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Abstract
The purpose of this paper is to introduce a new iterative scheme for approximating
the solution of a triple hierarchical variational inequality problem. Under some
requirements on parameters, we study the convergence analysis of the proposed
iterative scheme for the considered triple hierarchical variational inequality problem
which is defined over the set of solutions of a variational inequality problem defined
over the intersection of the set of common fixed points of a sequence of nearly
nonexpansive mappings and the set of solutions of the classical variational inequality.
Our strong convergence theorems extend and improve some known corresponding
results in the contemporary literature for a wider class of nonexpansive type
mappings in Hilbert spaces.
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1 Introduction
The classical variational inequality problem initially studied by Stampacchia [] for a non-
linear operator A : C →H is a problem which provides us such x∗ ∈D which satisfies

〈
Ax∗, y – x∗〉 ≥ , ∀y ∈D, (.)

whereC is a nonempty closed convex subset of a real Hilbert spaceH andD is a nonempty
closed convex subset of C. The variational inequality (.) is denoted byVID(C,A). The set
of solutions of (.) is denoted by �D(C,A), that is,

�D(C,A) =
{
x∗ ∈ D :

〈
Ax∗, y – x∗〉 ≥ ,∀y ∈ D

}
.

For C =D, we use VI(C,A) :=VID(C,A) and �(C,A) := �D(C,A).
In the framework of variational inequality problems, various problems arising in several

branches of pure and applied sciences can be studied (see [, ]).
The equivalence relation between the variational inequality and fixed point problems

can be seen by projection techniquewhich plays an important role in developing an impor-
tant role in developing some efficient methods for solving variational inequality problems
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and related optimization problems. The problemof finding the fixed points of a nonexpan-
sive mapping is the subject of current interest related to variational inequality problems
in functional analysis.
Over the set of fixed points of a nonexpansive mapping, several authors (see [–] etc.)

have studied the variational inequality problem in a particular manner. This kind of vari-
ational inequality is named a hierarchical variational inequality; it is defined as follows:

Find x∗ ∈ F(S) such that
〈
(I – T)x∗, y – x∗〉 ≥ , ∀y ∈ F(S),

where T and S are two nonexpansive mappings from a nonempty closed convex subset C
of a real Hilbert space H into itself, and F(S) denotes the set of fixed points of the map-
ping S. One can easily observe thatVIF(S)(C, I –T) is equivalent to the fixed point problem
x∗ = PF(S)(Tx∗), that is, x∗ is a fixed point of the nonexpansivemapping PF(S)(T), where PF(S)

is the metric projection from H onto a nonempty closed convex subset F(S) of H .
After all, in the scenario of variational inequality problem, we eagerly discuss such kind

of variational inequality problem which is defined over the set of solutions of a variational
inequality and the set of fixed points of a nonexpansive mapping, having a triple structure
in contrast with bilevel programming problems or hierarchical constrained optimization
problems or hierarchical fixed point problems. This kind of variational inequality is called
the triple hierarchical variational inequality (see [, ]), which is also called the triple hi-
erarchical constrained optimization problem (see []), and it is defined as follows:

Find x∗ ∈ �F(S)(C,A) such that
〈
Fx∗, y – x∗〉 ≥ , ∀y ∈ �F(S)(C,A), (.)

where�F(S)(C,A) is the set of solutions ofVIF(S)(C,A) �= ∅, andmappingsA, F , and S are in-
verse stronglymonotone, stronglymonotone and Lipschitz continuous, and nonexpansive
from a nonempty closed convex subset C of a real Hilbert spaceH into itself, respectively.
If�F(S)(C, I –T) is nonempty, then themetric projection P�F(S)(C,I–T) is well defined. The

minimum norm solution x∗ of VIF(S)(C, I – T) exists uniquely and is exactly the nearest
point projection of the origin to �F(S)(C, I – T), that is, x∗ = P�F(S)(C,I–T)(). Alternatively,
x∗ is the unique solution of the quadratic minimization problem:

∥∥x∗∥∥ =min
{‖x‖ : x ∈ �F(S)(C, I – T)

}
.

Finding of this minimum norm solution x∗ is an interesting problem. In this context, Yao
et al. [] proposed two iterative schemes in an implicit and an explicit both ways to find
the minimum norm solution x∗ of VIF(S)(C, I – T). They proved two strong convergence
results by regularizing the nonexpansive mapping T using contractions.
Recently, Ceng et al. [], motivated by the results of Yao et al. [] introduced and stud-

ied two iterative schemes, one of which was an implicit while other was an explicit one.
They proved two strong convergence results by the considered iterative schemes under
suitable conditions on parameters for considered triple hierarchical variational inequali-
ties for both cases. Some hybrid steepest-descent-like methods with variable parameters
for triple hierarchical variational inequalities are also studied in Ceng et al. []. The im-
portance of the triple hierarchical variational inequalities and a nice survey on this topic
is given in [].
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In , the first author introduced the class of nearly nonexpansive mappings [,
] which is an important generalization of the class of nonexpansive mappings. Let C
be a nonempty subset of a Banach space X. Fix a sequence {an} in [,∞) with an → .
A mapping T : C → C is said to be nearly nonexpansive with respect to the sequence {an}
if for each n ∈N,

∥∥Tnx – Tny
∥∥ ≤ ‖x – y‖ + an for all x, y ∈ C.

We now discuss the notion of the sequence of nearly nonexpansive mappings.
Let C be a nonempty subset of a Banach space X. Let T := {Tn}∞n= be a sequence of

mappings from C into itself. We denote by F(T ) the set of common fixed points of the
sequence T , that is, F(T ) =

⋂∞
n= F(Tn). Fix a sequence {an} in [,∞) with an → , and let

{Tn} be a sequence of mappings from C into X. Then the sequence T := {Tn} is called a
sequence of nearly nonexpansive mappings (see []) with respect to a sequence {an} if

‖Tnx – Tny‖ ≤ ‖x – y‖ + an for all x, y ∈ C and n ∈N.

Clearly, the sequence of nearly nonexpansive mappings can easily be seen to be a wider
class of sequence of nonexpansive mappings.
Motivated and inspired by the works mentioned above, we introduce an explicit itera-

tive scheme that generates a sequence and prove that this sequence converges strongly to
a unique solution of the considered triple hierarchical variational inequality problem de-
fined over the set of solutions of a variational inequality problemwhich is defined over the
intersection of the set of common fixed points of a sequence of nearly nonexpansive map-
pings and the set of solutions of the classical variational inequality problem. Our results
generalize the result of Ceng et al. [] in the context of the sequence of nearly nonexpan-
sive mappings and in some other remarkable senses. Our results also extend the result of
Yao et al. [] and many other related works.

2 Preliminaries
Throughout this paper, we denote by → and ⇀ the strong convergence and weak conver-
gence, respectively. The symbol N stands for the set of all natural numbers and ωw({xn})
denotes the set of all weak limits of the sequence {xn}.
Let C be a nonempty subset of a real Hilbert space H with inner product 〈·, ·〉 and norm

‖ · ‖, respectively. A mapping T : C →H is called
() monotone if

〈Tx – Ty,x – y〉 ≥  for all x, y ∈ C,

() η-strongly monotone if there exists a positive real number η such that

〈Tx – Ty,x – y〉 ≥ η‖x – y‖ for all x, y ∈ C,

() α-inverse strongly monotone if there exists a positive real number α such that

〈Tx – Ty,x – y〉 ≥ α‖Tx – Ty‖ for all x, y ∈ C,
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() k-Lipschitzian if there exists a constant k >  such that

‖Tx – Ty‖ ≤ k‖x – y‖ for all x, y ∈ C,

() ρ-contraction if there exists a constant ρ ∈ (, ) such that

‖Tx – Ty‖ ≤ ρ‖x – y‖ for all x, y ∈ C,

() nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C,
() λ-strictly pseudocontractive if there exists λ ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + λ
∥∥(I – T)x – (I – T)y

∥∥ for all x, y ∈ C,

where I is the identity mapping. Note that if T : C →H is λ-strictly
pseudocontractive, then the mapping A := I – T is –λ

 -inverse strongly monotone.
Let C be a nonempty closed convex subset of H . Then, for any x ∈ H , there exists a

unique nearest point in C, denoted by PC(x), such that

∥∥x – PC(x)
∥∥ = inf‖x – y‖ =: d(x,C) for all y ∈ C.

The mapping PC is called the metric projection from H onto C (see Agarwal et al. []
for some other information related to PC).
Let A : C →H be a monotone and k-Lipschitz continuous mapping and letNC(v) be the

normal cone to C at v ∈ C, i.e.,

NC(v) =
{
w ∈H : 〈v – y,w〉 ≥  for all y ∈ C

}
.

Define

Tv =

⎧⎨
⎩
Av +NC(v), if v ∈ C,

∅, if v /∈ C.

Then T is a maximal monotone and  ∈ Tv if and only if v ∈ �(C,A).
LetC be a nonempty subset of a real Hilbert spaceH and let T,T : C →H be twomap-

pings. We denote B(C), the collection of all bounded subsets of C. The deviation between
T and T on B ∈ B(C) [], denoted by DB(T,T), is defined by

DB(T,T) = sup
{‖Tx – Tx‖ : x ∈ B

}
.

The following lemmas will be needed to prove our main results.

Lemma. ([]) Themetric projectionmapping PC is characterized by the following prop-
erties:

(i) PC(x) ∈ C for all x ∈H ;
(ii) 〈x – PC(x),PC(x) – y〉 ≥  for all x ∈H and y ∈ C;
(iii) ‖x – y‖ ≥ ‖x – PC(x)‖ + ‖y – PC(x)‖ for all x ∈H and y ∈ C;
(iv) 〈PC(x) – PC(y),x – y〉 ≥ ‖PC(x) – PC(y)‖ for all x, y ∈H .

http://www.fixedpointtheoryandapplications.com/content/2014/1/244
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Lemma . ([]) Let C be a nonempty subset of a real Hilbert space H . Suppose that
λ ∈ (, ) and μ > . Let F : C → H be a k-Lipschitzian and η-strongly monotone operator
on C. Define the mapping W : C →H by

Wx = x – λμF(x) for all x ∈ C.

Then W is a contraction provided μ < η
k .More precisely, for μ ∈ (, ηk ),

‖Wx –Wy‖ ≤ ( – λτ )‖x – y‖ for all x, y ∈ C,

where τ =  –
√
 –μ(η –μk) ∈ (, ].

Lemma . ([]) Let T be a nonexpansive self-mapping of a nonempty closed convex sub-
set C of a real Hilbert space H . Then I – T is demiclosed at zero, i.e., if {xn} is a sequence
in C weakly converging to some x ∈ C and the sequence {(I –T)xn} strongly converges to ,
then x ∈ F(T).

Lemma . ([]) Assume {sn} is a sequence of nonnegative real numbers such that

sn+ ≤ ( – αn)sn + αnβn for all n ∈N,

where {αn} and {βn} are sequences of nonnegative real numbers which satisfy the condi-
tions:

(i) {αn}∞n= ⊂ (, ) and
∑∞

n= αn =∞;
(ii) lim supn→∞ βn ≤ , or
(ii)′

∑∞
n= αnβn is convergent.

Then limn→∞ sn = .

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H and
let λi >  (i = , , , . . . ,N ) such that

∑N
i= λi = . Let T,T,T, . . . ,TN : C → C be nonex-

pansive mappings with
⋂N

i= F(Ti) �= ∅ and let T =
∑N

i= λiTi. Then T is nonexpansive from
C into itself and F(T) =

⋂N
i= F(Ti).

Proposition . ([]) Let C be a nonempty subset of a real Hilbert space H . Let A : C →H
be an α-inverse strongly monotone mapping. Then, the mapping (I – tA) is nonexpansive
from C into H , if  ≤ t ≤ α.

3 Main results
Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C → H be a k-Lipschitzian and η-strongly monotone operator, and g : C → H be a
ρ-contraction mapping. Let S : C → C be a nonexpansive mapping and A : C → H be an
α-inverse strongly monotone mapping. Let T = {Tn} be a sequence of nearly nonexpansive
mappings fromC into itself with respect to a sequence {an} such that∑∞

n=DB(Tn,Tn+) < ∞
for all B ∈ B(C) and F(T )∩�(C,A) �= ∅ and let T be amapping fromC into itself defined by
Tx = limn→∞ Tnx for all x ∈ C. Suppose that F(T) = F(T ),  < μ < η

k and  < γ ≤ τ , where

http://www.fixedpointtheoryandapplications.com/content/2014/1/244
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τ = –
√
 –μ(η –μk).Assume that�, the set of solutions of the hierarchical variational

inequality of finding z∗ ∈ F(T )∩ �(C,A) such that

〈
(μF – γ S)z∗, z – z∗〉 ≥ , ∀z ∈ F(T )∩ �(C,A), (.)

is nonempty.Consider the sequence {xn} in C for arbitrary x ∈ C, generated by the following
iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = TnPC[xn – tnAxn],

xn+ = PC[λnγ (αng(xn) + ( – αn)Sxn) + (I – λnμF)yn]

(.)

for all n ∈ N, where {αn}, {λn} are sequences in (, ), and {tn} is a sequence in [a,b] (for
some a, b with  < a < b < α) satisfying the following conditions:

(i) limn→∞ λn = , limn→∞ αn =  and
∑∞

n= αnλn =∞;
(ii) limn→∞ |αnλn–αn–λn–|

αnλn
=  and limn→∞ |λn–λn–|

αnλnλn–
= ;

(iii) limn→∞ DB(Tn ,Tn+)
αn+λn+

=  for each B ∈ B(C) and
∑∞

n= |tn+ – tn| <∞;

(iv) limn→∞ λ


θ
n

αn
= , limn→∞ an

αnλn
=  and limn→∞ |tn–tn–|

αnλn
= ;

(v) there are constants k̄ >  and θ >  satisfying

‖x – Tnx‖ ≥ k̄
[
d
(
x,F(T )∩ �(C,A)

)]θ , ∀x ∈ C and n ∈N.

If the generated sequence {xn} is bounded and limn→∞ ‖xn–PC [xn–tnAxn]‖
λn

= , then it con-
verges strongly to the point x∗ ∈ F(T )∩�(C,A),where x∗ is the unique solution of the triple
hierarchical variational inequality of finding x∗ ∈ � such that

〈
(μF – γ g)x∗,x – x∗〉 ≥ , ∀x ∈ �. (.)

Proof First of all, we assume that {xn} is bounded and limn→∞ ‖xn–PC [xn–tnAxn]‖
λn

= . We
divide the proof into several steps.
Step . limn→∞ ‖xn+ – xn‖ = .
Set un = λnγ (αng(xn) + ( –αn)Sxn) + (I – λnμF)yn and γn = ( – ρ)γ λnαn. Then, we have

un – un– = αnλnγ
[
g(xn) – g(xn–)

]
+ λn( – αn)γ (Sxn – Sxn–)

+
[
(I – λnμF)yn – (I – λnμF)yn–

]
+ (αnλn – αn–λn–)γ

[
g(xn–) – Sxn–

]
+ (λn – λn–)(γ Sxn– –μFyn–).

From (.), we have

‖xn+ – xn‖ =
∥∥PC(un) – PC(un–)

∥∥
≤ ‖un – un–‖
≤ αnλnγ

∥∥g(xn) – g(xn–)
∥∥ + λn( – αn)γ ‖Sxn – Sxn–‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/244
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+
∥∥(I – λnμF)yn – (I – λnμF)yn–

∥∥
+ |αnλn – αn–λn–|γ

∥∥g(xn–) – Sxn–
∥∥

+ |λn – λn–|‖γ Sxn– –μFyn–‖
≤ αnλnγρ‖xn – xn–‖ + λn( – αn)γ ‖xn – xn–‖

+ ( – λnτ )‖yn – yn–‖ + |αnλn – αn–λn–|M + |λn – λn–|M, (.)

whereM is a constant such that

M = sup
n∈N

{
γ
∥∥g(xn) – S(xn)

∥∥ + ‖γ Sxn –μFyn‖
}
.

Set zn := PC(xn – tnAxn) and B = {zn}. Since {xn} is bounded, it follows that B ∈ B(C).
Now, we have

‖yn+ – yn‖ =
∥∥Tn+PC(xn+ – tn+Axn+) – TnPC(xn – tnAxn)

∥∥
≤ ∥∥Tn+PC(xn+ – tn+Axn+) – Tn+PC(xn – tnAxn)

∥∥
+

∥∥Tn+PC(xn – tnAxn) – TnPC(xn – tnAxn)
∥∥

≤ ∥∥PC(xn+ – tn+Axn+) – PC(xn – tnAxn)
∥∥

+DB(Tn+,Tn) + an+

≤ ∥∥(xn+ – tn+Axn+) – (xn – tnAxn)
∥∥ +DB(Tn+,Tn) + an+

≤ ‖xn+ – xn‖ + |tn+ – tn|‖Axn‖ +DB(Tn+,Tn) + an+. (.)

From (.) and (.), we obtain

‖xn+ – xn‖ ≤ αnλnγρ‖xn – xn–‖ + λn( – αn)γ ‖xn – xn–‖
+ |αnλn – αn–λn–|M + |λn – λn–|M + ( – λnτ )

[‖xn – xn–‖
+DB(Tn,Tn–) + |tn – tn–|‖Axn–‖ + an

]
=

(
 – ( – ρ)γ λnαn

)‖xn – xn–‖ +M
(|αnλn – αn–λn–|

+ |λn – λn–|
)
+ ( – λnτ )

[
DB(Tn,Tn–) + |tn – tn–|‖Axn–‖ + an

]
≤ ( – γn)‖xn – xn–‖ +M

(|αnλn – αn–λn–| + |λn – λn–|
)

+DB(Tn,Tn–) +N |tn – tn–| + an

≤ ( – γn)‖xn – xn–‖ + γn

[
M

( |αnλn – αn–λn–| + |λn – λn–|
γn

)

+
DB(Tn,Tn–)

γn
+
N |tn – tn–|

γn
+
an
γn

]
, (.)

where N = supn∈N{‖Axn‖}. Note that limn→∞ an
αnλn

=  and
∑∞

n= αnλn = ∞. Therefore,
from conditions (ii), (iii), and Lemma ., we have limn→∞ ‖xn+ – xn‖ = .
Step . ‖Axn –Au‖ →  for u ∈ F(T )∩ �(C,A) and ‖xn+–xn‖

λn
→  as n→ ∞.
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Set dn = an‖zn – u‖ + an and εn = λn‖γ (αng(xn) + ( – αn)Sxn) – μFu‖‖yn – u‖ + dn.
One can observe that

‖zn – u‖ =
∥∥PC(xn – tnAxn) – PC(u – tnAu)

∥∥

≤ ∥∥(xn – tnAxn) – (u – tnAu)
∥∥

=
∥∥(xn – u) – tn(Axn –Au)

∥∥

≤ ‖xn – u‖ – tn〈xn – u,Axn –Au〉 + tn‖Axn –Au‖

≤ ‖xn – u‖ – tn(α – tn)‖Axn –Au‖

≤ ‖xn – u‖ – a(α – b)‖Axn –Au‖.

We also have

‖yn – u‖ = ‖Tnzn – Tnu‖

≤ (‖zn – u‖ + an
)

≤ ‖zn – u‖ + an‖zn – u‖ + an

= ‖zn – u‖ + dn.

From (.), we have

‖xn+ – u‖ =
∥∥PC

[
λnγ

(
αng(xn) + ( – αn)Sxn

)
+ (I – λnμF)yn

]
– PC(u)

∥∥

≤ ∥∥λnγ
(
αng(xn) + ( – αn)Sxn

)
+ (I – λnμF)yn – u

∥∥

=
∥∥λn

(
γ
(
αng(xn) + ( – αn)Sxn

)
–μFu

)
+ (I – λnμF)(yn)

– (I – λnμF)(u)
∥∥

≤ [
λn

∥∥γ
(
αng(xn) + ( – αn)Sxn

)
–μFu

∥∥ + ( – λnτ )‖yn – u‖]
≤ λn

∥∥γ
(
αng(xn) + ( – αn)Sxn

)
–μFu

∥∥

+ ( – λnτ )
(‖zn – u‖ + dn

)
+ λn( – λnτ )

∥∥γ
(
αng(xn) + ( – αn)Sxn

)
–μFu

∥∥‖yn – u‖
≤ λn

∥∥γ
(
αng(xn) + ( – αn)Sxn

)
–μFu

∥∥ + ‖zn – u‖ + εn

≤ λn
∥∥γ

(
αng(xn) + ( – αn)Sxn

)
–μFu

∥∥ + ‖xn – u‖

– a(α – b)‖Axn –Au‖ + εn. (.)

Thus, we get

a(α – b)‖Axn –Au‖ ≤ λn
∥∥γ

(
αng(xn) + ( – αn)Sxn

)
–μFu

∥∥

+
(‖xn – u‖ – ‖xn+ – u‖) + εn

≤ λn
∥∥γ

(
αng(xn) + ( – αn)Sxn

)
–μFu

∥∥

+ ‖xn – xn+‖
(‖xn – u‖ + ‖xn+ – u‖) + εn.
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Since λn → , εn →  and ‖xn+ – xn‖ →  as n → ∞, we obtain ‖Axn – Au‖ →  as
n→ ∞. From (.), we have

‖xn+ – xn‖
λn

≤ ( – γn)
‖xn – xn–‖

λn
+
M(|αnλn – αn–λn–| + |λn – λn–|)

λn

+
DB(Tn,Tn–)

λn
+
N |tn – tn–|

λn
+
an
λn

= ( – γn)
‖xn – xn–‖

λn–
+ ( – γn)

(‖xn – xn–‖
λn

–
‖xn – xn–‖

λn–

)

+
M(|αnλn – αn–λn–| + |λn – λn–|)

λn

+
DB(Tn,Tn–)

λn
+
N |tn – tn–|

λn
+
an
λn

≤ ( – γn)
‖xn – xn–‖

λn–
+ αnλn‖xn – xn–‖ 

αnλn

∣∣∣∣ 
λn

–


λn–

∣∣∣∣
+
Mαnλn(|αnλn – αn–λn–| + |λn – λn–|)

αnλ
n

+ αnλn

(DB(Tn,Tn–)
αnλ

n
+
N |tn – tn–|

αnλ
n

+
an

αnλ
n

)
.

Noticing that limn→∞ an
αnλn

= , limn→∞ |tn–tn–|
αnλn

= , and
∑∞

n= αnλn =∞. Thus, using con-
ditions (ii) and (iii), and applying Lemma ., we have

lim
n→∞

‖xn+ – xn‖
λn

= . (.)

Step . ‖xn – zn‖ →  as n→ ∞.
Let u ∈ F(T )∩ �(C,A). Then using Lemma .(iv), we have

‖zn – u‖ =
∥∥PC(xn – tnAxn) – PC(u – tnAu)

∥∥

≤ 〈
(xn – tnAxn) – (u – tnAu), zn – u

〉

=


[∥∥(xn – tnAxn) – (u – tnAu)

∥∥ + ‖zn – u‖

–
∥∥(xn – tnAxn) – (u – tnAu) – (zn – u)

∥∥]

≤ 

[‖xn – u‖ + ‖zn – u‖ – ∥∥(xn – zn) – tn(Axn –Au)

∥∥].
It follows that

‖zn – u‖ ≤ ‖xn – u‖ – ‖xn – zn‖

+ tn〈xn – zn,Axn –Au〉 – tn‖Axn –Au‖. (.)

From (.) and (.), we have

‖xn+ – u‖ ≤ λn
∥∥γ

(
αng(xn) + ( – αn)Sxn

)
–μFu

∥∥ + ‖xn – u‖

– ‖xn – zn‖ + tn〈xn – zn,Axn –Au〉 – tn‖Axn –Au‖ + εn,
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which gives

‖xn – zn‖ ≤ λn
∥∥γ

(
αng(xn) + ( – αn)Sxn

)
–μFu

∥∥

+
(‖xn – u‖ – ‖xn+ – u‖)

+ tn〈xn – zn,Axn –Au〉 – tn‖Axn –Au‖ + εn

≤ λn
∥∥γ

(
αng(xn) + ( – αn)Sxn

)
–μFu

∥∥

+
(‖xn – u‖ + ‖xn+ – u‖)‖xn – xn+‖

+ tn‖xn – zn‖‖Axn –Au‖ – tn‖Axn –Au‖ + εn.

We have ‖xn+ – xn‖ → , λn → , εn → , and ‖Axn –Au‖ →  as n→ ∞. Therefore, we
have ‖xn – zn‖ →  as n→ ∞.
Step . ‖xn – Txn‖ →  as n→ ∞.
Since yn = Tnzn, we get

‖xn+ – Tnzn‖ =
∥∥PC

[
λnγ

(
αng(xn) + ( – αn)Sxn

)
+ (I – λnμF)yn

]
– PC(Tnzn)

∥∥
≤ ∥∥λnγ

(
αng(xn) + ( – αn)Sxn

)
+ (I – λnμF)yn – Tnzn

∥∥
=

∥∥λnγ
(
αng(xn) + ( – αn)Sxn

)
+ yn – λnμFyn – Tnzn

∥∥
= λn

∥∥γ
(
αng(xn) + ( – αn)Sxn

)
–μFyn

∥∥ →  as n→ ∞.

It follows that

‖xn – yn‖ = ‖xn – Tnzn‖
≤ ‖xn – xn+‖ + ‖xn+ – Tnzn‖ →  as n→ ∞. (.)

Also, we get

‖zn – Tnzn‖ ≤ ‖zn – xn‖ + ‖xn – Tnzn‖ →  as n→ ∞.

Note that

‖xn – Tnxn‖ ≤ ‖xn – Tnzn‖ + ‖Tnzn – Tnxn‖
≤ ‖xn – Tnzn‖ + ‖zn – xn‖ + an →  as n→ ∞.

Thus,

‖Txn – xn‖ ≤ ‖Txn – Tzn‖ + ‖Tzn – Tnzn‖ + ‖Tnzn – xn‖
≤ ‖xn – zn‖ +DB(Tn,T) + ‖Tnzn – xn‖ →  as n→ ∞.

Step . ωw({xn}) ⊂ F(T )∩ �(C,A).
Note that A is an α-inverse strongly monotone mapping so that it is 

α
-Lipschitz contin-

uous. Therefore, we have

lim
n→∞‖Azn –Axn‖ = .
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Since {xn} is a bounded sequence in C, there exists a subsequence {xnk } of {xn} which con-
vergesweakly to some x̂ inC. Since limn→∞ ‖xn–Txn‖ = , it follows, from the demiclosed-
ness principle of nonexpansivemappings, that x̂ ∈ F(T ). Now, let us show that x̂ ∈ �(C,A).
Let

Av =

⎧⎨
⎩
Av +NC(v), if v ∈ C,

∅, if v /∈ C.

Note that A is maximal monotone and  ∈Av if and only if v ∈ �(C,A). Let (v,w) ∈G(A),
the graph of A. Then, we have w ∈ Av = Av +NC(v) and hence w – Av ∈ NC(v). Thus, we
have

〈w –Av, v – u〉 ≥  for all u ∈ C.

On the other hand, from zn = PC(xn – tnAxn) and v ∈ C, we have

〈xn – tnAxn – zn, zn – v〉 ≥ ,

and hence
〈
v – zn,

zn – xn
tn

+Axn
〉
≥ .

Therefore, from w –Av ∈NC(v) and zni ∈ C, we have

〈v – zni ,w〉 ≥ 〈v – zni ,Av〉

≥ 〈v – zni ,Av〉 –
〈
v – zni ,

zni – xni
tni

+Axni

〉

= 〈v – zni ,Av –Azni〉 + 〈v – zni ,Azni –Axni〉

–
〈
v – zni ,

zni – xni
tni

〉

≥ 〈v – zni ,Azni –Axni〉 –
〈
v – zni ,

zni – xni
tni

〉
.

Letting limit ni → ∞ we obtain 〈v – x̂,w〉 ≥ . Thus, x̂ ∈ A
– together with the maximal

monotonicity of A imply x̂ ∈ �(C,A).
Step . lim supn→∞〈(μF – γ g)x∗,xn – x∗〉 ≥ .
From (.), we have

xn+ = PC(un) – un + λnγ
(
αng(xn) + ( – αn)Sxn

)
+ (I – λnμF)yn.

Therefore, we have

xn – xn+ = un – PC(un) + αnλn(μF – γ g)xn + λn( – αn)(μF – γ S)xn

+ ( – λn)(xn – yn) + λn
[
(I –μF)xn – (I –μF)yn

]
.
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Set vn := xn–xn+
λn(–αn) , ∀n ∈ N. Note xn = PC(un–). Then, we have

vn =
un – PC(un)
λn( – αn)

+
αn

 – αn
(μF – γ g)xn + (μF – γ S)xn

+
( – λn)

λn( – αn)
(xn – yn) +


 – αn

[
(I –μF)xn – (I –μF)yn

]
.

Let w ∈ F(T )∩ �(C,A). Observe that

〈vn,xn –w〉 = 
λn( – αn)

〈
un – PC(un),PC(un–) –w

〉

+
αn

 – αn

〈
(μF – γ g)xn,xn –w

〉

+
〈
(μF – γ S)xn,xn –w

〉
+

 – λn

λn( – αn)
〈xn – yn,xn –w〉

+


 – αn

〈
(I –μF)xn – (I –μF)yn,xn –w

〉

=


λn( – αn)
〈
un – PC(un),PC(un) –w

〉

+


λn( – αn)
〈
un – PC(un),PC(un–) – PC(un)

〉

+
〈
(μF – γ S)w,xn –w

〉
+

〈
(μF – γ S)xn – (μF – γ S)w,xn –w

〉

+
 – λn

λn( – αn)
〈xn – yn,xn –w〉 + αn

 – αn

〈
(μF – γ g)xn,xn –w

〉

+


 – αn

〈
(I –μF)xn – (I –μF)yn,xn –w

〉
. (.)

The first and fourth terms in (.) are nonnegative due to the property of the projection
operator given in Lemma .(ii), and the monotonicity of (μF – γ S), respectively. Note
xn+ = PC(un). Thus, from (.), we have

〈vn,xn –w〉 ≥ 
λn( – αn)

〈
un – PC(un),PC(un–) – PC(un)

〉

+
〈
(μF – γ S)w,xn –w

〉
+

αn

 – αn

〈
(μF – γ g)xn,xn –w

〉

+


 – αn

〈
(I –μF)xn – (I –μF)yn,xn –w

〉

+
 – λn

λn( – αn)
〈xn – yn,xn –w〉

=
〈
un – PC(un), vn

〉
+

〈
(μF – γ S)w,xn –w

〉

+
αn

 – αn

〈
(μF – γ g)xn,xn –w

〉

+


 – αn

〈
(I –μF)xn – (I –μF)yn,xn –w

〉

+
 – λn

λn( – αn)
〈xn – yn,xn –w〉. (.)
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Noticing, from (.), that ‖xn –yn‖ → , we have ‖(I –μF)xn –(I –μF)yn‖ → . It is clear
from (.) that vn → . By assumption αn →  and the sequence {xn} is bounded; we see
that {un} is bounded. Thus, from (.), we have

lim sup
n→∞

〈
(μF – γ S)w,xn –w

〉 ≤ , ∀w ∈ F(T )∩ �(C,A). (.)

This is sufficient to guarantee that ωw({xn}) ⊆ �, i.e., every weak limit point of the se-
quence {xn} solves the hierarchical variational inequality (.). In fact, if {xnk } is a subse-
quence of {xn} such that xnk ⇀ x̃ ∈ ωw({xn}), then, from (.), we have

〈
(μF – γ S)w, x̃ –w

〉
= lim sup

n→∞

〈
(μF – γ S)w,xn –w

〉 ≤ , ∀w ∈ F(T )∩ �(C,A),

that is,

〈
(μF – γ S)w,w – x̃

〉 ≥ , ∀w ∈ F(T )∩ �(C,A). (.)

Note that ωw({xn}) ⊆ F(T ) ∩ �(C,A). Moreover, (μF – γ S) is monotone and Lipschitz
continuous, and F(T )∩ �(C,A) �= ∅ is closed and convex. Therefore, the inequality (.)
is equivalent to the inequality (.) by the Minty lemma (see []). Thus, we have x̃ ∈ �.
Now, we choose a subsequence {xnk } of {xn} satisfying

lim sup
n→∞

〈
(μF – γ g)x∗,xn – x∗〉 = lim

k→∞
〈
(μF – γ g)x∗,xnk – x∗〉.

Without loss of generality, we may further assume that xnk ⇀ x̃. Note that x̃ ∈ �. As x∗ is
a solution of the triple hierarchical variational inequality (.), we obtain

lim sup
n→∞

〈
(μF – γ g)x∗,xn – x∗〉 = 〈

(μF – γ g)x∗, x̃ – x∗〉 ≥ .

Step . xn → x∗ as n→ ∞.
Noticing that yn = Tnzn, γn = ( – ρ)γ λnαn, and xn+ = PC(un). Set χn = αnλnχ

′
n + χ ′′

n ,
where χ ′

n := 〈(γ g –μF)x∗,xn+ –x∗〉 and χ ′′
n = λn(–αn)〈(γ S–μF)x∗,xn+ –x∗〉. From (.),

we have

∥∥xn+ – x∗∥∥ =
〈
un – x∗,xn+ – x∗〉 + 〈

PC(un) – un,PC(un) – x∗〉
≤ 〈

un – x∗,xn+ – x∗〉
=

〈
λnγ

(
αng(xn) + ( – αn)Sxn

)
+ (I – λnμF)yn – x∗,xn+ – x∗〉

=
〈
(I – λnμF)yn – (I – λnμF)x∗,xn+ – x∗〉
+ αnλnγ

〈
g(xn) – g

(
x∗),xn+ – x∗〉 + λn( – αn)γ

〈
Sxn – Sx∗,xn+ – x∗〉

+ αnλn
〈
(γ g –μF)x∗,xn+ – x∗〉 + λn( – αn)

〈
(γ S –μF)x∗,xn+ – x∗〉

≤ ( – λnτ )
(∥∥zn – x∗∥∥ + an

)∥∥xn+ – x∗∥∥ + αnλnγρ
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥

+ λn( – αn)γ
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥ + χn

≤ ( – λnτ )
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥ + αnλnγρ

∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥
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+ λn( – αn)γ
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥ + ( – λnτ )an

∥∥xn+ – x∗∥∥ + χn

≤ [
 – λnτ + αnλnγρ + λn( – αn)γ

]∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥
+ an

∥∥xn+ – x∗∥∥ + χn

≤ [
 – αnλnγ ( – ρ)

]∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥ + an
∥∥xn+ – x∗∥∥ + χn

≤ [
 – αnλnγ ( – ρ)

] 

(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥)

+ an
∥∥xn+ – x∗∥∥ + χn.

It follows that

∥∥xn+ – x∗∥∥ ≤  – αnλnγ ( – ρ)
 + αnλnγ ( – ρ)

∥∥xn – x∗∥∥ +


 + γn
χn +

an
 + γn

R

≤ [
 – αnλnγ ( – ρ)

]∥∥xn – x∗∥∥ +
χn

 + γn
+

anR
 + γn

(.)

for some R > . Since x∗ ∈ �, by using condition (v) we have

〈
(γ S –μF)x∗,xn+ – x∗〉 = 〈

(γ S –μF)x∗,xn+ – PF(T )∩�(C,A)(xn+)
〉

+
〈
(γ S –μF)x∗,PF(T )∩�(C,A)(xn+) – x∗〉

≤ 〈
(γ S –μF)x∗,xn+ – PF(T )∩�(C,A)(xn+)

〉
≤ ∥∥(γ S –μF)x∗∥∥d(

xn+,F(T )∩ �(C,A)
)

≤ ∥∥(γ S –μF)x∗∥∥(

k̄
‖xn+ – Tnxn+‖

) 
θ

. (.)

Note that

‖xn+ – Tnxn‖ =
∥∥PC(un) – PC(Tnxn)

∥∥
≤ ‖un – Tnxn‖
=

∥∥λnγ
(
αng(xn) + ( – αn)Sxn

)
+ (I – λnμF)yn – Tnxn

∥∥
≤ λn

∥∥γ
(
αng(xn) + ( – αn)Sxn

)
–μFyn

∥∥ + ‖Tnzn – Tnxn‖
≤ λn

∥∥γ
(
αng(xn) + ( – αn)Sxn

)
–μFyn

∥∥ + ‖zn – xn‖ + an.

We observe that

‖xn+ – Tnxn+‖ ≤ ‖xn+ – Tnxn‖ + ‖Tnxn – Tnxn+‖
≤ ‖xn – xn+‖ + ‖xn+ – Tnxn‖ + an

≤ ‖xn – xn+‖ + λn
∥∥γ

(
αng(xn) + ( – αn)Sxn

)
–μFyn

∥∥
+ ‖zn – xn‖ + an.

≤ ‖xn – xn+‖ + λnM + ‖zn – xn‖ + an.
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Hence from (.), we get

〈
(γ S –μF)x∗,xn+ – x∗〉

≤
(

k̄

) 
θ ∥∥(γ S –μF)x∗∥∥(‖xn – xn+‖ +Mλn + ‖zn – xn‖ + an

) 
θ

≤ λ

θ
n M′′

(
 +

‖xn – xn+‖
λn

+
‖zn – xn‖

λn
+
an
λn

) 
θ

(.)

for some constantM′′. Therefore from (.) and (.), we have

∥∥xn+ – x∗∥∥ ≤ [
 – γ ( – ρ)αnλn

]∥∥xn – x∗∥∥

+
αnλn

 + γn

[
χ ′
n +M′′ λ


θ
n

αn

(
 +

‖xn – xn+‖
λn

+
‖zn – xn‖

λn
+
an
λn

) 
θ
]
+

anR
 + γn

= ( – γn)
∥∥xn – x∗∥∥ + σn +

anR
 + γn

,

where

σn =
αnλn

 + γn

[
χ ′
n +M′′ λ


θ
n

αn

(
 +

‖xn – xn+‖
λn

+
‖zn – xn‖

λn
+
an
λn

) 
θ
]
.

Note that limn→∞ an
λn

=  and
∑∞

n= αnλn = ∞. Using Lemma ., we obtain xn → x∗.
This completes the proof. �

If we put g =  in (.), then this triple hierarchical variational inequality reduces to the
variational inequality (.). Thus, the following is the direct consequence of Theorem ..

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C → H be a k-Lipschitzian and η-strongly monotone operator, and S : C → C be a
nonexpansive mapping. Let A : C → H be an α-inverse strongly monotone mapping and
T = {Tn} be a sequence of nearly nonexpansive mappings from C into itself with respect to
a sequence {an} such that

∑∞
n=DB(Tn,Tn+) < ∞ for all B ∈ B(C) and F(T )∩ �(C,A) �= ∅

and let T be amapping from C into itself defined by Tx = limn→∞ Tnx for all x ∈ C. Suppose
that F(T) = F(T ),  < μ < η

k , and  < γ ≤ τ , where τ =  –
√
 –μ(η –μk). Assume that

�, the set of solutions of the hierarchical variational inequality (.), is nonempty.Consider
the sequence {xn} in C for arbitrary x ∈ C, generated by the following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = TnPC[xn – tnAxn],

xn+ = PC[λn( – αn)γ Sxn + (I – λnμF)yn]

for all n ∈ N, to be bounded and limn→∞ ‖xn–PC [xn–tnAxn]‖
λn

= , where {αn}, {λn}, and {tn}
are sequences mentioned in Theorem . satisfying all the conditions of Theorem .. Then
the sequence {xn} converges strongly to a unique solution x∗ of the variational inequality of
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finding x∗ ∈ � such that
〈
Fx∗,x – x∗〉 ≥ , ∀x ∈ �. (.)

Take Tn = T and A =  in Theorem ., we have the following.

Corollary . (Ceng et al. [, Theorem .]) Let C be a nonempty closed convex sub-
set of a real Hilbert space H . Let F : C → H be a k-Lipschitzian and η-strongly monotone
operator, and g : C → H be a ρ-contraction mapping. Let S and T be nonexpansive map-
pings from C into itself such that F(T) �= ∅. Suppose that  < μ < η

k and  < γ ≤ τ , where
τ = –

√
 –μ(η –μk).Assume that�, the set of solutions of the hierarchical variational

inequality of finding z∗ ∈ F(T) such that
〈
(μF – γ S)z∗, z – z∗〉 ≥ , ∀z ∈ F(T),

is nonempty.Consider the sequence {xn} in C for arbitrary x ∈ C, generated by the following
iterative process:

⎧⎨
⎩
x ∈ C,
xn+ = PC[λnγ (αng(xn) + ( – αn)Sxn) + (I – λnμF)Txn]

for all n ∈ N, where {αn} and {λn} are sequences in (, ) satisfying the conditions (i)-(ii) of

Theorem .. Suppose that limn→∞ λ


θ
n

αn
= , and ‖x – Tx‖ ≥ k̄[d(x,F(T))]θ , ∀x ∈ C, where

k̄ >  and θ >  are constants. Then the following hold:
(a) If the generated sequence {xn} is bounded, then the sequence {xn} converges strongly

to the point x∗ ∈ F(T), where x∗ is the unique solution of the triple hierarchical
variational inequality of finding x∗ ∈ � such that

〈
(μF – γ g)x∗,x – x∗〉 ≥ , ∀x ∈ �.

(b) If the sequence {xn} in C for arbitrary x ∈ C, generated by the following iterative
process:

⎧⎨
⎩
x ∈ C,
xn+ = PC[λn( – αn)γ Sxn + (I – λnμF)Txn]

for all n ∈N, is bounded, then the sequence {xn} converges strongly to the unique
solution x∗ of the variational inequality of finding x∗ ∈ � such that

〈
Fx∗,x – x∗〉 ≥ , ∀x ∈ �.

We now derive the result of Yao et al. [, Theorem .] as a corollary.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
f : C →H be a ρ-contractionmapping. Let S and T be nonexpansivemappings from C into
itself such that F(T) �= ∅. Assume that �, the set of solutions of the hierarchical variational
inequality of finding x∗ ∈ F(T) such that

〈
(I – S)x∗,x – x∗〉 ≥ , ∀x ∈ F(T), (.)
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is nonempty.Consider the sequence {xn} in C for arbitrary x ∈ C, generated by the following
iterative process:

⎧⎨
⎩
x ∈ C,

xn+ = PC[λn(αnf (xn) + ( – αn)Sxn) + ( – λn)Txn]

for all n ∈ N, where {αn} and {λn} are sequences in (, ) satisfying the conditions (i)-(ii) of

Theorem .. Suppose that limn→∞ λ


θ
n

αn
=  and ‖x – Tx‖ ≥ k̄[d(x,F(T))]θ , ∀x ∈ C, where

k̄ >  and θ >  are constants. Then:
(a) If the generated sequence {xn} is bounded, then the sequence {xn} converges strongly

to the point x∗ ∈ F(T), where x∗ is the unique solution of the variational inequality of
finding x∗ ∈ � such that

〈
(I – f )x∗,x – x∗〉 ≥ , ∀x ∈ �.

(b) If the sequence {xn} in C for arbitrary x ∈ C, generated by the following iterative
process:

⎧⎨
⎩
x ∈ C,

xn+ = PC[λn( – αn)Sxn + ( – λn)Txn]

for all n ∈N, is bounded, then the sequence {xn} converges strongly to a minimum
norm solution of the hierarchical variational inequality (.).

Again, we derive the following result as a corollary for S and T being two nonexpansive
mappings.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C → H be a k-Lipschitzian and η-strongly monotone operator, and g : C → H be a
ρ-contraction mapping. Let S and T be nonexpansive mappings from C into itself and A :
C →H be an α-inverse strongly monotone mapping such that F(T)∩�(C,A) �= ∅. Suppose
that  < μ < η

k and  < γ ≤ τ , where τ =  –
√
 –μ(η –μk). Assume that �, the set of

solutions of the hierarchical variational inequality of finding z∗ ∈ F(T)∩�(C,A) such that

〈
(μF – γ S)z∗, z – z∗〉 ≥ , ∀z ∈ F(T)∩ �(C,A),

is nonempty.Consider the sequence {xn} in C for arbitrary x ∈ C, generated by the following
iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = TPC[xn – tnAxn],

xn+ = PC[λnγ (αng(xn) + ( – αn)Sxn) + (I – λnμF)yn]

for all n ∈ N, where {αn}, {λn} are sequences in (, ) and {tn} is a sequence in [a,b] (for
some a, b with  < a < b < α) satisfying the conditions (i)-(ii) of Theorem .. Suppose that
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limn→∞ λ


θ
n

αn
= ,

∑∞
n= |tn+ – tn| < ∞, limn→∞ |tn–tn–|

αnλn
=  and ‖x – Tx‖ ≥ k̄[d(x,F(T) ∩

�(C,A))]θ , ∀x ∈ C, where k̄ >  and θ >  are constants. Then the following hold:
(a) If the generated sequence {xn} is bounded and limn→∞ ‖xn–PC [xn–tnAxn]‖

λn
= , then the

sequence {xn} converges strongly to the point x∗ ∈ F(T)∩ �(C,A), where x∗ is the
unique solution of the triple hierarchical variational inequality of finding x∗ ∈ � such
that

〈
(μF – γ g)x∗,x – x∗〉 ≥ , ∀x ∈ �.

(b) If the sequence {xn} in C for arbitrary x ∈ C, generated by the following iterative
process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = TPC[xn – tnAxn],

xn+ = PC[λn( – αn)γ Sxn + (I – λnμF)yn]

for all n ∈N, is bounded and limn→∞ ‖xn–PC [xn–tnAxn]‖
λn

= , then the sequence {xn}
converges strongly to the unique solution x∗ of the variational inequality of finding
x∗ ∈ � such that

〈
Fx∗,x – x∗〉 ≥ , ∀x ∈ �.

4 Applications
In this section, we present two applications of Theorem .. The first application is con-
cerned with the image recovery problem which is equivalent to finding a common fixed
point of finitely many nonexpansive self mappings. The first application improves a num-
ber of results related to this context. The second application deals with a strictly pseudo-
contractive mapping.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C → H be a k-Lipschitzian and η-strongly monotone operator, and g : C → H be a
ρ-contraction mapping. Let S : C → C be a nonexpansive mapping and A : C → H be
an α-inverse strongly monotone mapping. Let t, t, t, . . . , tN >  such that

∑N
i= ti = . Let

T,T,T, . . . ,TN : C → C be nonexpansive mappings such that
⋂N

i= F(Ti) ∩ �(C,A) �= ∅
and assume that T =

∑N
i= tiTi. Suppose that  < μ < η

k and  < γ ≤ τ , where τ =  –√
 –μ(η –μk). Assume that �, the set of solutions of the hierarchical variational in-

equality of finding z∗ ∈ ⋂N
i= F(Ti)∩ �(C,A) such that

〈
(μF – γ S)z∗, z – z∗〉 ≥ , ∀z ∈

N⋂
i=

F(Ti)∩ �(C,A),

is nonempty.Consider the sequence {xn} in C for arbitrary x ∈ C, generated by the following
iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn =
∑N

i= tiTiPC[xn – tnAxn],

xn+ = PC[λnγ (αng(xn) + ( – αn)Sxn) + (I – λnμF)yn]
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for all n ∈N,where {αn}, {λn} are sequences in (, ) and {tn} is a sequence in [a,b] (for some
a, b with  < a < b < α) satisfying all the conditions of Corollary .. Then the following
hold:
(a) If the generated sequence {xn} is bounded and limn→∞ ‖xn–PC [xn–tnAxn]‖

λn
= , then the

sequence {xn} converges strongly to the point x∗ ∈ ⋂N
i= F(Ti)∩ �(C,A), where x∗ is

the unique solution of the triple hierarchical variational inequality of finding x∗ ∈ �

such that

〈
(μF – γ g)x∗,x – x∗〉 ≥ , ∀x ∈ �.

(b) If the sequence {xn} in C for arbitrary x ∈ C, generated by the following iterative
process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn =
∑N

i= tiTiPC[xn – tnAxn],

xn+ = PC[λn( – αn)γ Sxn + (I – λnμF)yn]

for all n ∈N, is bounded and limn→∞ ‖xn–PC [xn–tnAxn]‖
λn

= , then the sequence {xn}
converges strongly to the unique solution x∗ of the variational inequality of finding
x∗ ∈ � such that

〈
Fx∗,x – x∗〉 ≥ , ∀x ∈ �.

Proof Lemma . implies that T is nonexpansive from C into itself and F(T) =
⋂N

i= F(Ti).
Hence, the result follows from Corollary .. �

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C → H be a k-Lipschitzian and η-strongly monotone operator, and g : C → H be a
ρ-contraction mapping. Let S : C → C be a nonexpansive mapping. Let U : C → C be a
λ-strictly pseudocontractive mapping and T = {Tn} be a sequence of nearly nonexpansive
mappings fromC into itself with respect to a sequence {an} such that∑∞

n=DB(Tn,Tn+) < ∞
for all B ∈ B(C) and F(T )∩ F(U) �= ∅ and let T be a mapping from C into itself defined by
Tx = limn→∞ Tnx for all x ∈ C. Suppose that F(T) = F(T ),  < μ < η

k , and  < γ ≤ τ , where
τ = –

√
 –μ(η –μk).Assume that�, the set of solutions of the hierarchical variational

inequality of finding z∗ ∈ F(T )∩ F(U) such that

〈
(μF – γ S)z∗, z – z∗〉 ≥ , ∀z ∈ F(T )∩ F(U),

is nonempty.Consider the sequence {xn} in C for arbitrary x ∈ C, generated by the following
iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = Tn[( – tn)xn + tnUxn],

xn+ = PC[λnγ (αng(xn) + ( – αn)Sxn) + (I – λnμF)yn]
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for all n ∈ N, where {αn}, {λn} are sequences in (, ) and {tn} is a sequence in [a,b] (for
some a, b with  < a < b <  – λ) satisfying the conditions (i)-(iv) of Theorem .. Suppose
that ‖x – Tnx‖ ≥ k̄[d(x,F(T ) ∩ F(U))]θ , ∀x ∈ C and n ∈ N, where k̄ >  and θ >  are
constants. Then the following hold:
(a) If the generated sequence {xn} is bounded and limn→∞ ‖xn–Uxn‖

λn
= , then the sequence

{xn} converges strongly to the point x∗ ∈ F(T )∩ F(U), where x∗ is the unique solution
of the triple hierarchical variational inequality of finding x∗ ∈ � such that

〈
(μF – γ g)x∗,x – x∗〉 ≥ , ∀x ∈ �.

(b) If the sequence {xn} in C for arbitrary x ∈ C, generated by the following iterative
process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = Tn[( – tn)xn + tnUxn],

xn+ = PC[λn( – αn)γ Sxn + (I – λnμF)yn]

for all n ∈N, is bounded and limn→∞ ‖xn–Uxn‖
λn

= , then the sequence {xn} converges
strongly to the unique solution x∗ of the variational inequality of finding x∗ ∈ � such
that

〈
Fx∗,x – x∗〉 ≥ , ∀x ∈ �.

Proof Put A = I –U in Theorem ., then A is (–λ)
 -inverse strongly monotone. We also

have F(U) = �(C,A) and PC(xn – tnAxn) = ( – tn)xn + tnUxn. Therefore, the conclusion
follows from Theorem . and Theorem .. �

5 Numerical example
In this section, we discuss the following example which shows the effectiveness and con-
vergence of iteratively generated sequence {xn} by the considered scheme (.) of Theo-
rem ..

Example . Let H = R and C = [, ]. Let A, S, and T be mappings defined by A(x) =
x – , S(x) = x, and T(x) =  – x for all x ∈ C.
Let F , g : C → H be mappings defined by F(x) = x and g(x) = x

 +  for all x ∈ C. Define
{tn}, {αn}, and {λn} in (, ) by tn = 

 , αn = 
(n+)p , and λn = 

(n+)q , where  < p + q < . It is
clear that S and T are nonexpansive self mappings, and A is -inverse strongly monotone.
Note F is a -Lipschitzian and -strongly monotone, and g is a 

 -contraction mapping.
Here, k = , η = , and ρ = 

 . We take μ = 
 , γ = τ =  –

√
 –μ(η –μk) = 

 , p = 
 ,

q = 
 , and θ = 

 . Note that  < μ < η
k . Observe that Tn = T with an =  for all n ∈ N and

F(T )∩ �(C,A) = { 
 }. The iterative algorithm (.) can be written as

xn+ = PC(un) for all n ∈N,

where

un = λnγ
(
αng(xn) + ( – αn)Sxn

)
+ (I – λnμF)yn,

yn = Tnzn, zn = PC(xn – tnAxn).
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We observe that

zn = PC(xn – tnAxn) = PC

(
xn –



(xn – )

)
= PC

(



)
=


,

yn = Tnzn = T(/) = /

and

un = λnγ
(
αng(xn) + ( – αn)Sxn

)
+ (I – λnμF)yn

=
λn



(
αn

(
xn


+ 
)
+ ( – αn)xn

)
+


–

λn


F
(



)

=
λn



(
αn +

(
 –

αn



)
xn

)
+


–

λn


.

Let x ∈ C. For n = , we have

u =
λ



(
α +

(
 –

α



)
x

)
+


–

λ



≤ λ



(
α +

(
 –

α



))
+


–

λ



=


()



(


() 
+ 

)
+


–



()



=


()


+


() 

+


= . < .

Thus, u ∈ C.
Next we show that xn ∈ C for all n ∈N. Note u ∈ C. Suppose that uk ∈ C for some k ∈N.

Now, for n = k + , we have

uk+ =
λk+



(
αk+ +

(
 –

αk+



)
xk+

)
+


–

λk+



=
λk+



(
αk+ +

(
 –

αk+



)
PCuk

)
+


–

λk+



=
λk+



(
αk+ +

(
 –

αk+



)
uk

)
+


–

λk+



≤ λk+



(
αk+ +

(
 –

αk+



))
+


–

λk+



=
λk+



(
αk+


+ 

)
+


–

λk+



=
λk+


+


+

λk+αk+



<


+


+


= .

Thus, by mathematical induction, we get un ∈ C for all n ∈ N. Therefore, xn ∈ C for all
n ∈N. It can be seen from Table  and Figure  that { |xn–zn|

λn
} converges to  (see also (.)).
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Table 1 The numerical values of |xn–zn|
λn

up to n = 10,000

n |xn–zn|
λn

n |xn–zn|
λn

n |xn–zn|
λn

1 0.600468477588001 3,400 0.007373276312992 6,800 0.005133489777493
200 0.033090574752038 3,600 0.007155873637358 7,000 0.005056543877199
400 0.022842404623134 3,800 0.006956215006767 7,200 0.004982885604091
600 0.018408162394866 4,000 0.006772024658859 7,400 0.004912288613870
800 0.015801751117225 4,200 0.006601414499865 7,600 0.004844547738281

1,000 0.014040689141910 4,400 0.006442803256853 7,800 0.004779476507962
1,200 0.012750658965951 4,600 0.006294855306963 8,000 0.004716905020154
1,400 0.011754246690473 4,800 0.006156433766950 8,200 0.004656678095976
1,600 0.010955215843824 5,000 0.006026564076254 8,400 0.004598653681922
1,800 0.010296300001474 5,200 0.005904405409570 8,600 0.004542701458279
2,000 0.009741032549748 5,400 0.005789228005585 8,800 0.004488701623540
2,200 0.009264955188978 5,600 0.005680395018282 9,000 0.004436543829128
2,400 0.008850976030794 5,800 0.005577347862578 9,200 0.004386126242951
2,600 0.008486746121476 6,000 0.005479594286560 9,400 0.004337354723797
2,800 0.008163093477629 6,200 0.005386698590768 9,600 0.004290142091386
3,000 0.007873045437275 6,400 0.005298273552540 9,800 0.004244407479276
3,200 0.007611194925153 6,600 0.005213973715158 10,000 0.004200075759726

Figure 1 Convergence of sequence { |xn–zn|
λn

}.

Thus, all the assumptions of Theorem . are satisfied. Therefore, the iteratively generated
sequence {xn} defined by (.) converges strongly to { 

 }, which is also the unique solution
of the triple hierarchical variational inequality (.).
The numerical values of xn up to n = , have been calculated in Table  and conver-

gence of sequence {xn} is given in Figure . Finally, mathematically, we show that xn → 


and |xn–zn|
λn

→  as n→ ∞. Note

xn+ = PC(un) = un =
λn



(
αn +

(
 –

αn



)
xn

)
+


–

λn



≤ λn



(
αn +

(
 –

αn



))
+


–

λn


=

αnλn


+

λn


+


, (.)
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Table 2 The numerical values of xn up to n = 10,000

n xn n xn n xn
1 0.000000000000000 3,400 0.501901245173150 6,800 0.501179342447758

200 0.513660892766142 3,600 0.501827701962605 7,000 0.501156068130334
400 0.508408221515529 3,800 0.501760776817138 7,200 0.501133892973359
600 0.506334966973673 4,000 0.501699569844454 7,400 0.501112736570979
800 0.505184133249873 4,200 0.501643340889305 7,600 0.501092526371813

1,000 0.504438577466294 4,400 0.501591475155260 7,800 0.501073196728994
1,200 0.503910346287644 4,600 0.501543457407883 8,000 0.501054688086088
1,400 0.503513474443515 4,800 0.501498852346845 8,200 0.501036946276588
1,600 0.503202657672226 5,000 0.501457289482619 8,400 0.501019921918822
1,800 0.502951585650275 5,200 0.501418451349507 8,600 0.501003569891334
2,000 0.502743853895386 5,400 0.501382064222004 8,800 0.500987848876446
2,200 0.502568662846337 5,600 0.501347890731946 9,000 0.500972720961835
2,400 0.502418590433880 5,800 0.501315723944806 9,200 0.500958151291612
2,600 0.502288354629419 6,000 0.501285382567478 9,400 0.500944107759859
2,800 0.502174086142696 6,200 0.501256707041723 9,600 0.500930560740660
3,000 0.502072880709147 6,400 0.501229556336889 9,800 0.500917482849616
3,200 0.501982512601766 6,600 0.501203805299252 10,000 0.500904848732640

Figure 2 Convergence of the sequence {xn}.

which implies that

∣∣∣∣xn+ – 


∣∣∣∣ ≤ αnλn


+

λn


→  as n→ ∞. (.)

Therefore, from (.) we get xn → 
 as n→ ∞.

From (.), we have

xn+ –


=

λn



[
αn + xn –



–

αnxn


]
,

which implies that

|xn+ – 
 |

λn+
=

λn

λn+

∣∣∣∣αn + xn –


–

αnxn


∣∣∣∣.

http://www.fixedpointtheoryandapplications.com/content/2014/1/244


Sahu et al. Fixed Point Theory and Applications 2014, 2014:244 Page 24 of 25
http://www.fixedpointtheoryandapplications.com/content/2014/1/244

We have αn →  and λn →  as n→ ∞. Thus, we obtain

|xn+ – zn|
λn+

=
λn

λn+

∣∣∣∣αn + xn –


–

αnxn


∣∣∣∣ →  as n→ ∞. (.)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Banaras Hindu University, Varanasi, 221005, India. 2Department of Mathematics and RINS,
Gyeongsang National University, Jinju, 660-701, Korea.

Acknowledgements
The authors would like to thank the editor and referees for the useful comments and suggestions.

Received: 12 August 2014 Accepted: 1 December 2014 Published: 23 Dec 2014

References
1. Stampacchia, G: Formes bilineaires coercivities sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413-4416

(1964)
2. Kazmi, KR, Ahmad, N, Rizvi, SH: System of implicit nonconvex variational inequality problems: a projection method

approach. J. Nonlinear Sci. Appl. 6, 170-180 (2013)
3. Noor, MA: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199-277 (2004).

doi:10.1016/S0096-3003(03)00558-7
4. Cianciaruso, F, Marino, G, Muglia, L, Yao, Y: On a two-step algorithm for hierarchical fixed point problems and

variational inequalities. J. Inequal. Appl. 2009, Article ID 208692 (2009). doi:10.1155/2009/208692
5. Mainge, PE, Moudafi, A: Strong convergence of an iterative method for hierarchical fixed point problems. Pac.

J. Optim. 3, 529-538 (2007)
6. Moudafi, A, Mainge, PE: Towards viscosity approximations of hierarchical fixed points problems. Fixed Point Theory

Appl. 2006, Article ID 95453 (2006). doi:10.1155/FPTA/2006/95453
7. Sahu, DR, Kang, SM, Sagar, V: Iterative methods for hierarchical common fixed point problems and variational

inequalities. Fixed Point Theory Appl. 2013, 299 (2013). doi:10.1186/1687-1812-2013-299
8. Iiduka, H: Strong convergence for an iterative method for the triple hierarchical constrained optimization problem.

Nonlinear Anal. 71, e1292-e1297 (2009). doi:10.1016/j.na.2009.01.133
9. Iiduka, H: Iterative algorithm for solving triple hierarchical constrained optimization problem. J. Optim. Theory Appl.

148, 580-592 (2011). doi:10.1007/s10957-010-9769-z
10. Yao, Y, Chen, R, Xu, HK: Schemes for finding minimum-norm solutions of variational inequalities. Nonlinear Anal. 72,

3447-3456 (2010). doi:10.1016/j.na.2009.12.029
11. Ceng, LC, Ansari, QH, Yao, JC: Iterative methods for triple hierarchical variational inequalities in Hilbert spaces.

J. Optim. Theory Appl. 151, 489-512 (2011). doi:10.1007/s10957-011-9882-7
12. Ceng, LC, Ansari, QH, Yao, JC: Relaxed hybrid steepest-descent methods with variable parameters for

triple-hierarchical variational inequalities. Appl. Anal. 91, 1793-1810 (2012). doi:10.1080/00036811.2011.614602
13. Ansari, QH, Ceng, LC, Gupta, H: Triple hierarchical variational inequalities. In: Ansari, QH (ed.) Nonlinear Analysis:

Approximation Theory, Optimization and Applications, pp. 231-280. Springer, New York (2014)
14. Agarwal, RP, O’Regan, D, Sahu, DR: Fixed Point Theory for Lipschitzian-Type Mappings with Applications. Topological

Fixed Point Theory and Its Applications. Springer, New York (2009)
15. Sahu, DR: Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces. Comment. Math. Univ.

Carol. 46, 653-666 (2005)
16. Sahu, DR, Wong, NC, Yao, JC: A generalized hybrid steepest-descent method for variational inequalities in Banach

spaces. Fixed Point Theory Appl. 2011, Article ID 754702 (2011). doi:10.1155/2011/754702
17. Goebel, K, Kirk, WA: Topics on Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)
18. Yamada, I: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed

point sets of nonexpansive mappings. In: Butnariu, D, Censor, Y, Reich, S (eds.) Inherently Parallel Algorithms in
Feasibility and Optimization and Their Applications (Haifa, 2000). Stud. Comput. Math., vol. 8, pp. 473-504.
North-Holland, Amsterdam (2001)

19. Xu, HK, Kim, TH: Convergence of hybrid steepest-descent methods for variational inequalities. J. Optim. Theory Appl.
119, 185-201 (2003). doi:10.1023/B:JOTA.0000005048.79379.b6

20. Wong, NC, Sahu, DR, Yao, JC: Solving variational inequalities involving nonexpansive type mappings. Nonlinear Anal.
69, 4732-4753 (2008). doi:10.1016/j.na.2007.11.025

21. Takahashi, W, Toyoda, M: Weak convergence theorems for nonexpansive mappings and monotone mappings.
J. Optim. Theory Appl. 118, 417-428 (2003). doi:10.1023/A:1025407607560

22. Kinderlehrer, D, Stampacchia, G: An Introduction to Variational Inequalities and Their Applications. Academic Press,
New York (1980)

http://www.fixedpointtheoryandapplications.com/content/2014/1/244
http://dx.doi.org/10.1016/S0096-3003(03)00558-7
http://dx.doi.org/10.1155/2009/208692
http://dx.doi.org/10.1155/FPTA/2006/95453
http://dx.doi.org/10.1186/1687-1812-2013-299
http://dx.doi.org/10.1016/j.na.2009.01.133
http://dx.doi.org/10.1007/s10957-010-9769-z
http://dx.doi.org/10.1016/j.na.2009.12.029
http://dx.doi.org/10.1007/s10957-011-9882-7
http://dx.doi.org/10.1080/00036811.2011.614602
http://dx.doi.org/10.1155/2011/754702
http://dx.doi.org/10.1023/B:JOTA.0000005048.79379.b6
http://dx.doi.org/10.1016/j.na.2007.11.025
http://dx.doi.org/10.1023/A:1025407607560


Sahu et al. Fixed Point Theory and Applications 2014, 2014:244 Page 25 of 25
http://www.fixedpointtheoryandapplications.com/content/2014/1/244

10.1186/1687-1812-2014-244
Cite this article as: Sahu et al.: Iterative methods for triple hierarchical variational inequalities and common fixed
point problems. Fixed Point Theory and Applications 2014, 2014:244

http://www.fixedpointtheoryandapplications.com/content/2014/1/244

	Iterative methods for triple hierarchical variational inequalities and common ﬁxed point problems
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Applications
	Numerical example
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


