (right) partially 7 -admissible. Also, the cases
when these left (right) contractions are left (right) P-quasi-closed maps are described.

Appropriate tools and ideas of studying based on asymmetric structures determined by
J -families and also presented examples showed that the results: are new in quasi-gauge,
topological, gauge, quasi-uniform and quasi-metric spaces; are new even in uniform
and metric spaces; do not require completeness and Hausdorff properties of the spaces
(X,P), continuity of contractions, closedness of values of set-valued contractions and
properties D=7 (U, V) = DE7(V, U) (DX7(U, V) = DX (V,U)) and D7 (U, U) = 0
(fo‘j(l,l, U)=0),ne{1,2,3}, U,V € 2%; provide information concerning localizations of
periodic and fixed points; and substantially generalize the well-known theorems of Nadler

and Banach types.

2 Quasi-gauge spaces

Before proceeding further, let us record the following.

Definition 2.1 Let X be a nonempty set.
(A) A quasi-pseudometric on X isamap p: X x X — [0, 00) such that:
(2) Vuex (P14, #) = 0}; and (b) ¥y e (91, w) < plas,v) + plv, w)}. For given
quasi-pseudometric p on X, a pair (X, p) is called quasi-pseudometric space.
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A quasi-pseudometric space (X, p) is called Hausdor(ff if
V,Mex{u £V :>p(u,v)>0\/p(v,u)>0}. (2.1)

(B) Each family P = {p, : @ € A} of quasi-pseudometrics py : X x X — [0,00), a € A, is
called a quasi-gauge on X.

(C) Let the family P = {p, : @ € A} be a quasi-gauge on X. The topology 7 (P) having
as a subbase the family B(P) = {B(u, &,) :u € X, 84 > 0, € A} of all balls
B(u,eq) ={veX:py(u,v) <&y}, u€ X, g4 >0, a € A, is called the topology induced
by P on X.

(D) (Dugundji [61], Reilly [34, 62]) A topological space (X, T) such that there is a
quasi-gauge P on X with 7 = T (P) is called a quasi-gauge space and is denoted by
X, P).

(E) A quasi-gauge space (X, P) is called Hausdor{f if the quasi-gauge P has the
property:

Vu,veX{u Zv= EIaeA{pa(u, V) >0V py(v,u) > 0}} (2.2)

(F) Let the family P = {p, : « € A} be a quasi-gauge on X, and let (X, P) be a
quasi-gauge space. If P' = {p/, : @ € A}, where Vye Y, vex{p), (4, v) = po (v, u)}, then
(X,P’) is a quasi-gauge space and (X, P’) is called the conjugate of (X, P).

Remark 2.1 Each quasi-uniform space and each topological space is a quasi-gauge space
(Reilly [62, Theorems 4.2 and 2.6]). The quasi-gauge spaces are the greatest general spaces
with asymmetric structures.

3 Left (right) 7 -families
Historically, the first work on the distances in metric spaces (X, d) was done by Tataru
[45]. Next, the concepts of w-distances, T-functions and 7 -distances in these spaces, which
generalize Tataru distances and metrics d, were introduced by Kada ez al. [23], Lin and Du
[27] and Suzuki [37], respectively. Distances in uniform spaces had first been formulated
by Valyi [46]. From rich literature it follows that the above distances provide useful and
powerful tools for investigating problems of fixed point theory. Using these ideas, more
general and various distances have been demonstrated in [47-57].

For a different purpose, in quasi-gauge spaces (X, P) with quasi-gauges P = {p, : @ €
A} on X, we recall the left (right) 7 -families of generalized quasi-pseudodistances on X
(left (right) 7 -families generalize quasi-gauges P).

Definition 3.1 ([57, Section 3]) Let (X,P) be a quasi-gauge space.
(A) The family J = {Jy : ¢ € A} of maps J, : X x X — [0,00), @ € A, is said to be a left
(right) J -family of generalized quasi-pseudodistances on X (left (right) J -family
on X, for short) if the following two conditions hold:

(Jl) vaeAVu,v,weX{]a (u: W) = ]a(ur V) + Jo (V, W)}5 and
(J2) for any sequences (i, : m € N) and (v, : m € N) in X satisfying

VaeA{ lim Sup]a(”m: un) = O} (31)

m— 00 n>m

Page 4 of 27
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(Vaea] Jim supues, ) = 0} ) (3:2)
and

Vaea] Jim Ju (i) = 0} (33)

(Vaea] lim TG v) =0}), (3.4)
the following holds:

Vaea] lim po(vm ) =0} (35)

(Yoea] im_puivi) =0}). (3.6)

(B) Define

pr) {j J={: aeA}lsaleftjfamllyonX}
pr) {J:T ={u:a € A} is aright J-family on X}.

In the following remark, we list some basic properties of left (right) 7 -families in (X, P).

Remark 3.1 Let (X,P) be a quasi-gauge space. The following hold:

(@) Pelip NI

(b) Let J € J(LX,P) or J € fopy If VoeaVuex{Ju(u, u) = 0}, then for each a € A, J, is
quasi-pseudometric.

(c) There are examples of J € J(LX,P) and J € fo'p) such that the maps J,, @ € A, are
not quasi-pseudometrics. Indeed, in Example 4.1 below, if u ¢ E, then
vaE.A{]a(u» Lt) =¢y > 0}.

(d) ([57, Proposition 3.1]) If (X, P) is a Hausdorft quasi-gauge space and J € J(LXP) or
J e J&P), thenVyyex{u #v= gcallo(u,v) >0V J,(v,u) > 0}}.

4 Left (right) J-balls
In this section we define and characterize the left (right) 7 -balls in (X, P).

Definition 4.1 Let (X,P) be a quasi-gauge space, and let the family J = {J, : « € A} of
maps J, : X2 — [0;00), a € A, be a left (right) J-family on X. We define the left (right)
J -ball centered in w° € X of radius r = {1y }ye4 € (0;00) by

BE- J(w r) {x eX:VaeA{fa(Wo,x) < ra}}
(BR_j(wo,r) = {x S X:VQEA{]a(x, WO) < ra}}).
Remark 4.1 Notice, however, that there exist a quasi-gauge space (X,P), a left (right)

J-family on X, w® € X and 7 = {ry}aca € (0;00)" such that w® ¢ BL-J (w0,r) (w° ¢&
BR=7 (w9, r)). This follows from Example 4.1 below.
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Example 4.1 Let X contain at least two different points, let the family P = {p, : &« € A} of
quasi-pseudometrics p, : X x X — [0,00), @ € A, be a quasi-gauge on X, and let (X, P) be
a quasi-gauge space.
Let the set E C X containing at least two different points be arbitrary and fixed, and let
{Cataca € (0;00)A satisfy Vye a{8a(E) < ¢y}, where Ve a{84(E) = sup{ps(x,y) : 5,y € E}}.
Let the family J = {Jy:a¢ € A}, Jo : X x X — [0,00), @ € A, be defined by the formula:

Po(x,y) fEN{xy}={x9},

Jo(x,y) = c if EN{x,y} # {x, 5},

xyeX. (4.1)

Then J € J(LX,P) N J&P).

Indeed, we see that condition (1) does not hold only if there exist some « € A and
u,v,w € X such that J,(u,w) = ¢y, Jo(u,v) = po(u,v), Jo(v,w) = po(v,w) and p,(u,v) +
DoV, W) < cy. However, then we conclude that there exists z € {u, w} such that z ¢ E and
u,v,w € E, which is impossible. Therefore, Voc AV, pwex o (16, w) < Jo(u,v) + I (v, W)}, ice.,
condition (1) holds.

Now suppose that the sequences {u,,} and {v,,} in X satisfy (3.1) and (3.3). Then, in
particular, (3.3) yields

Ve Y0<e<cq Imo-mo@)eNYm=mo {Ja Vi m) < €} (4.2)
By (4.2) and (4.1), denoting m' = min{mg(c) : @ € A}, we conclude that

Yoz {E OV Vins thin} = (Vs i} . (4.3)
From (4.3), the definition of J and (4.2), we get

VaeAYo<e<cy I eNVmzm AP (Vins thm) = Jo Vins thn) < €}

The result is that the sequences {u,,} and {v,,} satisfy (3.5). Therefore, 7 is a left 7 -family.
Analogously, we prove that if {u,,} and {v,,} in X satisfy (3.2) and (3.4), then also (3.6)
holds, therefore 7 is a right 7 -family.

5 Left (right) 7 -convergences and left (right) 7 -sequential completeness
Now, using left (right) 7 -families, we define the following natural concept of left (right)
J -completeness in (X, P).

Definition 5.1 Let (X, P) be a quasi-gauge space, and let J = {J,, : « € A} be a left (right)
J -family on X.
(A) We say that a sequence (u,, : m € N) in X is left (right) J-Cauchy sequence in X if

VaEA{ lim SUP]a(Mm: un) = O}
m—>00

n>m

(VO,EA{”}im sup Jy (4, ) = 0})

— 00 n>m
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(B) Letu € X and let (u,, : m € N) be a sequence in X. We say that (u,, : m € N) is left

(right) J -convergent to u it imt7__ u,, = u (lim®-7_ u,, = u), where

L-J
lim u, = u< v(,eA{ lim J, (s, u,,) = o}
m— 00 m— 00

R-TJ

( lim it = @VaeA{ i Jy (thy 12) = 0}).

(C) We say that a sequence (uy, : m € N) in X is left (right) J -convergent in X if
ST ) 7D (Sk-T ) # D), where

(up:meN (up:meN

SL—j :[MGX‘ Ii;I‘IZ u :M}
(u:meN) ¢ m at,
R-T
R-T _ e B
(Stnesy = [ € X Jim s = u]).

(D) If every left (right) J-Cauchy sequence (u,, : m € N) in X is left (right)
J -convergent in X (i.e., S(Lu_n‘fmeN) 4o (S(I;_m‘?meN) # )), then (X, P) is called a left

(right) J -sequentially complete quasi-gauge space.

Remark 5.1 Let (X,P) be a quasi-gauge space.
(a) Itis clear thatif (i, : m € N) is left (right) J -convergent in X, then
L-T L-J R-T R-T
Stumimen) C S(ummen) (S(um:meN) - S(vm:meN))
for each subsequence (v, : m € N) of (u,,, : m € N).
(b) There exist examples of quasi-gauge spaces (X, P) and left (right) J-families J

on X, J #P, such that (X, P) are left (right) J -sequentially complete, but not left
(right) P-sequentially complete.

6 Left (right) 7 -closed sets
Definition 6.1 Let (X,P) be a quasi-gauge space, and let the family J = {J, : « € A} of
maps J, : X2 — [0;00), a € A, be a left (right) J-family on X.
(A) We say that a set Y € 2% is a left (right) J -closed in X if Y = clf(_J(Y)
(Y = clf7(Y)), where 57 (Y) (ciR7(Y)), the left (right) J -closure in X, denotes
the set of all x € X for which there exists a sequence (x,, : m € N) in Y which left
(right) J -converges to x.
(B) Define CI:"7 (X) = {Y € 2X: Y = el T (V)} (CIR-T (X) = {Y € 2¥: Y = BT (YV)));
that is, CI*=7 (X) (CI*~7 (X)) denotes the class of all nonempty left (right) 7 -closed
subsets of X.

Remark 6.1 If (X, P) is a left (right) 7 -sequentially complete quasi-gauge space and a set
Y € CI-7(X) (Y € CI*FJ (X)), then (Y, P) is a left (right) J -sequentially complete quasi-
gauge space.

7 Left (right) J-admissible and left (right) partially [7-admissible set-valued
maps
The following terminologies will be much used in the sequel.
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Definition 7.1 Let (X,P) be a quasi-gauge space, let the family J = {J, : « € A} of maps
Ju: X x X — [0,00), a € A, be aleft (right) 7 -family on X, and let Y € 2%,
(A) We say that a set-valued map T': Y — 2X is left (right) [J -admissible in a point
w® € Y if for each sequence (w” : m € {0} U N) satisfying the properties
Vocouniw™t € TwW™) NY # &} and

Vaeal lim supj, (w’", w") = 0} (V(,GA lim sup/, (w”, w’") = 0}),
m

m—> 00 n>m — 00 n>m

there exists w € X such that
Voeal Jim Ju(ww”) =0} (Yaeal fim 1. (") =0} ).

We say that a set-valued map T : Y — 2% is left (right) J -admissible in Y if
T:Y — 2% is left (right) J -admissible in each point w° € Y.

(B) We say that a set-valued map T : Y — 2% is left (right) partially J -admissible in a
point w° € Y if for each sequence (w” : m € {0} U N) satisfying the properties
Veioun{w"™t € Tw™)NY # @} and

VaeA{ lim sup/, (w’”, w") = 0} (VaeA lim sup/, (w”, w’") = 0}),

m— 00 n>m m— 00 n>m

there exists w € X such that

VaeA{W}i_I)I;o]a(W¢ w") = Tim Jo (", w) = O}.
We say that a set-valued map T: Y — 2X is left (right) partially J -admissible in Y
if T:Y — 2% is left (right) partially [J -admissible in each point w° € Y.

Remark 7.1 Let (X, P) be a quasi-gauge space, and let the family 7 = {J, : « € A} of maps
Jo : X x X — [0,00), @ € A, be aleft (right) J-family on X.
(a) If (X, P) is a left (right) J -sequentially complete quasi-gauge space, then a
set-valued dynamic system (X, T), T : X — 2%, is left (right) 7 -admissible on X.
(b) If (X, P) is a left (right) J -sequentially complete quasi-gauge space and J is
symmetric, i.e., Voe AViuvex o (4, v) = Jo (v, )}, then (X, T) is left (right) partially
J -admissible on X.
(c) Itis evident that each left (right) partially -admissible on X a set-valued dynamic
system (X, T') is left (right) J-admissible on X but the converse not necessarily
holds.

8 Left (right) P-quasi-closed maps
We can define the following generalizations of continuity.

Definition 8.1 Let (X, P) be a quasi-gauge space, let (X, T) be a set-valued dynamic sys-
tem, T: X — 2%, and let s € N. The map T is said to be a left (right) P-quasi-closed map
on X if for every sequence (x,, : m € N) in TII(X), left (right) P-converging in X (thus


http://www.fixedpointtheoryandapplications.com/content/2014/1/239

Wtodarczyk Fixed Point Theory and Applications 2014, 2014:239 Page 9 of 27
http://www.fixedpointtheoryandapplications.com/content/2014/1/239

SLx PmeN # (SljcfmEN # &)) and having subsequences (v, : m € N) and (u,, : m € N) sat-

istying
VmeN{Vm € T[S] (um)}’

the following property holds: there exists x € St EN (x e S o EN ) such that x € T (x)
(x € TH(x)).

Definition 8.2 Let (X,P) be a quasi-gauge space, let Y be a nonempty subset of X, and
let T:Y — 2% be a set-valued map. The map T is said to be a left (right) P-quasi-closed
map on Y if for every sequence (x,, : m € N) in T(Y), left (right) P-converging in X (thus
SLx PmeN # O (Slj%PmGN # &)) and having subsequences (v, : m € N) and (u,, : m € N) sat-

istying
VineN { Vm € T(um)};

the following property holds: there exists x € S
(x € T(x)).

N) (x € SR~ N) ) such that x € T'(x)

(Xm me (xm me

9 Left (right) quasi-distances of Hausdorff type and three kinds of set-valued
left (right) contractions of Nadler type

In not necessarily Hausdorff quasi-gauge spaces, we define the left (right) Hausdorff quasi-

distances (Definition 9.1(A)) and the set-valued left (right) contractions of Nadler type

(Definition 9.1(B)).

Definition 9.1 Let (X,P) be a quasi-gauge space, let the family 7 = {J,, : « € A} of maps
Jo : X% — [0;00), o € A, be a left (right) J-family on X, let n € {1,2,3}, and let

VaeAVueXVv€2X {]a(ur V) = inf{]a(u» Z) tZ € V}

ANo(V,u) =inf{J(z,u) : z€ V}}. (9.1)

(A) Define on 2* the left (right) quasi-distance Di~7 = (D57, € A}
(DX7 ={D¥7,a € A}) of Hausdorff type, where Dﬁ;aj 12X % 2X 5 [0;00], 0 € A

ma ?

(D,I;;;J 12X % 2% — [0;00], o € A) are defined as follows:

(A1) VaEAVu’de{Df;J(U V) = max{sup,;; Jo (&, V), s0p,cy, Jo (U, V)}},
V(XEAVU’Vsz{DL J(U V) = max{sup,;; Jo (&, V),sup,cy Jo (v, U)}} and
VaeAY verx {D T(WU, V) = sup,ey Ju(u, V) if T € J(x Py

(A2)  VeeaVyyex(Dy a~7 (U, V) = max{sup,c; Ju (1, V), 5up,cy Ju (U, V)}},
VaeAVu,szx{DR Tu,v) = max{sup,c;; Jo(#, V), sup,cy Jo (v, U)}} and
VaeaVuver (D57 (U, V) = sup,ey Julu, VIV if T € I )

(B) Let & = {Ag}aca € [0;1)™ and let Y € 2X. We say that a set-valued map T': Y — 2¥
is left (right) (D}~7, 1)-contraction on Y ((DE~7, 1)-contraction on Y) if:

(B1) VaeaVayer{DET (T(%), TB) < hoJu®y)} if T € Ty )i
(B2) VacaVayer {DRT(T(x), T(Y)) < Aol 9)} if T € I -
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Remark 9.1 Let (X, P) be a quasi-gauge space, and let the family J = {J, : « € A} of maps
Jo : X2 — [0;00), a € A, be a left (right) J-family on X.

(a) Generally, D527 (DR7) are not symmetric, i.e., D-o” (U, V) = D27 (V, U)
(Dﬁ;;j(u, V)= Dﬁ;j(V, U)) not necessarily hold. Moreover, Dﬁ‘j(u, uy=0
(ij’J(U, U) = 0) not necessarily hold; see Remarks 12.1 and 12.3.

(b) Each (Dﬁ‘j,k)—contraction onY ((fo‘J,k)—contraction onY), ne{l,2},is
(Dé‘j, A)-contraction on Y ((Dg‘j , A)-contraction on Y') but the converse not
necessarily holds.

10 Convergence, existence, fixed point, periodic point and localization results
for left (right) set-valued contractions of Nadler type
We have the following theorem.

Theorem 10.1 Let (X, P) be a quasi-gauge space, let the family J = {J, : o« € A} of maps
Ju : X2 — [0;00), a € A, be a left (right) J-family on X, and suppose that n € {1,2,3}.
Assume, moreover, that A = {Ag}gea € [O;I)A and a set-valued dynamic system (X, T),
T : X — 2%, satisfy the following:

(i) Tis (Dﬁ‘j,k)-contmction on X (T is (fo‘j,)»)-contmction on X); and

(i) Foreveryx € X and for every y = {Yy}aca € (0; 00)A, there exists y € T(x) such that

Vaealla®,y) <Ju(% T(x)) + Va } (10.1)
(V(XEA {]a(% x) <]a(T(x)’x) + Va})' (102)

(A) If (X, T) is left (right) J -admissible in a point w° € X, then there exist a dynamic
process (W" : m € {0} UN) of the system (X, T) starting at w°, a point w € X and
r={ro}aca € (0;00)4 such that ¥ uen{w™ € BT (W0, 1)} (Ven{w” € BRI (w0, 1)})
and (W" : m € {0} UN) is left (right) P-convergent to w.

If, moreover, (X, T) is left (right) partially J -admissible in a point w° € X, then the
point w above satisfies w € B/~ (WP, r) (w € BRI (w0, r)).

(B) If (X, T) is left (right) J -admissible in a point w° € X and if, for some s € N, T® is
left (right) P-quasi-closed on X, then Fix(T™) # @ and there exist a dynamic process
(w":m € {0} UN) of the system (X, T) starting at w°, a point w € Fix(T"') and
F={rylaea € (0;00)A such that Ve {w” € BT (WP, 1)} (Veniw™ € BR=T (w2, 1))
and (W" : m € {0} UN) is left (right) P-convergent to w.

If, moreover, (X, T) is left (right) partially [J -admissible in a point w° € X, then the
point w above satisfies w € B==7 (w°,r) (w € BT (WP, r)).

Proof We prove Theorem 10.1 only in the case when J is aleft J-family on X, (X, T) is left
J -admissible on X or left partially 7 -admissible on X, and T is left P-quasi-closed map
on X, respectively. We omit the proof in the case of ‘right; which is based on an analogous
technique.

Part 1. Assume that (X, T) is left J -admissible in a point w° € X.

By (9.1) and the fact that J, : X? — [0;00), @ € A, we choose

7= {ra}aea € (0;00)4 (10.3)
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such that

Vaeala(w’, T(w")) < 1= 2a)ra ). (10.4)
Put

Vaea{r? = 0= ra)re —Ju (W°, T(w°))}. (10.5)

In view of (10.3) and (10.4), this implies y© = {y?}4c 4 € (0;00)*, and we apply (10.1) to
find w' € T(w°) such that

VaealJa (W' W) <Jo (W0, T(w°)) + O} (10.6)
We see from (10.5) and (10.6) that
Voea{Ju (W0, w') < 1= Ao)ra ). (10.7)

Observe that (10.7) implies w' € B-~7 (w°, r).
Put now

VaeA{VOED =g [(1 —Aa)la = Jo (Wor Wl)] } (10.8)

Then, in view of (10.7), we get y ¥ = {yV},c 4 € (0;00)*, and applying again (10.1) we find
w? € T(w') such that

Vaealla (W', w?) <Ju(wh, T(w))) + 13" }. (10.9)
Also note that

Vaea{Ja(WHw?) < o1 = Ao)re ). (10.10)
Indeed, from (10.9), (9.1), Definition 9.1 and (10.8), we get

VoealJu W', w?) <Jo W, T(w)) + 10 = sup Jo (a6, T(w)) + 3

ueT(wO)
< Dﬁ;xj(T(wO), T(wh) + v < rafu (W0, W) + 90

= ha(l —)\a)ra}, nef{1,2,3).

Thus (10.10) holds. Further, by (J1), (10.7) and (10.10), we observe that

o0
VaeA{]a (W,5%) < (1= Aa)ra( + he) < (L= Ra)re D A =7o f.
k=0

Hence w? € B9 (w9, r).
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Proceeding as before, using Definition 9.1 and property (10.1), we get that there exists a
sequence (w” : m € N) in X satisfying

Ven{w"* € T(w")}. (10.11)
For calculational purposes, upon letting Yomen{y ™ = {)/OE”‘) }aea}, where

VaeaVmen {18 = ka2 (1= ha)re = Ju (W w™) ]},
we observe that V,,en{y ™ € (0;00)4},

VaeAYmen {Ju (W™, W™ 1) < Jo (W™, T (W™)) + v},

YaeAYmen {Ju (W, W) < A2 (1 = ho)ra} (10.12)

and

m o0
VaeaYmenuo) 3 Ja (W0 W™ ) < Q= Aadre D A5 <(U=Ra)ra Y My =raf.  (10.13)
k=0 k=0

We see from (10.13) that V,,,en{w” € BT (w°,r)}.
Let now m > n. Using (J1) and (10.12), we get

n-1 n-1
: m o\ < 1; i ) < _ : j
rggg)oiggla(w ,w") _y}};n;citjggn:/a(W,W )y<a@ ka)rarr}goigrgg/\a

This means that

YiwoexJowmmenyVmeoyun f W™ € T(w™)} (10.14)
and
Vaea| lim sup/ (w”,w") =0}, (10.15)
m—> 00 n>m

Now, since (X, T) is left J-admissible on X, by Definition 6.1(A), properties (10.14) and
(10.15) imply that there exists w € X such that

Vaea] lim Ju (w,w") = 0}. (10.16)

Next, defining v,, = w and u,, = w” for m € N, by (10.15) and (10.16) we see that con-
ditions (3.1) and (3.3) hold for the sequences (u,, : m € N) and (v,,, : m € N) in X. Conse-
quently, by (J72) we get (3.5) which implies that

VaeA{ lim p, (w,w") = lim po(Vy, th) = 0]
m—>00 m— 00

and so, in particular, we see that w € S(LV;,ZD:MGN) = {xeX:limk 7w =x).
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Additionally, by (J1) and (10.13), we note that
VaeAYmen{Ju (W0, w) < Jo (WO, ") + Jo (W", W) < 1o + Jo (W, W) }. (10.17)

Part 2. Assume that (X, T) is left J-admissible in a point w® € X and, for some s € N,
T is left P-quasi-closed on X.

By Part 1, Swm mejojun) 7 D and since by (10.11), w"*Vs e TE (W) for m € {0} UN,
thus defining (x,, = w”1* : m € N) we see that (x,, : m € N) c TI(X), Sxm me(OjUN) =
SLv;m mefojun) 7 D the sequences (v,, = w1 : m € N) ¢ TH(X) and (u4,, = w"™ :m €
N) C T[s](X) satisfy Ven{vim € T (w,,)} and, as subsequences of (x,, : m € {0} UN),
are left P- convergmg to each point of the set S~
SL 73meN) - S Vi meN and S(wm :meN) - S

we conclude that 3 - we TE(w).
WES(LwV?ms(o;uNf écm?meN){ (W)}

Part 3. Assume that (X, T) is left partially J -admissible in a point w° € X.
Using Part 1, (10.14) and (10.15), by Definition 6.1(B), we have that there exists w € X
such that

wm mefojuny)- Moreover, by Remark 5.1(a),

By above, since T is left P-quasi-closed,

(m meN

VO(EA{ lim ]a (w",w) = lim J,(w,w") = O}. (10.18)
m—> 00
The consequence of (10.17) and (10.18) is w € BT (u?, r).
Part 4. The result now follows at once from Parts 1-3. O

Theorem 10.1 and its proof immediately yields the following theorem.

Theorem 10.2 Let (X, P) be a quasi-gauge space, let the family J = {J, : « € A} of maps
Ju: X2 — [0;00), a € A, be a left (right) J -family on X, and suppose that n € {1,2,3}.
Assume, moreover, that w° € X, A = {Aq}aca € [0;1)“4, = {ra}aca € (0;00)4 and a set-
valued map

T:{w’} UB"7 (w’r) > 2¥ (T: {w°} UB®T (W0, r) — 2%)

satisfy:
(i) T is (DL, A)-contraction on {w°} U B*~7 (w°,r) (T is (DF~7, ))-contraction on
{w°} U BET (w0, 1));
(i) Yaeallua®, T%)) < (1= 1a)7a} (Vacalla(T(W0), W) < (1= Ao)7a)); and
(iii) for every x € (w°} UBET (w0, r) (x € (w°} U BRI (W, 1)) and for every
¥ = Va)aea € (0;00)4, there exists y € T(x) such that

VaecA {]ot(x,y) <Jo (x’ T(x)) + yoz} (VOIE.A {]Ol (Y’x) <]a(T(x)»x) + Vo })

(A) If T is left (right) partially J -admissible in w°, then there exist a dynamic process
(w":m € {0} UN) of the system (X, T) starting at w° and a point w € B-~7 (w°, r)
(w e BRI (W0, 7)) such that ¥ men{w™ € B=T (W0, 1)} (Vien{w™ € BRI (WP, 1r)}) and
(w" . m € {0} UN) is left (right) P-convergent to w.

(B) If T is left (right) partially J -admissible in w° and if T is left (right) P-quasi-closed
on (WU BT (W0, r) (on {w°Y U BRI (W0, 1)), then Fix(T) # @ and there exist a

Page 13 of 27


http://www.fixedpointtheoryandapplications.com/content/2014/1/239

Wtodarczyk Fixed Point Theory and Applications 2014, 2014:239 Page 14 of 27
http://www.fixedpointtheoryandapplications.com/content/2014/1/239

dynamic process (W" : m € {0} UN) of the system (X, T) starting at w° and a point
w € Fix(T) such that Ven{w™ € B=T (W0, 1)} (Y uen{w™ € BRI (00, 1)),

(W":m € {0} UN) is left (right) P-convergent to w and w € B=~7 (w°, r)

(we BT W0, r)).

11 Convergence, existence, periodic point, fixed point, localization and

uniqueness results for single-valued left (right) contractions of Banach type
In this section we indicate how to extend the results of the preceding section to single-
valued maps.

Definition 11.1 Let (X, P) be a quasi-gauge space, let the family 7 = {J,, : « € A} of maps
Jo : X2 — [0;00), a € A, be a left (right) J-family on X, and let n € {1,2}.
(A) Define on X the left (right) distance Dt~/ = {DL27 : X* — [0;00),a € A}
(DR-T = {DXT : X? — [0;00), @ € A}) as follows:

(A1) VaeaVuvex{Di (u,v) = max{Jy (u,v), Ju (v, )}} and VeeaVurex{D5,” (u,v) =
Jou, Y if T € Ty pys

(A2) VaeaVuvex{DFy (u,v) = max{Jy (4, v), Ju (v, )}} and Voea¥uvex(D5y” (u,v) =
Jom, )} if T € J&P).

(B) Let A = {Ag}aena € [0;1) A andlet Y € 2X. We say that a single-valued map
T:Y — X is (D-~7, \)-contraction on Y (D7, 1)-contraction on Y) if:

(B1) VeeaVayer (DL (T(), TQ)) < hoJu@ )} if T € Thy
(B.2) Vaea¥suyer (DX (T(x), TW)) < hoJu(x,9)} if T € I py-

As a consequence of Definition 11.1 and Theorems 10.1 and 10.2, we have the following
results.

Theorem 11.1 Let (X, P) be a quasi-gauge space, let the family J = {J, : & € A} of maps
Ju : X2 — [0;00), & € A, be a left (right) J -family on X, and suppose that n € {1,2}. Let A =
(Malaen € [0:1)* and leta single-valued dynamic system (X, T), T : X — X, be (Dﬁ‘y, A)-
contraction on X ((fo’j , A)-contraction on X).
(A) If (X, T) is left (right) J -admissible in a point w° € X, then there exist a point w € X
and r = {ry}aca € (0;00)A such that the sequence (w" = T"(w°) : m € {0} UN) is
left (right) P-convergent to w and ¥,,en{w™ € B-=7 (W, 1)}
(Vmen{w™ € BET (w0, n)}).
If, moreover, (X, T) is left (right) partially [J -admissible in a point w° € X, then the
point w above satisfies w € B==7 (w°,r) (w € BT (WP, r)).
(B) If(X,T) is left (right) J-admissible in a point w° € X and if, for some s € N, T® is
left (right) P-quasi-closed on X, then Fix(T¥) # @ and there exist a point
w e Fix(T¥) and r = {ry}aea € (0;00)A such that the sequence
(w" = T (wP) : m € {0} UN) is left (right) P-convergent to w,
Y en{w™ € BE=T (W0, )} (Ven{w” € BRI (W, r)}) and

VaeAY erix(rih {a (v TW)) = Ju (T(v),v) = 0}. (11.1)

If, moreover, (X, T) is left (right) partially J -admissible in a point w° € X, then the
point w above satisfies w € B=~7 (w°,r) (w € BT (WP, r)).
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(C) If(X,T) is left (right) J -admissible in a point w° € X, if, for some s € N, T is left
(right) P-quasi-closed on X and if (X, P) is a Hausdor{f space, then there exists a
point w € X such that Fix(T®) = Fix(T) = {w}, the sequence
(w" = T (wP) : m € {0} UN) is left (right) P-convergent to w,

Voen{w” € B=T (W0, 1)} (Viwen{w” € BXT (WP, 1)}) and

Voea {]Dt (W’ W) = 0} (112)

If, moreover, (X, T) is left (right) partially J -admissible in a point w°® € X, then the
point w above satisfies w € BT (w°,r) (w € BT (WP, r)).

Proof We prove only (11.1) and (11.2) and only in the case when J is a left 7 -family on X,
(X, T) is left J-admissible in w® or left partially J-admissible in w®, and TU is left P-
closed map on X, respectively. We omit the proof in the case of ‘right, which is based on
an analogous technique.

Part 1. Property (11.1) holds.

Indeed, first suppose that Jygc 43, iy (71s1) Vo (v, T(v)) > 0}. Of course, v = TRy, Tv) =
T®2I(T(v)) and, for n € {1,2}, by Definition 11.1, 0 < Jouy (v, T(V)) = Juo (T (v), TRNT (v))) <
DA (TPI0), TRUT0) < haglg(T 0, TETW) = hag D (1210,

- 20

[23 T W) < 2% Juo (TP W), TET W) < -+ < 228 Jug (v, T(V)) < Jug (v, T(v)), which

<Ay
is impossible.

Suppose now that J,,c 43 51y Ueo (T(v),v) > 0}. Then, by Definition 11.1, using the

veFix(T'
fact that v = TP (v) = T (v), we get, for n € {1,2},0 <]a0(T(v) V) = Juo (TE (), T (v)) <
St Jao (TR (), TR () < 3730 DET (T (), TR () < 3730 0K Ty (0, TW)) = 0,

which is impossible.

Therefore, (11.1) holds.

Part 2. Property (11.2) holds.

If (X,P) is a Hausdorff space, then Remark 3.1(d) and property (11.1) imply
Vvepix(T[SJ){T(V) =v} and VaeAvyeFix(T[s}){]a (V) < Jo(v, T(v)) + Jo(T(v),v) = 0}. Therefore,
Fix(T")) = Fix(T) and

Y erix(r))=rix(r) Y (v, V) = 0}

Suppose now that u,w € Fix(T) and u # w. Then, by Remark 3.1(d), 34,4/, (1, w) >
0V Joo (W, ) > 0}. Of course, for n € {1,2}, we then have Jy;e a{[Jy, (26, W) > 0 A Jo (1, W) =
Joo (T (), T(W)) < DET(T (1), T(W)) < Ao Jarg (1 W) < Jurg (s WV Uy (W, 10) > O A Joyg (W, 1) =

mie0
Jao (TW), T(u)) < Ds (;07( (W), T()) < hagJoy (W, ) < Joy (W, )]}, which is impossible. This
gives that Fix(T) is a singleton.

Therefore, (11.2) holds. 0

Theorem 11.2 Let (X, P) be a quasi-gauge space, let the family J = {J, : o« € A} of maps
Jou : X? = [0;00), a € A, be a left (right) J-family on X, and suppose that n € {1,2}. Let
w0 € X, & = {Aalacd € [0:1)7, 7 = {Fa)aca € (0;00)4 and a single-valued map T : {(w°} U
BT (w0, r) — X (T : {(w°} UBRI (WP, r) — X) be such that

Tis (Dﬁf‘y,k)—contmction on { } U BL- ‘7(w r)
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(T is (Dﬁ‘j,k)-contmction on {wo} UBr-J (wO,r))

and Ve Al W0, TW?)) < (1 = 2a)ra} (Vaea U (TW),w°) < (1 = Xa)7a}).

(A) If T is left (right) partially J -admissible in w°, then there exists a point w € X such
that the sequence (W" = T (wP) : m € {0} UN) is left (right) P-convergent to w,
Voen{w” € B=T (W0, 1)} (Viwen{w” € BRI (W2, 1)}) and w € BT (wP, r)

(w e BT (w0, r)).

(B) If T is left (right) partially J -admissible in w° and if T is left (right) P-quasi-closed
on BT (W, r) (BR=T (WP, r)), then Fix(T) # @, and there exists a point w € Fix(T)
such that the sequence (w" = TP (W) : m € {0} UN) is left (right) P-convergent
to W, ¥ouen{w” € BT (w0, 1)} (Vypen{w™ € BRI (w0, 1)), w € B=I (WP, r)

(w e BRI (W0, 1)) and

Vote.AVveFix(T) {]a (V; T(V)) =/ (T(V), V) = 0},

(C) If T is left (right) partially J -admissible in w°, if T is left (right) P-quasi-closed on
BT (w0, r) (BRI (W0, 7)) and if (X, P) is a Hausdor(f space, then there exists w € X
such that Fix(T) = {w}, the sequence (w" = TV (w°) : m € {0} UN) is left (right)
P-convergent to w, ¥uen{w™ € BT (W0, 1)} (Ven{w” € BRI (w0, 1)}),
we BT w0, r) (we BET (W0, r)) and

Voed {]a(W! W) = 0}

12 Examples illustrating Theorem 10.1 and comparison of Theorem 10.1 with
Theorem 1.2 of Nadler

Example 12.1 Let (X,d), X = [0; 6], be a metric space with a metric d : X> — [0; 00) of the

form d(x,y) = |x — |, %,y € X, and let P = {d}. Let T : X — 2% be of the form

(1;2] for x € (0;3) U (3;6),
T(x)=1{[1;2]U[4;5] forx=3, xeX. (12.1)
[4;5] for x € {0, 6},

Let E=(0;3)U(3;6) and let 7 = {J}, where J is of the form

dx,y) fEN{xy}=1{xy}

. EN (9] 7 (159), x,y€X. (12.2)

](x’y) =

(L1) (X, P) is a quasi-gauge space and (X, P) is left and right P-sequentially complete.

(1.2) The property T : X — CI¥"P(X) = CI*-P(X) holds.

(L3) J is symmetric and J ={J} € J(LX,P) N JFX,P). See Example 4.1.

(L4) The set-valued dynamic system (X, T) isa (Df‘j = ’Df’J, A = 3/7)-contraction on X,
i.e., Yuyex (DF (T(x), T() < (3/7)] (x,9)}, where

DI (U, V) =D (U, V) = max[sup J(u, V), supJ(U, v)], u,ve2X.
uell veV

Indeed, denoting Df_J = D]f_J = D1, we see that this follows from (I.1)-(I.3) and from
Cases 1.4.1-1.4.6 below.
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Case L4.1. If x,y € (0;3) U (3;6), then x,y € E and T(x) = T(y) = [1;2] C E. Hence,
Vauerw=m{inf{J(u,v) : v € T(y) = [1;2]} = d(u, u) = 0} and, consequently, D;(T'(x), T(y)) =
0 < M(x,y).

Case [.4.2. If x € (0;3) U (3;6) and y =3, thenx € E, y ¢ E, J(x,y) =7, T(x) = [1;2] C
E, T(y) = (1,21 U [4;5] CE, sup,cr(/ (4, T(y)) = 0 since Vyerw-p2{inf{/(u,v) : v e T(y) =
[1;2]U[4;5]} = d(u, u) = 0},and supveT(y)](T(x), v) =3sincev € T(y) = [1;2] U[4;5] implies

. dv,v)=0 ifvell;2],
infl(u,) e € To) = 121} = d2v)=v—-2 ifve[45].
Therefore, D;(T (x), T(y)) = 3 = MJ(x, ).

Case 1.4.3. If x € (0;3) U (3;6) and y € {0,6}, then x € E, y ¢ E, T(x) = [1;2] C
E, T(y) = [4;5] C E and J(x,y) = 7. We calculate: (a) If u € T(x), then J(u, T(y)) =
d(u,[4;5]) = 4 — u and, consequently, sup{J(u, T(y)) : u € T(x)} = 3; (b) If v € T(y), then
J(T(x),v) =d([1;2],v) = v — 2 and, consequently, sup{/(T'(x),v): v € T(y)} = 3; (c) Inequal-
ity D1(T'(x), T(y)) = 3 = A7 = MJ(x,y) is a consequence of (a) and (b).

Case 1.4.4.If x =3 and y € {0,6}, thenx ¢ E, y ¢ E, T(x) = [1;2] U [4;5] CE, T(y) =
[4;5] C E and J(x,y) = 7. We calculate: (a) If u € T'(x), then

4-u ifuell;2],
T T)) = d(w14:5)) = 0 if u € [4;5],
and, consequently, sup{J(u, T(y)) : u € T(x)} = 3; (b) If v € T(y), then J(T(x),v) = d(T(x),
v) = 0; (c) The consequence of (a) and (b) is that Dy (T'(x), T(y)) = 3 = A7 = AJ (%, ).

Case 145 Ifx=y=3,thenx ¢ E,y¢ E, T(x) = T(y) = [1;2] U [4;5] CE, J(u, T(y)) =
J(T(x),v) =0forue T(x)and v e T(y), J(x,y) =7 and D1(T(x), T(y)) = 0 < AJ(x,y).

Case 1.4.6. If x,y € {0,6}, then x ¢ E, y ¢ E, T(x) = T(y) = [4;5] C E, J(u, T(y))
J(T(x),v)=0forue T(x)andve T(y),J(x,y) =7 and Di(T(x), T(y)) = 0 < AJ (%, ).

(I.5) Property (10.1) holds, i.e., VxexVy e(0;00) Iye U (%, ¥) < J(%, T (%)) + v }. Indeed, this fol-
lows from Cases 1.5.1-1.5.4 below.

Case 15.1. If x9 € {0,3,6} and yo € T(xg) C E, then, since T(xo) C E, J(x0,%0)
J(x0, T(x0)) = 7. Hence, ¥, e(0;00) U (%0, ¥0) < J (%0, T (x0)) + ¥ }.

Case 1.5.2. If %y € (0;1] and yo =1 € T(xp) = [1;2], then J(xo,y0) = J(x0, T'(x0)) =1 — x¢
and V', ¢(0;00 1/ (%0, 0) < J (%0, T (x0)) + ¥ }.

Case 1.5.3. If xy € (1;2] and yo = % € T(xo) = [1;2], then J(xo,y0) = J(x0, T'(x0)) = 0 and
Yy es00) 1 (%0, ¥0) < J(x0, T (x0)) + ¥}

Case 1.5.4. If %y € (2;3) U (3;6) and yo = 2 € T'(x0) = [1;2], then J(x0,¥0) = J(x0, T(x0)) =
%0 — 2 and Y, ¢(0;00) 1/ (%0, ¥0) < J (%0, T (%0)) + ¥ }.

(L.6) The set-valued dynamic system (X, T) is partially J-admissible in X. In fact, ob-
serving that 70 (X) = [1;2] C E for m > 2, it remains to verify that if w® € X and (W™
m € {0}UN) are such that V,,c(ojun {w"* € T(w™)} and lim,,,_,  Sup,,.,,, J (W, w") = 0, then

Apenpicx{limy, oo J(W”, w) = lim,,—.0 J(w, w™) = 0}. One way to check this is as follows:
We see that 3, enV >, {W” € [1;2] C E} and, in view of (12.2), lim,,,_, o, SUp,,,,,, J(W", W") =
0 implies lim,,_, o sup,,,, d(w”, w") = 0. Moreover, [1;2] € CI*"P(X) = CI*P(X). From
this information we deduce that 3,cpojcx{limy— o dW”,w) = lim,_ooJ(W", W) =

im0 J(w, W) = 0}.
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(L7) The set-valued dynamic system (X, T) is a left and right P-quasi-closed map in X.
Indeed, let (x,, : m € N) C T(X) = [1;2] U [4;5] be a left (thus also right) P-converging se-
quence in X. Since T(X) € CIL"P(X) = CI®-P(X), thus et {limy,— oo A%, x) = 0}. Then
we remark that the following two cases hold.

Case L7.1. If x € [1;2], then 3, enVsm {¥n € [1;2]} and if (v, : m € N) and (u,, :
m € N) are subsequences of (x,, : m € N) satisfying V,,en{v,, € T(u,,)}, then we get
3y eNVis o (i € [1;2] A vy, € T(u,,) = [1;2]}. Moreover, x € T(x).

Case 1.7.2. Suppose now that x € [4;5]. Then 3, enVzm, (% € [455]} andif (v, : m € N)
and (u,, : m € N) are subsequences of (x,, : m € N) satisfying V,,en{vin € T(4,,)}, then we
get Iy eNViz g {Ums Vin € [455] Aviy € T () = [1;2]}, which is impossible. Let us observe,
additionally, that then also x ¢ T'(x).

(L.8) All the assumptions of Theorem 10.1 are satisfied. This follows from (1.1)-(1.7).

We conclude that Fix(T) = [1;2] and one shows the following.

Claim 1.8.1. If w° € {0,3,6} and w € [1;2] are arbitrary and fixed, then defining w” = w
for m € N we get that w € T(w), V,.en{w” € B9 (w°,7)} and lim,,,_, o d(W", w) = 0.

Claim 1.8.2. If w° € (0;2) and w € [1;2] are arbitrary and fixed, then defining w” = w for
m € N we get that w € T(w), V,pen{w” € BT (WP, [w — w°|)} and lim,,,_, o d(W™, w) = 0.

Claim 1.8.3. If w° € [2;3) and w € [1;2) are arbitrary and fixed, then defining w” = w for
m € N we get that w € T(w), V,en{w” € BL7 (w°, w® — w)} and lim,,,_, oo d(W"”, w) = 0.

Claim 1.8.4. If w° € (3;6) and w € [1;2] are arbitrary and fixed, then defining w” = w for
m € N we get that w € T(w), V,en{w” € BL~7 (w°, w® — w)} and lim,,,_, oo d(W", w) = 0.

Remark 12.1 Let U = {0,3,6}. By (12.2), 7 = D7 (U, U) #0.

Example 12.2 Let (X,d) be a complete metric space where X = [0;6] and d : X? — [0; 00)
is of the form d(x,y) = |x — y|, x,y € X, and let (X, T) be defined by

[1;2] for x € (0;3) U (3;6),
T(x)=1{[1;2]U[4;5] forx=3, xeX.
(4;5] for x € {0, 6},

We see that, for each x € X, T(x) € CI*"P(X) = CI®P(X) where P = {d}. Moreover,
Fix(T) = [1;2]. However, for each A € [0;1), condition (1.3) for (X, T) does not hold. We
argue by contradiction and suppose that

Freton Vayex {H (T (), T(9)) < Ad(x,9)}.

Consider then the case when x = 2 and yy = 0. Then we deduce the following: (i) For u €
T (xo) = [1;2], we have d(u, T(yo)) = d(u, [4;5]) = 4 — u and sup{d(u, T(9)) : u € T(x9)} = 3;
(ii) For v € T'(yo) = [4;5], we have d(v, T(xo)) = d(v,[1;2]) = v — 2 and sup{d(v, T(xg)) : v €
T (yo)} = 3; (iii) Consequently,

VAE[Q;I){Ssz(T(x()), T(yo)) =max{ sup d(u, T(yo)), sup d(T(xo),v)}
ueT(xg) veT(yo)

= 2d(x0,50) < d(x0,y0) = d(2,0) =2},

which is absurd.
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Remark 12.2 Observe that (X, d) and (X, T) defined in Examples 12.1 and 12.2 are iden-
tical. However, Example 12.1 shows that we may apply Theorem 10.1 with 7 defined by
(12.2) and satisfying J # P = {d}, and Example 12.2 shows that we do not apply Theo-
rem 1.2 of Nadler since (1.3) does not hold.

Example12.3 Let X = [0; 6] and let P = {p} where p is a quasi-pseudometric on X defined

by
0 ifx>y,
pxy) = . (12.3)
1 ifx<y.
Let E =[0;3) U (3;6] and let J = {J} where J is of the form
plxy) fEN{xy}={xy}
yY) = 12.4
Je) !2 i EN (5,9} 7 [%9). az4)
Define (X, T) by
)< {[4; 6] forxe[0;3)U(3;6], 125
[5;6] forx=3.

(IL1) J is not symmetric. In fact, by (12.3), J(0,4) =1 and J(4,0) = 0.

(II1.2) (X, P) is a quasi-gauge space and J = {J} € J(LXJ,) N J?x,P)' See Example 4.1.

(I11.3) The property T : X — CI*~F (X) holds. This follows from (12.3) and Definitions 6.1
and 5.1(C).

(IIL4) The set-valued dynamic system (X, T) is a (Df‘j ,A =1/2)-contraction on X, i.e.,
Vayex (D7 (T(x), T() < (1/2)] (x,9)}, where

Df’j(L[, V)= max{sup](u, V), sup](l,[,v)}, u,ve2x.
uel veV

Indeed, denoting Df_‘j = D, we see that this follows from (III.1)-(II.3) and from
Cases I11.4.1-111.4.3 below.
Case II1.4.1. If x,y € [0;3) U (3;6], then x,y € E, T'(x) = T(y) = [4;6] = U C E and, by
(12.3), Vyeu{inf{J(u,v) : v e U} = J(u, u) = p(u, u) = 0}. Thus D1(T'(x), T(y)) = 0 < MJ(x, ).
Case II1.4.2. If x € [0;3) U(3;6] and y =3, thenx € E, y ¢ E, J(x,y) =2, T(x) = [4;6] =
U CEand T(y) =[5;6] =V C E. Hence, by (12.3), u € U implies

. 1 whenever u € [4;5),
inf{/(u,v) = p(u,v) :ve V} = 0 whenever i € [5:6].

On the other hand, v € V implies inf{J(x,v) = p(u,v) : u € U} = 0. Therefore, D;(T (x),
TR) = 1= (x,9).

Caselll.4.3.Ifx =3 andy € [0;3)U(3;6], thenx ¢ E,y € E,J(x,y) =2, T(x) = [5;6] = U C
Eand T(y) = [4;6] = V C E. Consequently, by (12.3), u € U implies inf{J (&1, v) = p(u,v) : v €
V} =0. Next, by (12.3), v € V implies inf{J(u,v) : u € U} < 1. Therefore, Di(T (x), T(y)) =
1=M(xy).
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Case I11.4.4. If x = y = 3, then J(x,y) =2, T(x) = T(y) = [5;6] = U C E and V¢ {inf{J (1,
v) =p(u,v):ve U} = p(u,u) = 0}. Thus, Di(T(x), T(y)) = 0 < J(x, ).

(I11.5) Property (10.1) holds, i.e., ¥xexVy e(0;00)Iye U (%, ¥) < J(%, T(x)) + y}. Indeed, this
follows from Cases II1.5.1-111.5.3 below.

Case II1.5.1. If x € [0;3) U (3;4) and yo = 4 € T'(xo) = [4; 6], then J(x0,%0) = p(x0,4) =1,
J(x0, T(x0)) = 1 and Y, ¢(0;00) 1/ (%05 ¥0) < J (%0, T'(x0)) + ¥ }.

Case II1.5.2. If xy € [4;6] and yo = 4 € T(x) = [4;6], then J(x9,%0) = p(x0,¥0) = 0,
J (%0, T(x0)) = 0 and Y, ¢(0;00) U (%0, ¥0) < J (%0, T'(x0)) + ¥ }.

Case II1.5.3. If wp = 3 and yp € T(xo) = [5;6], then J(xg,y0) = J(x0, T'(x0)) = 2 and
Yy e(0500) U (%0, ¥0) < J (%o, T'(x0)) + v }.

(II1.6) The set-valued dynamic system (X, T) is left J -admissible in X. We verify that if
w® € X and (W" : m € {0} UN) are arbitrary and fixed and such that

Ymeoun{w”™" € T(w")} (12.6)
and

lim sup](w’”, w”) =0, (12.7)

m—>Q0

then

lim J(w,w") =0 wherew=6. (12.8)

m—> 00

In fact, first note that
T"(X) = [4;6] CE form > 2. (12.9)

Next we see that (12.7) is equivalent to V,503,9eNVnsm=m, / (W, w") < €} and so, in partic-
ular in view of (12.9), (12.3) and (12.4), this implies

V0<8<13m12movn>mzm1 {](Wm; Wn) =I7(Wm, Wn) =0< 8}' (12.10)

Now in view of (12.9), (12.10), (12.3) and (12.4), we conclude that ¥,,>,,, {w” > w1} and
hence, since V,,,{6 > w"} and 6 € E, we must have lim,,_, o, p(w, w") = 0 where w = 6, and
this implies (12.8). Therefore (X, T') is left 7 -admissible in X.

(IIL.7) The set-valued dynamic system (X, T) is a left P-quasi-closed map in X.Indeed, let
(% : m € N) C T(X) = [4; 6] be a left P-converging sequence in X. Since [4;6] € CI/"P(X),
thus Jeer(0)=4;6){limy— 00 p(*, x,,) = O}. In other words, Juer(x)=[4;6]Ve>0Tmg Vimzmo 1P,
%) < €} and thus, by (12.4) and (12.3), we obtain Jxe1(x)=[4;6] Y0<e <1 Ty > Yz {2 (%5 %) =
0 < ¢} or, equivalently, Jyer(x)=[4;6)Tm; Vimzm 1% = %}, Of course, then also [x;6] C

SL—'P

oemeyy- We remark that the considerations above show that if (v,, : m € N) and (), :

m € N) are arbitrary and fixed subsequences of (x,, : m € N) satisfying V,,en{vi, € T(u)},
then 3, Vinzm Vwelwo) {thm € [456) AV € T(U) AWty AW > v, Awe T(w)}.

(LIL.8) For J = {J} defined by (12.3) and (12.4), all the assumptions of Theorem 10.1 in the
case of left are satisfied. This follows from (II1.1)-(II1.7).
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We conclude that Fix(T) = [4;6], and we claim that if w® € X, w! € T(w°), w? € T(w')
and x € [4;6] are arbitrary and fixed, and V,>3{w" = x}, then the sequence (W” : m €
{0} UN) is a dynamic process of T starting at w° and left P-converging to each point

w € [x; 6] and these points w satisfy w € T'(w).

Remark 12.3 Let a quasi-gauge space (X, P) and J = {J}-family be as in Example 12.3.
(a) From Cases I11.4.2 and 111.4.3 it follows that 1 = D=7 (U1, V) # D=7 (V, U) = 0 for
U =[4;6] and V = [5;6].
(b) Observe that 2 = D=7 (U, 1) # 0 if U = {3}.

Example 12.4 Let a quasi-pseudometric space (X,P), P = {p}, and a set-valued dy-
namic system (X, T) be as in Example 12.3. Observe that 3, ¢jo;1)Vxyex {Df’P(T(x), T(@y) <
Ap(x,y)} does not hold; here DE-P (U, V) = max{sup,,.; p(u, V), sup,.,, p(U,v)}, U, V € 2X.
In fact, we argue by contradiction and suppose that the above condition holds. Then
we remark that for xo = 4 and y, = 3, we have p(xo,%0) = 0, T'(xo) = [4;6] and T(yo) =
[5;6]. Thus, for u = 4 € T(xy), we get inf{p(4,v) : v € T(yp)} = 1. This shows that 1 =
DLEP(T(x0), T(y0)) < Ap(x0,0) = 0, which is absurd.

Remark 12.4 Observe that (X, p) and (X, T) defined in Examples 12.3 and 12.4 are identi-
cal, note that we may apply Theorem 10.1 with 7 defined by (12.3) and (12.4) and satisfying
J # P = {p} and note, however, that we do not apply Theorem 10.1 with 7 = P = {p}. Thus
the existence of a 7 -family such that 7 # P is essential.

Example 12.5 Let X = [0;1] and let (X,d) be a metric space where d : X> — [0;00) is of

the form

dix,y)=|x-y|, xyeX. (12.11)
Defining the set

A={1/2":neN}, (12.12)

we consider two maps T;: X — 2%, i e {1,2}, defined by:

Ti(x) = (0;1\A forx e X, (12.13)

Tr(x)=A forxeX. (12.14)
Observe that

Vie2)Vaeiom Vayex {H (Ti(x), Ti(y)) = 0 < Ad(x,p)}. (12.15)

Remark 12.5 We claim that for (X, d) and for (X, T}), i € {1,2}, defined in Example 12.5,
we do not use Theorem 1.2 of Nadler. Indeed, we note that (X, d) is complete, (12.15) holds,
Fix(T1) = (0;1)\A and Fix(T,) = A, whereas, for each x € X and for each i € {1,2}, T;(x) is
not closed in (X, d).
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Example 12.6 Let X = [0;1]. Define p : X> — [0;00) by

0 ifx=yorANnf{xy}={xy}

‘ (12.16)
1 ifx#yand AN{xy} #{xy}h

P(x»y) =

here A is defined by (12.12). Let (X, T}), i = 1,2, be as in (12.13) and (12.14).

(VL1) The map p defined by (12.16) is quasi-pseudometric on X and (X, P), P ={p}, isa
quasi-gauge space. See [57, (VIIL1), p.23].

(VL2) The space (X, P) is a left P-sequentially complete. See [57, (1X.2), p.24].

(VL3) For i € {1,2}, (X, T;) has the property T; : X — CI*"P(X) = CI*P(X). Indeed, let
i € {1,2},letx € X be an arbitrary and fixed point of X, and let (x,, : m € N) be an arbitrary
and fixed sequence in the set T;(x) which is left P-convergent to each point of a nonempty
set S(Lx;fmeN) C X. Thus we see that lim,,,_, o, p(W, x,,,) = 0 if w € S(Lx;fm N and, by (12.16), we
conclude that Yo<z<13my Vs mo {P(W, %) = 0 < €}

As a consequence we have the following cases.

Case VI.3.1. If i = 1, then (x,, : m € N) C T1(x) = (0;1)\A and, by (12.16), 3,,,, ¥ >, (% =
whand ST o = (w) C (0;1\A = Ty (x);

Case VI.3.2. If i = 2, then (x,,, : m € N) C T»(x) = A and, by (12.16), (Lx_,fmeN
i.e., Vyea{limy,_ o p(w,x,,) = 0}.

(VL4) For i = 1,2, the set-valued dynamic system (X, T;) is left partially P-admissible
in X. In fact, observing that Tl[m] (X) = (0;1)\A and Tz[m] (X) = A for m € N, it remains to
verify that if w® € X and (w” : m € {0} UN) are such that

) =A= TZ(x);

Ve {w”! € Ty (w™") C (0;1)\A} (12.17)
or

Ymeoyun{ W™ € To(w") C A} (12.18)
and

lim supp(w”,w") =0, (12.19)

m—00 n>m
then

EIweX{ lim p(w, w’”) = lim p(wm,w) = 0]; (12.20)

m—> 00 m—0Q

here we remark that by (12.16) property (12.19) shows that

Yoce<tTmzmo Vasmz=m {p(W", W") = 0 < ¢}. (12.21)

One way to check this is as follows: If i = 1, then by (12.16), (12.17) and (12.21),
weanaTm eNVmzm (W" = w} and lim,_, o p(w, w™") = 0. If i = 2, then by (12.16), (12.18)
and (12.21), we have V,yc 4 {lim,;,—, o p(w, w™) = 0}. By symmetry of p, this shows that (12.20)
holds.
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(VL5) Let i € {1,2}. For each A € [0;1), the set-valued dynamic system (X,T;) is a
(Df‘P, A)-contraction on X. Indeed, we see that, for each x,y € X,

Vuer;w-ona {inf{p(u,v) :v € Ti(y) = (0;1)\A} = p(u, u) = 0},

VueTz(x):A{inf{p(u, v):ve Th(y) =A} =p(u,v) = 0}.

Therefore, Vic(1,2 Vacto:) Vayex{Df 7 (Ti(x), Ti(y)) = 0 < Ap(x, y)}.
(VL.6) For i € {1,2}, the set-valued dynamic system (X, T;) is left P-quasi-closed on X.
Indeed, let i € {1,2}. Let (x,, : m € N) be an arbitrary and fixed sequence in T;(X), left

‘P-convergent to each point of a nonempty set S ) C X and having subsequences

x me
(Vi : m € N) and (4 : m € N) satisfying Ven{vin € Ti(un)}. Of course, S(Lx‘ meN) C
SLV mery) and S SL‘ Let now w € S -P be arbitrary and fixed. Since

(xXm meN (uy:meN)* (x:meN)
1imy,;— 00 pPW, %11) = limyy—s 00 p(W, vyy,) = limy,,—, 00 p(W, 1) = 0, thus, by (12.16),
Yo<e<t o Vomzmg {p(w,xm) =0<eApw,v,)=0<e Apw,u,) =0< 8}. (12.22)

As a consequence, we have the following cases.

Case VL6.1. If i = 1, then by (12.13), (12.16) and (12.21), 3,y V> mo {Xm = Vin = thyy = W}.
Hence, w € (0;1)\A, SLx PmeN) S(ijfmeN S(,;m meN) = {w} and w € T(w). This gives, by
Section 8, that T is left P-quasi-closed on X.

Case VL.6.2. If i = 2, then by (12.14), (12.16) and (12.21), 3,y ¥mzmo (Xm» Vi Um € A}
Hence, we A = S(x PmeN SLVumeN SLM PmeN and w € T,(w). This gives, by Section 8,

that T, is left P-quasi-closed on X.
(VL7) For each i € {1,2}, property (10.1) holds, i.e.,

ViexVy 000 Jyeriw [P0 1) <p(x Ti(x)) + v}

Indeed, this follows from Cases V1.7.1 and VL.7.2 below.

Case VI.7.1. Let xy € A.

If yo = 2/3 € T1(x0) = (0; 1)\A, then p(xo,y0) = 1, p(x0, T (%0)) = 1 and Y, ¢(0;00) {2 (%0, ¥0) <
pxo, Tr(xo)) + v}

If yo € Ta(xo) = A, then p(xo,50) = 0, p(xo, To(x0)) = 0 and VY, ¢o;00) {2(%0,¥0) < p(xo,
Ty(x0)) +v};

Case VL.7.2. Let xy € (0;1)\A.

If yo = %o € T1(xo) = (0;1)\A, then p(xo, o) = 1, p(xo, T1(x0)) = 1 and Y, ¢(0;00) {p(x0, ¥0) <
pxo, Ti(xo)) + v}

If y0 € Ta(xo) = A, then p(xo,50) = 1, p(xo, To(%0)) = 1 and V, ¢0;00){P(*0,0) < p(o,
T(x0)) + 7}

(VL8) All the assumptions of Theorem 10.1(B) when s = 1 are satisfied. This is proved in
(VLD)-(VL?).

We conclude that Fix(T7) = (0;1)\A and Fix(T;) = A, and one shows the following.

Claim VI.8.1. Let w® € X. If w € (0;1)\A and w"™*' € Ty(w"), m € {0} U N, satisfies
Vmen{w” = w}, then the sequence (W” : m € {0} UN) is left P-convergent to w and w €
T1(w). Moreover, (w” : m € N) ¢ B=Pw°,1) and w,w° € B--F(w°,1) whenever w° # w,
and, for each r € (0;00), (W” : m € N) ¢ B=PwP°,r) and w,w° € B=P(w°,r) whenever

wd = w;
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Claim V1.8.2. Let w® € X. If w € A and w"*! € To,(w™), m € {0} UN, satisfies V,,en{W" €
A}, then the sequence (W : m € {0} UN) is left P-convergent to w and w € T, (w). More-
over, w" : m € N) ¢ B="P(w°,1) and w,u® € B"F(w°,1) whenever w® € X\A4, and, for
each r € (0;00), (W": m € N) € BP0, r) and w, w® € B=P(w°,r) whenever w° € A.

Remark 12.6 Let X = [0;1], let (X, T}), i € {1,2}, be defined by (12.13) and (12.14), let d be
of the form (12.11) and let p be of the form (12.16). We point out some facts concerning
Examples 12.5 and 12.6.

(a) (X,P) is not Hausdorff. Indeed, if x,y € A and x # y, then p(x,y) = p(y,%) = 0, and we
notice that evidently (2.1) does not hold.

(b) The basic idea of Example 12.6 is as follows. First, in Example 12.5, in the metric
space (X, d), we showed that it is not possible to use the metric structure on X
determined by d despite the fact that (12.15) and thus also (1.3) holds for (X, T;),

i € {1,2}. Next, by a suitable choice of the not Hausdorff structure on X, defined by
P = {p}, we proved that for (X,P) and (X, T), i € {1,2}, the assumptions of
Theorem 10.1(B) when s =1 hold and we can then apply this theorem.

Example 12.7 Let X = [0;1] and let A and p : X* — [0;00) be defined by (12.12) and
(12.16), respectively. For W C A, W # @, W # A, we define the map
f X\W,
Tw=|W ~florxeXiW (12.23)
A\W forxe W.

(VIL1) We claim that, for each A € [0;1), (X, T) isa (Df’P, A)-contraction and (Df‘p, A)-
contraction on X. In view of (12.16), this follows from the fact that V) ¢[0;1)Vx,yex {D¥P(T(x),
T(y)) = DEP(T(x), T(y)) < Ap(x,)}. Indeed, by (12.23), x € X implies T'(x) C A. Hence, by
(12.16) we have that

Vapex [ DI (T6), T0)) = DEP (T T0)

=max{ sup p(u, T(y)), sup p(T(x),v)}:O}.

ueT(x)CA veT(y)CA

(VIL2) The set-valued dynamic system (X, T) is left and right partially P-admissible
in X. In fact, since T"(X) = A for m € N, thus if w° € X and (w"” : m € {0} UN) are
arbitrary and fixed and such that V,,cioun{w"*! € T(w™)}, then V,,cio;un{w™! € A} and
limy,,—, o0 SUP,,..,,, P(W", W") = 0 (thus also lim,_, « sup,,.,, p(W", w") = 0). Consequently, by
(12.16), Vyyea {lim,,—, oo p(w, w") = lim,,_, .o p(W", w) = 0}. By Definition 7.1(B), (X, T) is left
and right partially P-admissible in X.

(VIL3) The set-valued dynamic system (X, T'),

Ty = A\W forx e X\W,
W forxe W,

is left and right P-quasi-closed on X. Indeed, let (x,, : m € N) be an arbitrary and fixed

sequence in T?/(X) = A, left P-convergent to each point w of a nonempty set S(Lx_,,,?:;meN)

and having subsequences (v,, : m € N) and (u,, : m € N) satisfying V,en{v,, € T? (1,,)}.
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It follows from (12.16) that then w € S(L’73

xm:meN

)= S(ij?meN) = S(LJ,,fmeN) =A and w € TH(w).
Analogously, we prove that (X, T'?) is right P-quasi-closed on X.

(VIL.4) Properties (10.1) and (10.2) hold. Indeed, this follows from Cases VI1.4.1-VI1.4.3
below.

Case VIL4.1. If xy € A and yg € T'(xo), then T(xo) C A, p(x0,y0) = 0, p(xo, T'(x9)) = 0 and

Y, e(0:00) 1P (%05 ¥0) < p(xo, T(x0)) + ¥ };
Case VIL.4.2. If xy € X\A and yo € T(xo), then T(xo) C A, p(x0,%0) = 1, p(xo, T(x0)) =1

and Yy, ¢(0,00){P (%0, ¥0) < p(xo, T'(x0)) + v }.

Case VII.4.3. Finally, p(xo,0) = p(¥0,%0) and p(xo, T (x0)) = p(T (x0), x0) follow from the
fact that P is symmetric.

(VIL5) All the assumptions of Theorem 10.1(B) when s = 2 are satisfied. This is proved in
(VIL1)-(VIL4).

We conclude that Fix(T) = @ and Fix(T™) = A, and one shows the following.

Claim VIL5.1. If w° € A, w € Fix(T®?) and w”*' € T(w"), m € {0} UN, then w € A,
Vmen{w" C A}, the sequence (w” : m € {0} UN) is left and right P-convergent to w, and,
for each r € (0;00), (W : m € N) C B and w,w° € B; here B=B-~"P(w’,r) = BP0, r)

Claim VIL5.2. If w° € X\A, w € Fix(T™!) and w"*' € T (w"), m € {0} UN, then w € 4,
Vmen{w” € A}, the sequence (W” : m € {0} UN) is left P-convergenttow, (W” : m e N) C B
and w, w° € B; here B = B="P(w°,1) = BRP(w9,1).

Remark 12.7 We point out some facts concerning Example 12.7.
(a) (X,P) is not Hausdorff; see Remark 12.6(a).
(b) Noting that P is symmetric, we see that CI*~7 (X) = CI*~P(X) holds.
(c) The property T : X — CI*P(X) does not hold. In fact, it is not hard to see that, for
x€X\W, T(x) = W # 57 (T (x)) = A and for x € X\ W,
T(x) = AW # cls™7 (T(x)) = A.
(d) Fix(T) = @ and Fix(T®?) # &.
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