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Abstract
Very recently, the notion of aψ -Geraghty type contraction was defined by Gordji et al.
(Fixed Point Theory and Applications 2012:74, 2012). In this short note, we realize that
the main result via ψ -Geraghty type contraction is equivalent to an existing related
result in the literature. Consequently, all results inspired by the paper of Gordji et al. in
(Fixed Point Theory and Applications 2012:74, 2012) can be derived in the same way.
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1 Introduction and preliminaries
One of the celebrated generalizations of the Banach contraction (mapping) principle was
given by Geraghty [].

Theorem . (Geraghty []) Let (X,d) be a complete metric space and T : X → X be an
operator. Suppose that there exists β : (,∞)→ [, ) satisfying the condition

β(tn) →  implies tn → . ()

If T satisfies the following inequality:

d(Tx,Ty) ≤ β
(
d(x, y)

)
d(x, y), for any x, y ∈ X, ()

then T has a unique fixed point.

Let S denote the set of all functions β : (,∞) → [, ) satisfying (). This nice result
of Geraghty [] has been studied by a number of authors, see e.g. [–] and references
therein.
In the following Harandi and Emami [] reconsidered Theorem . in the framework of

partially ordered metric spaces (see also []).

Theorem . Let (X,�,d) be a partially ordered complete metric space. Let f : X → X be
an increasing mapping such that there exists an element x ∈ X with x � fx. If there exists
α ∈ S such that

d(fx, fy) ≤ α
(
d(x, y)

)
d(x, y), ()

for each x, y ∈ X with x � y, then f has a fixed point provided that either f is continuous or
X is such that if an increasing sequence {xn} → x in X; then xn � x, for all n. Besides, if for
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each x, y ∈ X there exists z ∈ X which is comparable to x and y, then f has a unique fixed
point.

Very recently, Gordji et al. [] supposedly improved and extended Theorem . in the
following way via the auxiliary function defined below. Let � denote the class of the func-
tions ψ : [,∞)→ [,∞) which satisfy the following conditions:

(ψ) ψ is nondecreasing;
(ψ) ψ is subadditive, that is, ψ(s + t) ≤ ψ(s) +ψ(t);
(ψ) ψ is continuous;
(ψ) ψ(t) =  ⇔ t = .

The following is the main theorem of Gordji et al. [].

Theorem . Let (X,�,d) be a partially ordered complete metric space. Let f : X → X be
a nondecreasing mapping such that there exists x ∈ X with x � fx. Suppose that there
exist α ∈ S and ψ ∈ � such that

ψ
(
d(fx, fy)

) ≤ α
(
ψ

(
d(x, y)

))
ψ

(
d(x, y)

)
, ()

for all x, y ∈ X with x � y.Assume that either f is continuous or X is such that if an increas-
ing sequence {xn} converges to x, then xn � x for each n ≥ . Then f has a fixed point.

2 Main results
We start this section with the following lemma, which is the skeleton of this note.

Lemma . Let (X,d) be a metric space and ψ ∈ � . Then, a function dψ : X ×X → [,∞)
defined by dψ (x, y) =ψ(d(x, y)) forms ametric on X.Moreover, (X,d) is complete if and only
if (X,dψ ) is complete.

Proof
() If x = y, then d(x, y) = . Due to (ψ), we have ψ(d(x, y)) = . The converse is

obtained analogously.
() dψ (x, y) =ψ(d(x, y)) = ψ(d(y,x)) = dψ (y,x).
() Since ψ is nondecreasing, we have ψ(d(x, y))≤ ψ(d(x, z) + d(z, y)). Regarding the

subadditivity of ψ , we derived

dψ (x, y) = ψ
(
d(x, y)

) ≤ ψ
(
d(x, z) + d(z, y)

)

≤ ψ
(
d(x, z)

)
+ψ

(
d(z, y)

)

= dψ (x, z) + dψ (z, y).

Notice that the completeness of (X,dψ ) follows from (ψ) and (ψ). �

The following is the main result of this note.

Theorem . Theorem . is a consequence of Theorem ..
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Proof Due to Lemma ., we derived the result that (X,dψ ) is a complete metric space.
Furthermore, the condition () turns into

dψ (fx, fy) ≤ α
(
dψ (x, y)

)
dψ (x, y). ()

Hence all conditions of Theorem . are satisfied. �

3 The best proximity case
Let A and B be two nonempty subsets of a metric space (X,d). We denote by A and B

the following sets:

A =
{
x ∈ A : d(x, y) = d(A,B) for some y ∈ B

}
,

B =
{
y ∈ B : d(x, y) = d(A,B) for some x ∈ A

}
,

()

where d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.
In [, ], the author introduces the following definition.

Definition . Let (A,B) be a pair of nonempty subsets of a metric space (X,d) with
A 
= ∅. Then the pair (A,B) is said to have the P-property if and only if, for any x,x ∈ A

and y, y ∈ B,

d(x, y) = d(A,B) and d(x, y) = d(A,B) ⇒ d(x,x) = d(y, y). ()

Caballero et al. proved the following result.

Theorem . (See []) Let (A,B) be a pair of nonempty closed subsets of a complete metric
space (X,d) such that A is nonempty. Let T : A → B be a Geraghty contraction, i.e. there
exists β ∈ S such that

d(Tx,Ty) ≤ β
(
d(x, y)

)
d(x, y), for any x, y ∈ A. ()

Suppose that T is continuous and satisfies T(A) ⊆ B. Suppose also that the pair (A,B)
has the P-property. Then there exists a unique x∗ in A such that d(x∗,Tx∗) = d(A,B).

Inspired byGordji et al. [] andCaballero et al. [], Karapinar [] reported the following
result.

Theorem . Let (A,B) be a pair of nonempty closed subsets of a complete metric space
(X,d) such that A is nonempty. Let T : A→ B be ψ-Geraghty contraction, i.e. there exists
β ∈ S such that

ψ
(
d(Tx,Ty)

) ≤ α
(
ψ

(
d(x, y)

))
ψ

(
d(x, y)

)
, for any x, y ∈ A. ()

Suppose that T is continuous and satisfies T(A) ⊆ B. Suppose also that the pair (A,B)
has the P-property. Then there exists a unique x∗ in A such that d(x∗,Tx∗) = d(A,B).

The following lemmas belong to Akbar and Gabeleh [].
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Lemma . [] Let (A,B) be a pair of nonempty closed subsets of a complete metric space
(X,d) such that A is nonempty and (A,B) has the P-property.Then (A,B) is a closed pair
of subsets of X.

Lemma . [] Let (A,B) be a pair of nonempty closed subsets of a metric space (X,d)
such that A is nonempty. Assume that the pair (A,B) has the P-property. Then there exists
a bijective isometry g : A → B such that d(x, gx) = dist(A,B).

Very recently, by using Lemma . and Lemma ., Akbar and Gabeleh [] proved that
the best proximity point results via P-property can be obtained from the associate results
in fixed point theory. In particular they proved the following theorem.

Theorem . Theorem . is a consequence of Theorem ..

As a consequence of Theorem . we can observe the following result.

Corollary . Theorem . is a consequence of Theorem ..

Regarding the analogy, we omit the proof.

Theorem . Theorem . is a consequence of Theorem ..
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