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Abstract

In this paper, we present relaxed and composite viscosity methods for computing a
common solution of a general systems of variational inequalities, common fixed
points of infinitely many nonexpansive mappings and zeros of accretive operators in
real smooth and uniformly convex Banach spaces. The relaxed and composite
viscosity methods are based on Korpelevich's extragradient method, the viscosity
approximation method and the Mann iteration method. Under suitable assumptions,
we derive some strong convergence theorems for relaxed and composite viscosity
algorithms not only in the setting of a uniformly convex and 2-uniformly smooth
Banach space but also in a uniformly convex Banach space having a uniformly
Gateaux differentiable norm. The results presented in this paper improve, extend,
supplement, and develop the corresponding results given in the literature.

1 Introduction

The theory of variational inequalities is well established and a tool to solve many problems
arising from science, engineering, social sciences, etc., see, for example, [1-4] and the ref-
erences therein. One of the interesting directions, from the research view point, in the
theory of variational inequalities is to develop some new iterative methods for comput-
ing the approximate solutions of different kinds of variational inequalities. In 1976, Kor-
pelevich [5] proposed an iterative algorithm for solving variational inequalities (VI) in the
finite dimensional space setting, It is now known as the extragradient method. Korpele-
vich’s extragradient method has received great attention by many authors, who improved
it in various ways and in different directions, see, for example [6-16] and the references
therein. In the recent past, several iterative methods for solving VI were proposed and an-
alyzed in [17-24] in the setting of Banach spaces. In the last three decades, the system of
variational inequalities is used as a tool to study the Nash equilibrium problem for a finite
or infinite number of players, see, for example, [2, 3, 25, 26] and the references therein. Cai
and Bu [20] considered a system of two variational inequalities (SVI) in the setting of real
smooth Banach spaces. They proposed and analyzed an iterative method for computing
the approximate solutions of system of variational inequalities. Such a solution is also a
common fixed point of a family of nonexpansive mappings.
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One of the most interesting problems in nonlinear analysis is to find a zero of an ac-
cretive operator. In 2007, Aoyama et al. [27] suggested a Halpern type iterative method
for finding a common fixed point of a countable family of nonexpansive mappings and a
zero of an accretive operator. They studied the strong convergence of the sequence gen-
erated by the proposed method in the setting of a uniformly convex Banach space having
a uniformly Gareaux differentiable norm. Ceng et al. [28] introduced and analyzed the
composite iterative scheme to compute a zero of m-accretive operator A defined on a
uniformly smooth Banach space or a reflexive Banach space having a weakly sequentially
continuous duality mapping. It is shown that the iterative process in each case converges
strongly to a zero of A. Subsequently, Jung [29] studied a viscosity approximation method,
which generalizes the composite method in [28], to investigate the zero of an accretive
operator.

During the last decade, several iterative methods have been proposed and analyzed to
find a common solution of two different fixed point problems, a fixed point problem and
a variational inequality problem, a fixed point problem for a family of nonexpansive map-
pings and a variational inequality problem or a fixed point problem and a system of vari-
ational inequalities, etc. See, for example, [8, 16, 20, 30, 31] and the references therein.

In the present paper, we mainly propose two different methods, namely, relaxed viscos-
ity method and composite viscosity method, to find a common fixed point of an infinite
family of nonexpansive mappings, a system of variational inequalities and zero of an accre-
tive operator in the setting of a uniformly convex and 2-uniformly smooth Banach spaces.
These methods are based on Korpelevich’s extragradient method, viscosity approximation
method and Mann iteration method. Under suitable assumptions, we derive some strong
convergence theorems for relaxed and composite viscosity algorithms not only in the set-
ting of a uniformly convex and 2-uniformly smooth Banach space but also in the setting of
uniformly convex Banach spaces having a uniformly Gateaux differentiable norm. The re-
sults presented in this paper improve, extend, supplement, and develop the corresponding
results in [10, 20, 24, 29, 30].

2 Preliminaries
Throughout the paper, unless otherwise specified, we adopt the following assumptions
and notations.

Let X be a real Banach space whose dual space is denoted by X*. Let C be a nonempty
closed convex subset of X. We denote by Z¢ the set of all contractive mappings from C
into itself.

The normalized duality mapping J : X — 2X" is defined by
J(x) = {x* exX*: <x,x*) = ||x|1? = ||x* ||2}, Vx e X,

where (-,-) denotes the generalized duality pairing. It is an immediate consequence of the
Hahn-Banach Theorem that J(x) is nonempty for each x € X.

Let U = {x € X : |»|| =1} denote the unite sphere in X. A Banach space X is said to be
uniformly convex if for each € € (0,2], there exists § > 0 such that for all x,y € U,

Il + ¥
2

lx—yll>€ = <1-3.
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It is well known that a uniformly convex Banach space is reflexive and strictly convex.
A Banach space X is said to be smooth if the limit

X+ byl —[[x
Nt el

li
t—0 t

’

exists for all %,y € U; in this case, X is also said to have a Gdteaux differentiable norm. X is
said to have a uniformly Gateaux differentiable norm if for each y € U, the limit is attained
uniformly for all x € U. Moreover, it is said to be uniformly smooth if this limit is attained
uniformly for all x,y € U. The norm of X is said to be Fréchet differentiable if, for each
x € U, this limit is attained uniformly for all y € U. A function p : [0, 00) — [0, 00) defined
by

1
p(t) = SHP{E(leH’II +lx=yl) =1:xy € X, llxl =1, |yl = f}

is called the modulus of smoothness of X. It is well known that X is uniformly smooth if and
onlyiflim;_ ¢ p(tr)/t = 0. Let g be a fixed real number with 1 < ¢ < 2. Then a Banach space
X is said to be g-uniformly smooth if there exists a constant ¢ > 0 such that p(r) < ct?
for all 7 > 0. As pointed out in [32], no Banach space is g-uniformly smooth for g > 2.
In addition, it is also known that J is single-valued if and only if X is smooth, whereas if
X is uniformly smooth, then the mapping / is norm-to-norm uniformly continuous on
bounded subsets of X. If X has a uniformly Gateaux differentiable norm then the duality
mapping J is norm-to-weak™* uniformly continuous on bounded subsets of X. For further
details of the geometry of Banach spaces, we refer to [33-35].

Now, we present some lemmas which will be used in the sequel.

Lemma 2.1 [36] Let X be a 2-uniformly smooth Banach space. Then
e+ 1> < lll® + 2y, J (@) + 2[lcyl?,  Va,y € X,

where K is the 2-uniformly smooth constant of X.

The following lemma is an immediate consequence of the subdifferential inequality of

the function 1| - ||

Lemma 2.2 [37] Let X be a real Banach space X. Then, for all x,y € X,
@) Il +y1% < llll® + 20, e +9), Vil +y) €T + p);
(b) e+ 1% = l%lI* +2(y,j(x)), ¥j(x) € ] (x).

Lemma 2.3 [36] Given a number r > 0. A real Banach space X is uniformly convex if and
only if there exists a continuous strictly increasing function g : [0,00) — [0,00), g(0) = 0,
such that

|2+ (@ = 2)y > < Al + (L= W)yl = 2= 2g(llx - y1)

forall » €[0,1] and x,y € X such that ||x|| <rand |y|| <r.
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Lemma 2.4 [38] Let X be a uniformly convex Banach space and B, = {x € X : || x| <r},
r > 0. Then there exists a continuous, strictly increasing, and convex function g : [0,00] —
[0, 0], g(0) = 0 such that

lox + By + yzl* < ellxl? + Byl + vllzl* - aBg(llx - yl)
forallx,y,z€ B, and alla, B,y € [0, 1] witha + B+y =1.

Proposition 2.1 [22] Let X be a real smooth and uniform convex Banach space and r > 0.
Then there exists a strictly increasing, continuous, and convex function g : [0,2r] — R,
2(0) = 0 such that

gllx=y1) < x> = 2{x,J ) + yl*,  Vx,y€ B,
where B, = {x € X : ||x|| <r}.

Lemma 2.5 [39] Let C be a nonempty closed convex subset of a strictly convex Banach
space X. Let {T,}2, be a sequence of nonexpansive mappings from C into itself such that
Moo Fix(T,) is nonempty. Let {1,} be a sequence of positive numbers with Y oo Ay = 1.
Then a mapping S : C — C defined by Sx =Y - ATy, for all x € C, is well defined and
nonexpansive, and Fix(S) = (-, Fix(T,).

Lemma 2.6 [40] Let {x,} and {z,} be bounded sequences in a Banach space X and {8}
be a sequence of nonnegative numbers in [0,1] with 0 < liminf,_, o 8, < limsup,_, ., Bx < 1.
Suppose that x,.1 = Buxn + (1 — Bu)zn for all integers n > 0 and limsup,,_, o (12441 — 2ull —
141 — % 11) < 0. Then lim,, . o0 %, — 24l = 0.

Lemma 2.7 [41] Let {s,} be a sequence of nonnegative real numbers satisfying
Snal < (L—y)sy, + AuPy+ Ve Yn=0,
where {a,}, {Bn}, and {y,} satisfy the conditions:
(i) {an} C[0,1] and y",° oty = 00;
(ii) limsup,,_, ., Bx <0;
(ili) % >0,Vn>0,andy . Vu < 00.
Then limsup,,_, . s, = 0.
A mapping T : C — C is called nonexpansive if | Tx — Ty|| < ||x — y|| for every x,y € C.

The set of fixed points of T is denoted by Fix(7). A mapping A : C — X is said to be
(a) accretive if for each x,y € C, there exists j(x — y) € J(x — y) such that

(Ax - Ay, j(x-y)) = 0;
(b) «a-strongly accretive if for each x,y € C, there exists j(x — y) € J(x — y) such that

(Ax — Ay, j(x —y)> > alx—y|? for somea € (0,1);
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(c) B-inverse strongly accretive if for each x, y € C, there exists j(x — y) € J(x — y) such
that

(Ax - Ay, j(x - y)) = BllAx - Ay||*>, for some B > 0;

(d) A-strictly pseudocontractive [18, 42] if for each x,y € C, there exists j(x —y) € J(x — y)
such that

(Ax - Ay, j(x - ) < e = y1> = 2|2 -y - (Ax - Ap)|*,

for some A € (0,1).

It is worth to emphasize that the definition of the inverse strongly accretive mapping is
based on that of the inverse strongly monotone mapping [43].

Lemma 2.8 [20, Lemma 2.8] Let C be a nonempty closed convex subset of a real 2-
uniformly smooth Banach space X and foreachi=1,2,B;: C — X be an a;-inverse strongly
accretive mapping. Then, for each i =1,2,

2
(I = wiBi)x — (I = wiBa)y||” < llx = yII* + 2pi (i — i) | Bix — Biyl>,  Vx,y € C,
where p; > 0. In particular, if 0 < u; < %, then I — w;B; is nonexpansive for each i = 1,2.

Let C be a nonempty closed convex subset of a Banach space X and T: C — C be a
nonexpansive mapping with Fix(7) # . For all t € (0,1) and f € &E¢, let x; € C be a unique
fixed point of the contraction x — #f(x) + (1 — £)Tx on C, that is,

xp = tf (%) + (1= £) Txy.

Lemma 2.9 [44,45] Let X be an uniformly smooth Banach space, or a reflexive and strictly
convex Banach space with a uniformly Gdateaux differentiable norm. Let C be a nonempty
closed convex subset of X, T : C — C be a nonexpansive mapping with Fix(T) # 0, and
f € Ec. Then the net {x;} defined by x; = tf (x;) + (1 — t) Tx; converges strongly to a point in
Fix(T). If we define a mapping Q : Ec — Fix(T) by Q(f) := s—lim,_, ¢ x;, Vf € Ec, then Q(f)
solves the VIP

(- J(QF) —p)) <0, ¥f e Bc,peFix(T).

Recall that a (possibly set-valued mapping) operator A C X x X with domain D(A) and
range R(A) in X is accretive if, for each x; € D(A) and y; € Ax; (i = 1,2), there exists a
Jlx1 — x2) € J(x1 — ) such that (y; — yo,j(x1 — x2)) > 0. An accretive operator A is said
to satisfy the range condition if D(A) C R(I + rA) for all » > 0. An accretive operator A is
m-accretive if R(I + rA) = X for each r > 0. If A is an accretive operator which satisfies
the range condition, then we define a mapping J, : R( + rA) — D(A) by J, = (I + rA)™! for
each r > 0, which is called the resolvent of A. It is well known that J, is nonexpansive and
Fix(J,) = A710 for all r > 0. Therefore,

Fix(J,) =A™'0 = {z€ D(A) : 0 € Az}.

If A710 # @, then the inclusion 0 € Az is solvable.
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Proposition 2.2 (Resolvent Identity [46]) For >0, u >0 and x € X,

Jwx =]y (%x + (1 - %)]Ax).

Let D be a subset of C. A mapping T : C — D is said to be sunny if
H[H(x) + t(x — H(x))] =I1(x),

whenever I7(x) + t(x — I1(x)) € C for all x € C and ¢ > 0. A mapping IT: C — C is called
a retraction if IT*> = I1. If a mapping IT : C — C is a retraction, then I7(z) = z for every
z € R(IT) where R(IT) is the range of IT. A subset D of C is called a sunny nonexpansive

retract of C if there exists a sunny nonexpansive retraction from C onto D.

Lemma 2.10 [23] Let C be a nonempty closed convex subset of a real smooth Banach space
X, D be a nonempty subset of C and II be a retraction of C onto D. Then the following
statements are equivalent:

(a) I is sunny and nonexpansive;

(b) 177() - TG < (x -3, J(T(x) - TG)), Yay € C;

(€ (x-H),J(y-H(x))<0,VxeC,yeD.

It is well known that if X = H a Hilbert space, then a sunny nonexpansive retraction
I¢ is coincident with the metric projection from X onto C, that is, [1Tc = Pc. If C is a
nonempty closed convex subset of a strictly convex and uniformly smooth Banach space
X and if T : C — C is a nonexpansive mapping with the fixed point set Fix(7) # ¥, then

the set Fix(7T') is a sunny nonexpansive retract of C.

Lemma 2.11 [20, Lemma 2.9] Let C be a nonempty closed convex subset of a real 2-
uniformly smooth Banach space X and I1c be a sunny nonexpansive retraction from X

onto C. For each i = 1,2, let B; : C — X be an w;-inverse strongly accretive mapping and
G: C — C be defined by

Gx = Iic [Hc(x - ungx) - ,ulBlﬂc(x - ,uszx)], Vx e C.
IfOo<p; < ,‘j’—éfor eachi=1,2,then G:C — C is nonexpansive.

Let f € &¢ with a contractive coefficient p € (0,1), {T,,}52, be a sequence of nonexpan-

sive self-mappings on C and {1,}32, be a sequence of nonnegative numbers in [0, 1]. For
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any n > 0, a self-mapping W,, on C defined by

Un,n+l =1,
Un,n = An T, un,n+1 + (1 - )Ln)lr
un,n—l = )\n—l Tn—l un,n + (1 - )"rz—l)I)

Upi = Tl g + (L= 201, (2.1
Uy g = M1 T Ui + (1= X)),

Uy =Ty + (1 - A,
W= Uy =roTolpyy + (1 —Xo)l

is called W-mapping [47] generated by T, T),_1,..., To and Ay, Ay_1,..., Ao.

Lemma 2.12 [37, Lemma 3.2] Let C be a nonempty closed convex subset of a strictly convex
Banach space X. Let {T,}52, be a sequence of nonexpansive self-mappings on C such that
Mo2o Fix(T),) # 0 and {1,}32,, be a sequence of positive numbers in (0, b] for some b € (0,1).
Then, for every x € C and k > 0, the limit lim,,_, o, U, xx exists.

B using Lemma 2.12, we define a W-mapping W : C — C generated by the sequences
{Tn}2o and {1,,};2, by

Wx = lim W,x = lim U,ox, foreveryxeC.
n—0oQ n—0Q
Throughout this paper, we assume that {1,,}°, is a sequence of positive numbers in (0, 5]
for some b € (0,1).

Lemma 2.13 [37, Lemma 3.3] Let C be a nonempty closed convex subset of a strictly convex
Banach space X. Let {T,}5, be a sequence of nonexpansive self-mappings on C such that
Moo FIX(T),) # @ and let {1,}2, be a sequence of positive numbers in (0,b] for some b €
(0,1). Then Fix(W) = (N>, Fix(T,,).

Let u be a continuous linear functional on [*° and s = (ag, ay,...) € [*°. We write w,(a,)
instead of u(s). u is called a Banach limit if p satisfies ||| = w,(1) =1 and w,(@,.1) =
Wnlay) for all (ag, ay,...) € I°°. If u is a Banach limit, then the following implications hold:

(a) forallm >0, a, < c, implies w,(a,) < wa(cn);

(b) pul@nsr) = ula,) for any fixed positive integer 7;

(c) liminf,— o ay < un(a,) <limsup,_,  a, for all (ag,a;,...) € .
Lemma 2.14 [48] Let a € R be a real number and a sequence {a,} € I*° satisfy the
condition py(a,) < a for all Banach limits . If limsup,_, . (@nr — ay) < 0, then

limsup,_,  a, < a.

In particular, if » =1 in Lemma 2.14, then we obtain the following corollary.
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Corollary 2.1 [49] Let a € R be a real number and a sequence {a,} € [*° satisfy the
condition py(a,) < a for all Banach limits . If limsup,_,  (@n — a,) < 0, then

limsup,,_,  a, <a.

3 Formulations

Let C be a nonempty closed convex subset of a smooth Banach space X, By,By: C — X
be nonlinear mappings and x; and p, be two positive constants. The problem of system
of variational inequalities (SVI) in the setting of a real smooth Banach space X is to find
(x*,9*) € C x C such that

(uBy* +x* =y, J(x —x*)) >0, VxeC, 3.1)
(aBox™ +y* —x*, J(x —¥*)) >0, VxeC. '

The set of solutions of SVI (3.1) is denoted by SVI(C, By, B). Very recently, Cai and Bu
[20] constructed an iterative algorithm for solving SVI (3.1) and a common fixed point
problem of an infinite family of nonexpansive mappings in a uniformly convex and 2-
uniformly smooth Banach space. They studied the strong convergence of the proposed
algorithm.

In particular, if X = H, a real Hilbert space, then SVI (3.1) reduces to the following prob-
lem of SVI of finding (x*,y*) € C x C such that

(By* +x* —y*,x—x*) >0, VxeC, (3.2)
(UaBox™ +y" —x*,x—y*) >0, VxeC. '

Further, if B; = By = A, where A : C — X is an operator, and x* = y*, then the SVI (3.2)
reduces to the classical variational inequality problem (VIP) of finding x* € C such that

(Ax*,x —x*) >0, VxeC. (3.3)

The solution set of the VIP (3.3) is denoted by VI(C,A). For details and applications of
theory of variational inequalities, we refer to [1-4] and the references therein.

Recently, Ceng et al. [10] transformed problem (3.2) into a fixed point problem in the
following way.

Lemma 3.1 [10] For given %,y € C,(%,7) is a solution of problem (3.2) if and only if % is a
fixed point of the mapping G : C — C defined by

G(x) = Pc [Pc(x — taBox) — 1B Pc(x — ,ungx)], Vx e C, (3.4)
where y = Pc(x — woByx) and Pc is the projection of H onto C.

In particular, if for each i =1,2, B; : C — H is a f;-inverse strongly monotone mapping,
then G is a nonexpansive mapping provided u; € (0,28;) for each i =1, 2.

In particular, whenever X is a real smooth Banach space, B; = B, = A and x* = y*, then
SVI (3.1) reduces to the variational inequality problem (VIP) of finding x* € C such that

(Ax*,J(x—x")) =0, VxeC, (3.5)
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which was considered by Aoyama et al. [17]. Note that VIP (3.5) is connected with the
fixed point problem for nonlinear mapping [44], the problem of finding a zero point of a
nonlinear operator [50] and so on. It is clear that VIP (3.5) extends VIP (3.3) from Hilbert
spaces to Banach spaces. For further study on VIP in the setting of Banach spaces, we refer
to [17, 21] and the references therein.

Define a mapping G: C — C by
G(x) = Hc([ - mBl)HC(I - ,ung)x, VxeC. (36)
The fixed point set of G is denoted by £2.
Lemma 3.2 Let C be a nonempty closed convex subset of a smooth Banach space X. Let
I¢ be a sunny nonexpansive retraction from X onto C and By, B, : C — X be nonlinear
mappings. Then (x*,y*) € C x C is a solution of SVI (3.1) if and only ifx* = [ ¢c(y* — 1 B1y*),

where y* = Ic(x* — (o Byx™).

Proof We rewrite SVI (3.1) as

(x* = (y* — uB1y*),J(x —x*)) >0, VxeC,
(y* — (&% — naBax®),J(x —y*)) >0, VxeC,

which is obviously equivalent to

x* = Mc(y* — uiBry*),
y* = Hc(x* — uaByx™),

because of Lemma 2.10. This completes the proof. O

In terms of Lemma 3.2, we observe that
8" = Mc[Mc(x* — paBox™) — By e (5" — p12Bax™) |,

which implies that x* is a fixed point of the mapping G.

Motivated and inspired by the research going on in this area, we introduce some relaxed
and composite viscosity methods for finding a zero of an accretive operator A C X x X
such that D(A) c C c
lem of an infinite family {T},} of nonexpansive self-mappings on C. Our methods are based

0 RU + rA), solving SVI (3.1) and the common fixed point prob-
on Korpelevich’s extragradient method, the viscosity approximation method, and Mann’s
iteration method. Under suitable assumptions, we derive some strong convergence theo-
rems for relaxed and composite viscosity algorithms not only in the setting of uniformly
convex and 2-uniformly smooth Banach space butalso in a uniformly convex Banach space
having a uniformly Géteaux differentiable norm. The results presented in this paper im-
prove, extend, supplement, and develop the corresponding results given in [10, 20, 24, 29,
48].
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4 Relaxed viscosity algorithms and convergence criteria
In this section, we introduce relaxed viscosity algorithms in the setting of real smooth
uniformly convex Banach spaces and study the strong convergence of the sequences gen-
erated by the proposed algorithms.

Throughout this paper, we denote by §2 the fixed point set of the mapping G = I1c(I -
B (I - 2 By).

Assumption 4.1 Let {&,}, {B.}, {Vn}> {61}, {04} De the sequences in (0,1) such that o, +
Bu+ ¥n + 8, =1forall n> 0. Suppose that the following conditions hold:
(i) lim,ooa, =0and > oo, = 00;
{vu}, {84} C [c, d] for some ¢,d € (0,1);
lim,,, oo (|04 = 01| + 1Bn = Buctl + 1V = Vil + 185 = 8uca]) = 0;
Y lra=rual <ooand r, > >0 foralln > 0;

(i

i)
(iif)
(iv)
)

(v) 0 <liminf,_ o B, <limsup,_, . B <1and 0 <liminf,_, . 0, <limsup,_, ., o, < 1.

Theorem 4.1 Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space X. Let Ilc be a sunny nonexpansive retraction from X
onto C and A C X x X be an accretive operator such that D(A) C C C (.o RU + rA). For
each i = 1,2, let B; : C — X be w;-inverse strongly accretive mapping and f : C — C be

>0

a contraction with coefficient p € (0,1). Let {T;}5, be an infinite family of nonexpanswe
mappings from C into itself such that F := [\, Fix(T;}) N 2 NA™0 # @ with 0 < p; <
fori=1,2. Assume that Assumption 4.1 holds. For arbitrarily given x, € C, let {x,} be a

sequence generated by

Yn =0pXy + (1 - an)]rn Gxnr

Xn+l = ar(f(yn) + ,ann + Vn Wnyn + ‘Sn]rn Gyn’ Vn = 0)

(4.1)

where W, is the W-mapping generated by (2.1). Then
() limy— oo 101 = %4l = 0
(b) the sequence {x,}32, converges strongly to some q € F which is a unique solution of

the following variational inequality problem (VIP):

(-f)a.J(q-p)) <0, VpeF,
provided B, = B for some fixed 8 € (0,1).

Proof We first claim that the sequence {x,} is bounded. Indeed, take a fixed p € F ar-
bitrarily. Then we get p = Gp, p = W,,p, and p = J,, p for all n > 0. By Lemma 2.11, G is
nonexpansive. Then, from (4.1), we have

lyn —pll < oullx, —pll + A = o)), Gx, — pll
< oullxn —pll + 1 - 0,)1Gx,, — pll
< oullwy —pll + 1= 0,) 1%, — Pl

= |lx, = pll (4.2)

Page 10 of 67
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and

%01 =2l < @ul[f ) = p|| + Bull%n =PIl + Vull Wogn = pIl + 8,115, Gy — pl
<au([fon) =@ + [f @) = p]) + Bullxw =PIl + Vullyn =PIl + 811Gy, — pl
< au(pllyn —pll + [f®) = p[) + Bullx = 2l + vullyn =PIl + Sullyn —pll
< au(pllxn —pl + [f() = p[) + Balln = Il + Yl = 2l + 8l -

| [
= (l_an(l_p))”xn -pll +a,(1-p) /p) pp
< maX{llxn -pl, ”ﬂp) p”}
-p
By induction, we obtain
If () - pll
%, —pll < max{ %o —pll, lf(lpfpp ., Vn=>o. (4.3)

Hence, {x,} is bounded, and so are the sequences {y,}, {Gx,}, {Gy,}, and {f(y,)}.
Next we show that

lim %1 — x4 = 0. (44)
Hn—0Q
We note that x,,; can be rewritten as follows:

X1 = Bnn + (L= Bu)zn,

where z,, = a"f(y”)wnfy ';y”w”]'” Sn  Observe that
”Zn —Zn-1 ”
_ anf(yn) +Vn nyn + 8n]r,, Gyn _ an—lf(Yn—l) + V-1 Wn—lyn—l + 8n—1]rn,1 Gyn—l
1- :3;1 1- ﬁn—l
_ Kn+l — lsnxn _ Xn — ﬁn—lxn—l
1- ﬂn 1- ﬂn—l
_ Xn+l — ﬁnxn _ Xn — ﬁn—lxn—l 4 Xn — ﬁn—lxn—l _ Xy — ﬁn—lxn—l
1_,371 1_,371 1_,371 1_,371—1
< X+l — ,ann _ Xn — ,Bn—lxn—l - ﬂn—lxn—l _ Xn — ,Bn—lxn—l
- l_lgn 1—/3,1 1_ﬁn 1_ﬁn—1
= —_1 |41 = Bun = (tn = Buorztn-1) || + —_1 - _1 % = Bpo1ni
1 :Bn 1 ,Bn 1 ,Bn—l
1 |Bn = Bual
= —|X — PuXy — Xy — Pp-1Xn- + ¥y — Pu—1Xu-
1_/3;1 ” n+l ,Bn n ( n ﬂn 14n I)H (1_’3”_1)(1_’3”)” n ,Bn 1%n-1 |
1
1- :Bn
X ”anf(yn) +Vn Wnyn + an]rn Gyn - an—lf(yn—l) = Vn-1 Wn—lyn—l - Sn—l]rn_l Gyn—l H

¥ |:3n - ,Bn—1|
A= Bu1)X - By)

”xn - ,Bn—lxn—l ”
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1
1- ﬂn
+ |oty — oty Hf(yn—l)” +Vn = Vel Waayna | + 180 = 8ua |4 Gyn—ln]

+ |:3n - ,Bn—1|
(1 - :Bn—l)(l - :Bn)

S

[an Hf(yn) _f(yn—l)” + Vull Wy = Waoiyu-1ll + 8,171, Gyn _]r,,_l Gyl

”xn - ,Bn—lxn—l ” . (4.5)

On the other hand, if r,_; <r,, using the resolvent identity in Proposition 2.2,

Tn-1 Tn-1
]ry,xn :]rn,l ( Xpn + (1 - )]rnxn>;
'y ¥y

we get

”]rn Gxn - ]rn,l Gxn—l ” =

]rn,l (%G&C” + (1 - %)]m Gxn) _]r,,,l Gxn—l

Tn-1

< )Gy - Gty | + (1 - ) Wrn GXn — Gl

n n

A

T'n — -1
”xn _xn—IH + 7’7 ”]r,, Gxn - Gxn—l”
n

< %n = X [l + %Irn = 'nal IV, GXn = GXpa |-
If r, <r,_1, then it is easy to see that
1
W G = Ty, G | < 1901 — Xl + EIVH = Tl GXu1 — G
By combining the above cases, we obtain

”]rn Gxn - ]rn,l Gxn—l ”

|Vn—1 - rn|
= s =2l + ———— sup{Ilfy,, Gxn — Gxprll + Iy, Gt — Grull}, Vi > 1.

n>1

Similarly, we have

”]rn Gyn - ]r,,,l Gyn—l ”

|71 — Tl
=< ”yn—l _yn” + IT SUP{ ”]rnGyn - Gyn—lll + ”]r,,,len—l - Gyn”}r V}’l = 1.
n>1

Therefore, we obtain

”]rn Gxn _]’”n—l Gxn—l” = ”xn—l _xn” + |rn—1 - rn|MO) (46)

”]rnGyn _]rn,len—IH < ”yn—l _yn” + |rn—l - rn|MO, Vn > 1)
where

1
Sup{ g (”]r,, Gxn - Gxn—l” + ”]r,,,l Gxn—l - Gxn”)} < MO;

n>1

and

1
Sup{ g (”]rnGyn - Gyl + ”]Vn—l Gyp-1 - Gyn”)} < My,

n>1
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for some M > 0. Since T; and U,,; are nonexpansive, from (2.1), we deduce that for each
n>1
IWuyn-1 = Wiu1ynall = 1Mo Toldy1yn-1 — 2o Tolu-1,1Yn1ll
< )\O ” Un,lyn—l - un—l,lyn—l ”
=dollM T2y — M Tily 12Yn1ll

< oMUy 2Yn-1 — Up12Yn1ll

i=0

n-1
S (l_[ )\z) ”un,nyn—l - Un—l,nyn—ln

n-1
< Ml_[ A;, for some constant M > 0. (4.7)
i=0

By simple computations, we obtain
Yn—Yn-1= Gn(xn _xn—l) + (Gn - Gn—l)(xn—l _]rn_l Gxn—l)
+(1- O'n)(]rn Gxy, _]rn_l Gxp1).

It follows from (4.6) that

”yn _yn—ln < oullxn — %1l + low — 01| 101 —]rn_l Gxy1 ||
+ (1 - Gn)||]rn Gxn _]r,,,l Gxn—l”
= Gn||xn _xn—ln + |Un - 0n—1| ”xn—l _]'”n—l Gxn—l”

+ (L= o) [ %01 = %nl + |71 — 7| Mo

IA

”xn - xn—l” + |Un - Un—l' ”xn—l _]r,,,l Gxn—l” + |rn—1 —Tn |M0 (48)

Taking into account that 0 < liminf,,_, B, <limsup,_, ., B, < 1, without loss of generality,
we may assume that {8,} C [¢, o;,’]. Utilizing (4.5)-(4.8), we have

”Zn —Zp-1 ”

1
1- /3 [Q'n |Lf()’n) _f(yn—l)” + yn” Wnyn - Wn—l)’n—l” + 8n||]r,, Gyn _]r,,,,l Gyn—lll

=

+ |otn — | Hf(yn—l)” +1Yn = Y1 I Woucaduaa | + 180 = 8ualll,, Gyn—ln]
|Bn = Bual
+ 1%y — Bu-1%n1ll
(L= Bu-1)(1 = B) o

1
1-8 [O[n Hf(yn) _f(yn—l)” + Yl Wayn = Woyn-all + 8ull)r, Gy _]Vn—l Gyl

=

+ 1ot = @t |[F Ou) | + 19 = Vot Wonciyuca Il + 185 = 8l 1 Gy |

|ﬁn - ﬁn—ll

n Wn n— _Wn— n— 1 42 N1 o\ n— Pn-1Vn—
+ Vull WY1 1) 1”]+(1_,Bn—1)(1_,3n)”x Br1xnll
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=

1
1-8 |:anp||yn = V-1l + Yullyn = yuall + 571(”3’71—1 = Yull + [rno1 = Vn|M0)
— Pn

+lotn = ot | [f Q) || + 19 = Vi I Woncaca | + 18 = 8uca 1, Gy |

n-1
[Bn = Bl
+ )/nM!_O[)»i:| + m e — Bu-1%1 |l

“1°5, [(1 = Bu— au(1= ) 1yn = Yu |

+

1
1_[3 [5n|rn—1 _rn|M0 + |an _an—IHVO/n—l)”]

n-1
+ Vi = Vet I Wryua | + 185 — 81l ”]r,,_l Gynll + Van_[)\ij|
i=0

+ % ”an—lf(yn—l) + V-1 Wn—lyn—l +]rn,1 Gyn—l ||

n(l— 1
= (1 - 0[1(_7/3:))> 1Y = Yuall + m |:5n|rnl = ralMo + |oty =ty |V(an1)||

n-1
1Y = VualIWoca a4 180 = St Iy Gy |+ vuM | | Al}
i=0

+ % ||an—1f(yn—l) + Vn-1 Wn—l_yn—l +]r,,,1 Gyn—l ||

1
<y = yYnall + ﬁ |:5n|rn—1 = 1ulMo + oty — 0ty Hf(y;'l—l) ”
~—Fn

n-1
+ |V = Vulll Wn—lyn—l | + 16, — 8nl ”]1”;44 Gyn—ln + Van—[)‘-i:|
i=0

+ % ||0ln—1f()’n—1) + Yurt Wao1dn-1 + 1,y GYna ”

= ”xn _xn—ln + |Un - Un—1| ”xn—l _]rn_l Gxn—l” + |Vn—1 - rn|M0

1
1 [Snlrn_l —rulMo + lotn = ctuca | |[f () |
- :Bn

n-1
+ [V = Yulll Wi1¥yna | + 16, — 8pl ”]r,,_l Gyn—ln + Van_[)Lij|
i=0

% ”an—lf(yn—l) + V-1 Wn—lyn—l + 5n—1]rn_1 G_yn—l ”

< %y = x|l + |:|Un = Opotl + ety = a1 | + 1B = Bu-tl + [V = Va1l

n-1
+ 180 = 8pal + l_[)»ii|M1; (4.9)

i=0
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where sup, o (= (IF Ol + 1 Wogal + I, Gyiall + I = Jp, Gl + M + 2M0)} < My for
some M; > 0. Thus, it follows from (4.9) and conditions (i), (iii), (iv) that

lim (112, = 21|l = 1% — %41 [l) < 0.
n—0o0
Since 0 < liminf,_, o B, <limsup,_, B, <1, by Lemma 2.6, we get
lim ||x, —z,| = 0.
n—00
Consequently,
lim %41 — %, = lim (1~ B,)llz, — %, = 0.
n—00 n—00
Now we show that ||x, — Gx,|| — 0 as # — 0o. Indeed, by Lemma 2.3 and (4.1), we get

2
lyn = pI* = |on(n = p) + 1 = 0,) U, G — p) |
< oullxn —plI* + A = 0,) 1, G — pII* = 041 = 3,)g (1% — T, G ]|
< oullxn —P||2 + (1 —0,)llx, —P||2 —o,(l- Un)g(”xn _]rnGxn”)

= ”xn —19”2 _Un(l_an)g(llxn _]r,,Gxn”)' (4'10)
By Lemma 2.2(a), (4.1), and (4.10), we obtain

%1 — 21>
= etw(FOm) £ @) + Buln = B) + u(Wodia = ) + 84U, G — P) + 2a(f @) - ) |
< otn(FO) = £ @) + Bulotn = 1) + Y Woda = ) + 8403, Gy~ P)|*
+20,{f (p) = p,] (Xns1 - p))
< & [fOn) = @) + Bulla =PI + Vul W = pI> + 8411, Gy — P11
+20,{f (p) = p,] (Xns1 - P))
< P’ lyn = pI* + Bull%n =PI + Vullyn — PI* + 8,11 Gy — pII?
+20,{f (p) = P, J (K1 — p))
< @upllyn = pI? + Balln = pI* + Vullyn = pI* + Sullyn — pII?
+20,{f (p) = p,] (Xni1 — p))
= (1= Bu—an(L= ) lyn = pI* + Bullxn — PI* + 20(f (B) — p.T (i1 — P))
< (1= Bu— (= p)) [ 1% = pII* = 04 = 0:)g (1% = J1, Gxull) ] + Bulln — pII?
+20,(f (p) = p, ] (Kni1 — P))
= (1= a1 = p)%a = pI* = (1= By — w1 = p)) 0, (1 = 0:)g (1% — T, G5ull)
+ 20, (f (p) = p J (X1 — p))
< 1% = pI* = (1= B = a1 = p)) 01 = 3,)g (Il = ], Gx )
+ 20, | (p) - | 11 - plI,
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and thus

(1 -Bu—- a,(1- ,0))0‘,,(1 - Un)g(”xn _]rn Gxy, ”)
< N = pII* = na1 =PI + 206 | f (B) = p | 1%021 - P

< (Ilen = 2l + 101 = PI) 1% = st | + 20 [ () = p|| %031 — I

Since «,, — 0 and ||x,,1 — %,]| = 0, from condition (v) and the boundedness of {x,}, it
follows that

tim (|l ~ Jy, Gxull) = 0.
n—00

Utilizing the properties of g, we have

lim |lx,, -/, Gx, |l =0, (4.11)
n—0oQ

and thus,
lim ||y, — x| = lim (1 - 0,)||/, Gxn — %, = 0. (4.12)
n— o0 n—0o0

For simplicity, we put g = I1c(p — (2 Bap), uy = Hc (%, — pioBax,) and vy, = H (1, — 1 Bruty).
Then v,, = Gx,, for all # > 0. From Lemma 2.8, we have

ity — g1 = | e, = 112Bo) — Mc(p — paBop) |
< || = p = 2(Boxn - Bop) |

%5 = pII* = 22 (ot — &* 112) | By — Bopll?, (4.13)

IA

and

v —pII> = | My — 1Brun) — Mc(q — 11B1q) ||2
< ||ttn — g = 2 Busn - B19)|)?
< llun = ql* = 211 (o1 = k% 1) | Brus, — Bag®. (4.14)

By combining (4.13) and (4.14), we obtain

1V = plI* < lln = pII* = 202 (ct2 = k%112 | Boxy — Bop ||
—2p1(on = 1) | ity — Bigll. (4.15)

By the convexity of | - |2, we have, from (4.1) and (4.15),

llyn - plI*
< oullxn —pl* + L= o))y, Gxn — pI*

< oullxn —pl* + L= 0) v - plI?
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< oullxn =PI + (L= o) [1% — pII* = 22 (02 — k> 142) | Boxn — Bapl|®
=21 (o1 = k% 01) | Biuty — Brg|*]
= [l%n = plI* = 2(1 = 0,)) [ 12 (o2 — k% 12 |Box — Bop|?

+ pa(oa — k1) [1Brityn — Bag?],

and thus

2(1 - ) [ pa (o2 — k% 142) 1 Boxy — Bap|l* + pa (et — °101) | Buisy — Bigl|*]
< llxn = I = lyu - pI?

< (s =l + 11yn = P10 = -

Since ||x, —y,|| > 0 and 0 < u; < )‘:—5 fori=1,2, and {x,} and {y,} are bounded, we obtain

from condition (v) that
lim ||Byx, —Bop| =0 and lim ||Byu, — Bigq|| = 0. (4.16)
n—0o0 n—0o0

Utilizing Proposition 2.2 and Lemma 2.10, we have

et — ql* = | Hcltn — 112Baxs) = He(p — paBop) |
< (% — maBaxy — (p — n2Bap), J (- g))
= (0 = P, ] (ttn — @)) + pa(Bop — Baxn, ] (4, — q))
< 5 [l + el (o~ 0~ (o~ )])]

+ 2| Bap — Boxullllttn — 4,

which implies that
ltn = qI* < llxn = pII* = & (| %0 — 10 = 0 = @)|) + 2021 Bap = Boxullllsen — qll.  (4.17)

In the same way, we derive
2
lva=pI* = | ey — puBiy) = Mc(q — mBug) |
< (tn — 1Brty — (q - 11B1q),J (v - p))

= (n — q,J(vu — p)) + 1(B1q — Bittn,J (vss — p))

1
< E[nun—qnz + v = pI* = g2 ([|ttn = v + (0 - 9)])]

+ 1 lBig — Buiunlllve - plls

and we get

v = pI* <ty = ql* =@ (||ttn = v + (0 = @)||) + 211111B1g = Bausllllv, = pll. ~ (4.18)
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Combining (4.17) and (4.18), we get

vy —P||2 < [lxn —P||2 _gl(”xn —Up — (10—61)”) _gZ(”un —Vpt (p_('I)”)

+202||Bop — Baxul[ | tn — qll + 2p111B1g — Brutu |||V — pII.

By the convexity of | - |2, we have, from (4.1) and (4.19),

lyn — 12
< oullx —plI* + (1= 0,) )y, G, - pI?
< oulln = pII% + (L= 0) v — pII?
< 0yl —pI? + (1= 0) [ — pI* = &1 (|50 — s — (0 - 9)]))
~&(|[ttn —vu + (0~ @)||) + 202211 Bop ~ Bosiull 14—
+211|B1q — Butty | v - 1]
< lxn—plI> = M=o & ([| 20 —n — 0= 9)|) + @(|un = v + - D|)]

+242|Bap — Baxu ||t — gl + 2p111Brg — Brutu |||V — pI,

and hence

1= on)g([#n —n ~ @ - D|) + & ttn ~ vu + (0~ 0)])]

(4.19)

< lxn =PI = 175 = PI* + 20211Bop = Bok |14 = gl + 211111Baq = Butull|v, = |

< (I%n =l + 11y =PI I%n = yull + 24021 Bop = Bl 1 = g

+2u11Brg = Biuyl[|vs - pll.-

From (4.12), (4.16), condition (v), and the boundedness of {x,}, {y,}, {#,}, and {v,}, we

deduce
i (-0 - D) =0 andim (s v+ (-] -o.
Utilizing the properties of g and gy, we obtain
lim [, 1, (- )] =0 and lim i, -, + (- )] 0.
Hence,
1% = vull < %0 =t = 0 = || + |t = v+ - q)| > 0 asn— oo,
that is,
limlx, — Gyl = 0.
Next, we show that

lim [|J;, %, —%,| =0 and lim ||W,x, —x,| =0.
n—00 n—oo

(4.20)

(4.21)
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Indeed, observe that x,,,; can be rewritten as
KXn+l = ar{f(yn) + BuXn + Vn Wnyn + ‘Sn]rn Gyn
Van nt 6n]r,,,G n
= f V) + Bun + (Y + 81) J )

Yu t 8
= al’lf(yﬂ) + ﬂﬂxn + en‘%n:

(4.22)

where e, =y, + 8, and z,, = W Utilizing Lemma 2.4 and (4.22), we have

(196241 —P||2 = ”an(f(yn) —P) + Bu(xn — p) + €u(2, — p) ”2

< @u[f ) = || + Bullx = pI? + €nll2 — pI* = Buengs (12 — 241l
= @ |[f o) = p||* + Bullzn — pII> = Buengs (112, — xall)

VaWodin + 8, Gyn |?
" Yt Oy
2 ~
= o |[fn) = || + Bullxn =PI — Buengs (12, — %)
Y W)+ 0, Gy
+ e}’l nyn — + 1y n -
Vn + 6n In=P Vn + On R
2 ~
<oy Hf(yn) —P” + ﬁn”xn —P||2 - ﬂnengS(”Zn _xn”)
Y, )
+ | ———Wyn - plII* + ——11,,, Gy — pII?
Vn +6n Vn + 6n

< au|f o) = p|* + Bulln = pII> = Buengs (112 — x4ll)

Sn

Y ya-pll +
e, PN S,

< aulfO) = || + Bullxn — pI* = Buengs (12, — xall)

" \xy - pl +
Va8 Vi + On

= &, |[f5n) - p|” + (1= )0 =PI = Buengs (120 — x411)

< @, |f o) = p| + 10— pII% = Buewgs (1120 — %l

+ey, lyn —P||2

n

+ ey,

2
%, — pli

which implies that

Buengs (120 —%ull) < & |[f ) = 2| + 1% = I = 1201 = I

2
< au[f ) = p||” + (60 = 21l + %001 = 21 160 = X |-
Utilizing (4.4), conditions (i), (ii), (v), and the boundedness of {x,} and {f(y,)}, we obtain
nlirlgogS(||Zn - xn”) =0.
From the properties of g3, we have

lim ||z, — x,| = 0.
n—00
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Utilizing Lemma 2.3 and the definition of z,,, we have

~ Van n +5n]rnG n 2
12, - pI> = ‘ Y P _
Vi + Op
¥ 5 2
= - Wn n— “ 1 G n—
‘ J/Han( Yn—P)+ yn+8n(]” Vn = D)
Vn 2 Sn 2
< W,y — Gy —
=, 1Wuyn —pll” + S 1)r.Gyn = pl
)
- (yiig)zgéL(”]rnGyn - Wnyn”)
VO
<Ilya—pl* - m@(llbﬁ% = Wuynll)
Yuln
< lxn—pl* - mg4(||fr,,Gyn - Wouynll),
and thus
Vubn

mgél(”]rnGyn - Wnyn”) < |lxn —P||2 - Iz, —P||2
< (I = 2l + 120 = P 1% = Zall.

Since {x,} and {z,} are bounded and ||z,, — x,|| — 0 as # — 00, we deduce from condition
(ii) that

lim g4(|| Wn_yn _]rnGyn”) =0.
n—0o0
From the properties of g4, we have
lim | W,y = J»,,Gyull = 0. (4.23)
n—00
On the other hand, x,,,; can also be rewritten as
Xp+l = ar(f(yn) + ﬂnxn +Vn Wnyn + 5n]rn Gyn

Olr(f()’n) + Sn]rn G}/n

o, + 6,

= ,ann + Vn Wnyn + (an + (Sn)

= Iann + Vn Wnyn +duZy,

anf()’n)*%]rn

whered,, = a, + 8, and z,, = i, G, Utilizing Lemma 2.4 and the convexity of || - |2,

we have
%001 = pII?
= ”/Sn(xn —P) + Vn(Wnyn —P) + dn(én —P)||2

< Bullxn _P”2 + Yl Wadn _P”2 +dy|Z, _P||2 - ,BnyngS(”xn - Wnyn”)
ar(f(yn) + ‘Sn]r,, Gyn _

oy + 6,

2

= Bullxn —P||2 + Vull Wayn _17”2 +d,

Page 20 of 67
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- ,Bnyngs(”xn - Wun ”)

2

ay, 8
= Bullxn _P||2 + Yull Wadn —P||2 +dy, @, +0, (f()/n) —P) + @, +0, 1,Gyn =) ”
_:BnyngS(”xn - Wnyn”)
< Bulltn = I+ Vallyn - pI2 + d| —2—[f ) - p| + O 7y, Gy = pII*
- oy, + 68, oy +68, "
_ﬂnyngS(”xn - Wnyn”)
oy 2 )
< Bullxn =PI + Vullyn — I + If o) =p||” + —=llyu - pI?
oy + 8y oy + 8y

_:BnyngS(”xn - Wnyn”)
=y Hf()/n) _}7”2 + (B + vl _P||2 + 8|, —P||2 - ﬁnyngS(”xn - Wnyn”)
= o [f0) = || + (1 = )12 = DI = B ngs (1150 = Wiryinl)

<a,[f o) =p|* + 1% =PI = Buyiugs (11 = Wiyall)»

which implies that

Bungs (160 = Woyll) < @ |[f ) = 2| + 1% = pII> = %001 = pII?

2
<y Hf(yn) —PH + (”xn —P|| + ”xn+1 —P||) "xn —Xn+1 ”
From (4.4), conditions (i), (ii), (v), and the boundedness of {x,} and {f(y,)}, we have
lim gS(”xn - Wnyn”) =0.
Hn—>0Q
Utilizing the properties of g5, we have
lim [, — Wiyl = 0, (4.24)
n—0o00
which together with (4.12) and (4.24), implies that

1€ = Wikl < 1% = Wyl + | Wayn — Wil

5 ”xn - Wnyn” + ”yn _xn” -0 asn— oo,
that is,
lim ||, — W,x,|| = 0. (4.25)
n— 00
‘We note that

|E _]r,,xn”
<%, - Wnyn” + | Wnyn _]rnGyn” + ”]rnGyn _]rnGxn” + ”]rnGxn —]rnxn”

< %n — Wouynll + | Wiy _]rnGyn” + lyn = xall + 1Gxy — %]l
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Thus, from (4.12), (4.21), (4.23), and (4.24), it follows that
lim ||x, = J;,%4] = 0. (4.26)
H—>0Q

Now, we claim that lim,,_, » ||x, — /x| = O for a fixed number r such that ¢ > 7> 0. In
fact, using the resolvent identity in Proposition 2.2, we have

r r
]r<_xn + (1 - _)]rnxn) _]rxn
'n T'n
r
f (1 - _) ”xn _]rnxn”
T'n

=< ”xn _]ry,xn”' (427)

”]rnxn —Jxull =

Thus, from (4.26) and (4.27), we get

”xn _]rxn” E ”xn _]r,,xn” + ”]rnxn _]rxn”
5 ”xn _]r,,,xn” + ”xn _]rnxn”

=2\, — Jp,%ull > 0 asn— oo,
that is,
lim ||xn _]rxn” =0. (428)
n— 00

Suppose that 8, = 8 for some fixed 8,y € (0,1) such thata,, + 8+ ¥, + 8, =1 foralln > 0.
Define a mapping Vx = (1 — 61 — 6)].x + 6 Wx + 0,Gx, where 01,0, € (0,1) are two con-
stants with 6; + 6, < 1. Then, by Lemmas 2.5 and 2.13, we have Fix(V) = Fix(J,) NFix(W) N
Fix(G) = F. For each k > 1, let {px} be a unique element of C such that

Pk = %f(lﬂk) + <1— %)Vplo

From Lemma 2.9, we conclude that py — g € Fix(V) = F as k — co. Observe that for every
n, k

%41 — Wprll
= |len(f 0n) — Wok) + B@n = Wpr) + Vu(Winyn = Wpi) + 8,05, Gy — Wi |
< a|[f ) = Wore| + Bllxn — Wkl + vl Woyn — Wikl
+ 8 (1171 Gy = Wiyl + Wiy — Wil
= | f ) = Worc|| + Bllw = Wil + (Vi + 8 | Woayw — Wil + 8,171, GYn = Winga
= |[f ) = Wk || + Blixn = Worll + (1=t = B) | Wiy — Wk
+ 8ull]r, G = Wil
< |[f rn) = Wore| + Bllocw — Wikl
+ (1= atw = B[ 1 Woyn = Wopicll + 1 Wapk = Wil ] + 81171, GYn = Wingil
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< @ |[f ) = Wore|| + Blln = Wl + (L= = B) [l = Pl + 1 Woupk = Will]
+ 8ull/ry GYn = Waynll
< au|lf i) = Wire| + Bllxn — Wkl
+ (L= B)[1%n = prll + 19 = %all + | Woapr = Wpill] + 8ull], Gy = Wil
= Ay + Bllxn — Wpicll + (1= B)llxn — prlls (4.29)
where A, = ay |[f (yn) = Wpill + (L= B)Ulyn =%l + | Wopie = Wpicll] + 8,11, Gyn — Wiayu . Since
limy, 00 @ = 1iMys o0 1Y = Xl = iy 00 | Winpk — Wpill = limys o0 11, GYn = Winynll = 0,

we know that A, — 0 as n — o0.
From (4.29), we obtain

11 — Wik
< (Bl — Wakll + (1= ) lln — pill)
+ Au[2(Bl1%n = Wikl + (L= B) 12 — pel) + A
= B2 — Worll> + (L= B2 — pill? + 28(L = B) 1% — Wikl 120 — picll +
< B2l — Wokll> + (1= B)* 1 — pill?
+ B = B) (1% — Woll* + 10 — picll®) + T
= Bllxn = Wpill® + (1= B)lI%n — pill” + T, (4.30)

where 7, = A, [2(Bl%, — Wpkll + (1= B)lxn — pill) + Ap] — 0 as n — oo.
For any Banach limit u, from (4.30), we have

Wnlln = Worll? = 1% — Worll? < wallx, — pell®. (4.31)
In addition, note that

%5 — Gpll® < llxn — Gy + Gxy — Gpi||®
2
< (I1%n = Goxull + 1% — pill)

= |l%n = pill + %0 = Gaull (20160 = picll + 1% — Gxall),
and

”xn _]rpk”2 =< ”xn _]rxn +]rxn _]rpk||2
2
< (Ioen = Jrull + ll2¢n — picl)

= llotn = picl® + lo6n = Jr6ull (211% = pll + 60 = Jr6ull).-
It is easy to see from (4.21) and (4.28) that

nlln = Gpill* < pnllxn — pill® and  pullxn = Jopicl® < ponllxen — picll®. (4.32)
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Utilizing (4.31) and (4.32), we have
1l = Vol = ]| (1= 61 — 62) (@0 — k) + 613 — Wik + (% — G|
< (1= 61— 0)iullxn = Jopill* + 01l — Worcll* + Ozt — Gl

< Wnllxn — prll® (4.33)

Also, observe that

Xn — Pk = %(xn —f(Pk)) + (1 - %)(xn - Vi),
that is,
1 1
(1 - z)(xn - Vpi) =%, — pr - %(xn —f(Pk)) (4.34)

It follows from Lemma 2.2(ii) and (4.34) that
1\’ ) , 2
e L 7 R e N %(xn =P+ pr = f (i), (% — pi))

_ (1 - %) I~ 2ul + 2 (00) ~ T3~ ) (4.35)

So by (4.33) and (4.35), we have

1\? 2 2
1——) pnllxn _pk”2 > (1= - Jpnllxn _17k||2 + _HnV(pk) - ProJ (% _pk)>,
k k k
and hence,

1 2
2z Honlln -pel? = %Hn(f(pk) — pioJ (e = pi))-

This implies that
1 2
ﬂﬂn”xn -pill” = Mn(f(pk) - PioJ (% —Pk)>- (4.36)

Since px — ¢ € Fix(V) = F as k — 00, by the uniform Fréchet differentiability of the norm
of X, we have

nlf(q) = q,] (xn — q)) < 0.

On the other hand, from (4.4) and the norm-to-norm uniform continuity of / on
bounded subsets of X, we have

lim |(f(q) = q.) (ens1 = @) = (f(q) = @,] (6 = )| = 0. (4.37)
Utilizing Lemma 2.14, we deduce from (4.36) and (4.37) that

limsup(f (q) - q,J (x» — q)) < 0.

n—0oQ0
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Finally, we show that x, — g as n — o0. It is easy to see from (4.1) that
190 = qll* < oull%n — qlI* + A = W) I, G — 11> < llxn — qll*.
Utilizing Lemma 2.2(a), from (4.1) and the convexity of || - ||? we get

%1 — g1

= |etn(f D) = £ (@) + Bul@n = @) + Va Wiy = @) + 8,01, Gy — ) + @ (f (@) — 9) |

< [ln(Fm) = £(@) + Buln = @) + va(Wog = @) + 8,01, Gy — )
+20(f (@) = @] (na1 — 7))

< anf ) —F @ + Bulltn = I + Yl Wy — @11 + 8411, Gy — q
+20,{f(q) = 4,] (%na1 — 9))

< anpllyn —qll* + Bull®n — qlI* + Vullyn — gl + Sullys — ql®
+20,(f (@) = @] (na1 — 7))

< anplln = qll” + Bullxtn — gl + vl — ql* + 8ulls — gl
+ 20, (q) = 4,] (a1 — )

= (1= an(L = p)) 1% — qlI* + 20{f (@) — 4] K1 — q))

p)z(f(Q) - ]('-Ir_]f:nﬂ - q)) )

= (1= otu(1 = p))ll%s — glI* + (1 - (4.38)
Applying Lemma 2.7 to (4.38), we obtain x, — ¢ as n — oco. This completes the proof.
O

Corollary 4.1 Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space X and I1c be a sunny nonexpansive retraction from X
onto C. Let A C X x X be an accretive operator such that D(A) C C C (.o R + rA). Let
V. C — C be a-strictly pseudocontractive mapping and f : C — C be a contraction with
coefficient p € (0,1). Let {T;}35, be an infinite family of nonexpansive mappings from C into
itself such that F = (o Fix(T;) N Fix(V) N A™0 # (). Suppose that Assumption 4.1 holds.
For arbitrarily given xo € C, let {x,} be the sequence generated by

Yn = O0pXp + (1 - Un)]rn((l - 1)1 + lV)x,,,

(4.39)
K1 = Anf W) + Bun + Ya Won + 8uJ1, (L= DI +1V)y,, Vn=0,

where 0 <l < -5, W, is the W-mapping generated by (2.1). Then
(@) limy— oo [#ns1 = xall = 0;
(b) the sequence {x,}32, converges strongly to some q € F which is a unique solution of
the following variational inequality problem (VIP):

(-f)a.J(q-p)) <0, VpeF,

provided B, = B for some fixed § € (0,1).


http://www.fixedpointtheoryandapplications.com/content/2014/1/29

Ceng et al. Fixed Point Theory and Applications 2014, 2014:29
http://www.fixedpointtheoryandapplications.com/content/2014/1/29

Proof In Theorem 4.1, we put By =1 -V, B, =0 and p; = where 0 </ <
(3.1) is equivalent to the VIP of finding x* € C such that

(le*,](x—x*)) >0, VxeC.

Page 26 of 67
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K

In this case, B; : C — X is a-inverse strongly accretive. It is not hard to see that Fix(V) =

VI(C, By). Indeed, for [ > 0, we have

ueVI(C,B) & (Buu,J(y-u))>=0 VyeC
& (u—le—u,](u—y))zO VyeC
< u=Ilc(u-IBu)
& u=Ilc(u—Ilu+1Vu)
& (u—lu+qu—u,](u—y))ZO VyeC
& (u—Vu,](u—y))fO VyeC
& u=Vu
& ueFix(V).

Accordingly, we have F = (5, Fix(T;) N 2 N A0 = (N5, Fix(T;) N Fix(V) N A7'0, and

ITc(I = pB) (I — 2 Bo)xy, = I (I - p1Br)x, = Hc((l—l)xn +1Vxn) = ((1—1)I+1V)xn.

Similarly, we get

O - B (I — paBo)yy = (A= DI +1V)y,.

So, the scheme (4.1) reduces to (4.39), and therefore, the desired result follows from The-

orem 4.1.

O

We give the following important lemmas which will be used in our next result.

Lemma 4.1 Let C be a nonempty closed convex subset of a smooth Banach space X and B, :

C — X be )\;-strictly pseudocontractive mappings and o;-strongly accretive with oa; + A; > 1

fori=1,2. Then, for u; € (0,1],

1-o; 1
||(1—ul-Bl-)x—(1—mBi)y||5{ Aé{l+(1—ﬂi)<1+)\—)}||x—y|l, v,y eC,

1 12

fori=1,2. In particular, if 1 — %(1 -/ 1;%) < u; <1, then I — ;B; is nonexpansive for

i=1,2.

Proof Using the A;-strict pseudocontractivity of B;, we derive for every x,y € C

2| (= B)x— (I = By||* < ((I - B)x— (I - By, J(x - )

< | -B)x- T -B)y|llx-yl,
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which implies that
1
| = Bi)x— (1= By <~ llx =l
Hence,
1Bix = Biyll < [ (I = Bi)x — (I = By + llx -yl
=11 ! [ l
+— |z =yl
= Py y
Utilizing the o;-strong accretivity and A;-strict pseudocontractivity of B;, we get

2| (= Bx— (L= B)y||” < lx—yI1* = (Bix — By, J(x — 3))

< (1-a)lx-yl*

So, we have

[~ Box— =By = [*> X el

Therefore, for u; € (0,1], we have

17 = piBi)x — (I — w:By)y| < | (I = Bi)x— (I - By)y| + (1 — 1) |1 Bix — By

1—0(;
= Py

_ 1—0(,‘ 1 1 1
—{ Y +( —m)( +A—i>}llx—yll.

Since 1 - %(1 - %) < u; <1, it follows that

A

1
le =yl + Q= pa){ L+ — fllx =yl
i

l—C(L'

1-u)1 LA
+(1-p)(1+— .
Iy Hi )

This implies that I — u;B; is nonexpansive for i =1, 2. g

Lemma 4.2 Let C be a nonempty closed convex subset of a smooth Banach space X and
I¢ be a sunny nonexpansive retraction from X onto C. For each i = 1,2, let B;: C — X be
A;-strictly pseudocontractive and o;-strongly accretive with a; + A; > 1. Let G: C — C be
the mapping defined by

G(x) = Hc[Mc(x — uaBax) — By c(x — puaBox)], VxeC.

If1- 1:\; (1- %) <u; <1,then G:C — C is nonexpansive.
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Proof By Lemma 4.1, I — u;B; is nonexpansive for i = 1,2. Therefore, for all x,y € C, we

have

|G@) - G| = |[Tc[Mcx— paByx) — 1By Mc(x — paBox) ]
— [y - 12Bay) — B c(y — 12Boy)] |
= | Acl = B (I = 12 Bo)x — Ml = By (I - 2 By)y |
< || (7 = juB) (I - paBo)x — (I = B (I = 2 Ba)y |
< [ = paBy)x — Ml = paBy)y||
<[ = 12Bo)x — (I = 2 Ba)y|

< llx-yl.
This shows that G : C — C is nonexpansive. This completes the proof. g

Theorem 4.2 Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gdteaux differentiable norm. Let I1c be a sunny nonex-
pansive retraction from X onto C and A C X x X be an accretive operator in X such that
DA)cCc (.o RU +rA). Foreach i =1,2, let B; : C — X be A;-strictly pseudocontractive

and a;-strongly accretive with a; + A; > 1 and f : C — C be a contraction with coefficient

>0

p €(0,1). Let {T;}55, be an infinite family of nonexpansive mappings from C into itself such
that F = (5, Fix(T) N 2 NAT0 # B with 1 - -1~ /5%) < w; <1 for i = 1,2. For arbi-

1+4;
trarily given xy € C, let {x,} be the sequence generated by

Yn = UnGxn + (1 - Gn)]r,, Gxn;
Xn+l = anf(yn) + ,Bnyn + Vu Wnyn + an]r,, Gym Vn >0,

(4.40)

where W, is the W -mapping generated by (2.1). Assume that Assumption 4.1 holds except
condition (iii), which is replaced by the following condition:

(i) 3210 = 0l + Loty = o + 1By = Buoa| + 1V = Vit | + 185 = 85a]) < 00
Then

(@) limy— oo [%ns1 = xall = 0;

(b) the sequence {x,}32, converges strongly to some q € F which is the unique solution of

the following variational inequality problem (VIP):

(U-f)aJ(q-p)) <0, VpeF,
provided B, = B for some fixed S € (0,1).
Proof Take a fixed p € F arbitrarily. Then we obtain p = Gp, p = W,,p and J,, p = p for all

n > 0. By using Lemma 4.2 and the same argument as in the proof beginning of the proof

of Theorem 4.1, we have {x,}, {y.}, {Gx,}, {Gy,}, {f(y.)} are bounded sequences. Let us
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show that ||x,41 —x,|| = 0 as n — oo. In fact, repeating the same argument as those in the

proof of Theorem 4.1, we obtain

”]rnGxn _]rn_l Gxpall < %n-1 = xull + |11 — 10| Mo,

(4.41)
”]rn Gyn _]Vn—l Gyn—ln = ”yn—l _yn” + |rn—1 - V,,|M0, Vn = 1:
where
1
sup g (”]rn Gxn - Gxn—l” + ”]7;44 Gxn—l - Gxn”) <M
n>1
and
1
SUP g (”]r,,, Gyn - Gyn—ln + ”]r,,,l Gyn—l - Gyn”) < MO;
n>1
for some My > 0. By (4.40) and simple calculations, we have
Yn—Yn-1= 0,(Gx, — Gxy1) + (0 — 0,,21)(GX 1 _]r,,_l Gxy1)
+ (1 - an)(]rn Gxn _]rn_l Gxn—l)'
It follows that
”_yn _yn—ln < UnHGxn - Gxn—l” + |Un - Un—ll ”Gxn—l _]rn,l Gxn—l”
+ (1 - Oln) ”]rn Gxn - ]r,,,l Gxn—l ”
< oullxn —%uall + low — 01| |G _]rn,1 Gxy ||
+(1- Gn)(||xn—1 =%l + |1 = rn|M0)
= ”xn - xn—l” + |Un - Un—1|||Gxn—1 _]rn_l Gxn—l” + |rn - rn—l|M0' (44'2)
Repeating the same argument as in (4.7) in the proof of Theorem 4.1, we get
n-1
IWoyn1 — W1yl < Ml_[ A;, for some constant M > 0. (4.43)
i=0

A

Considering condition (v), without loss of generality, we may assume that {8,} C [¢,d] for
some &,d € (0,1). From (4.40), it follows that x,,,1 can be rewritten as

Xps1 = Bu¥n + (1= Ba)zn (4.44)

where z, = % (y”)”’”f(j 7‘3yn ntonlnn Utilizing (4.3) and (4.42) we have

”Zn —Zp-1 ”

anf(yn) +Vu Wn_yn + 6n]rn Gyn _ an—]f(yn—l) + Vn-1 Wn—lyn—l + (Sn—l]rn,l Gyn—l
1- :Bn 1- ﬂnfl
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_ Xn+l — ﬁnyn _ Xy — ﬂn—lyn—l
1- ﬂn 1- ﬂn—l
_ Xn+l — ﬂnyn _ Xn — ,Bn—lyn—l Xn — ﬁn—lyn—l _ Xn — ﬂn—lyn—l
1_:371 1—/3,, 1_,371 1_,3;1—1
< Xp+l — ,Bnyn _ Xn — ﬁn—lyn—l Xn — ﬁnflyn—l _ Xn — ﬁnflyn—l
- 1_ﬁn 1_/3;1 1_ﬁn 1_/3;1—1
= —_1 ||xn+1 = Buyn — (%0 — ﬂn—lyn—l)” + —_1 - _1 1% — Bu1¥Vn-1ll
1 ,Bn 1 ,Bn 1 ﬂnfl
1 |81 — Bu-1
= 1 —/3;1 ||xn+1 ,Bn_yn (xn ﬁn—lyn—l)H + (l—ﬂn_l)(l—ﬂn) ”xn ﬂn—lyn—ln
B 1
- 1- ﬂn
X ”anf(yn) +Vu Wnyn + Sn]rn Gyn - an—lf(yn—l) = Vn-1 Wn—l_yn—l - Sn—l]rn_l Gyn—l H
|:8n - ﬁn—1|
+ %y — Bu-1¥nll
(1= Bu)1 = B) o
1
=< 1_ ﬁ [Ol,, “f(yn) _f(yn—l)” + yn” Wnyn - Wn—l)’n—l” + Sn”]rn Gyn _]r,,_l Gyn—l”
+ lotn = et [ On-0) |+ 17 = Vuct W1y Il + 185 = 81115, Gy ]
|Bn = Bual
+ 1% = Bu-1yul
A= Br)@—p) T
1
= 1-8 [Olnp“yn = Yn-1ll + Vull Weyn = Wyl + (Sn[”yn—l =Yl + |11 = rnlMO]
+ lay — ey |Lf()’n—1)|| + Vi = Ve Il Waryuall + Yull Won-1 = W1 yua |l
1Bn — Bul
5n_8n— r_Gn— 1 o N1 o\ T Pr-1)n-
180 = Bucall 2 Gyl + G st o = Bucagal
1
=< 1-8 |:(Ol,,,0 + Vo + 8 1Yn-1 = Yull + 171 — 1l Mo + |ty — 001 Hf(yn—l)”

n-1
+ |Vn - yn—l| ” Wn—lyn—ln + J/an_[)w + |8n - (Sn—ll ”]rn,l G_yn—1||j|
i=0

¥ |ﬁn - ﬁn—1|
(1 - ﬂn—l)(l - IBn)

< (1 - M) 19 = Vs |l + #[m_l —1alMo + loty = ctua | |[f () |

1 = Br-1yn- l

1- 13” 1- :371
n-1
1= Vart N Wocadct L+ 18 = 8, Gy ] + M ] [ 1
i=0
|,3n - ﬁn—1|
|l — ,Bn— -1 ll- (4.45)
(= )1 — ) o

By simple calculations, (4.44) implies that

Xl — Xy = ,Bn(yn _yn—l) + (,Bn - ,Bn—l)(yn—l - Zn—l) + (1 - ﬁn)(zn - Zn—l)'
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This together with (4.42) and (4.45) we have

12241 = %l

< Bullyn = yn-1ll +1Bn = Buallyn-1 = Zuall + (L= Bllzn = zn-all
(1-p)a
= ,Bn”yn _yn—lll + |/3n - lgn—1| ||yn—1 - Zn—l” + (1 - ,371): (1 - Tﬂn ”_yn _yn—IH

1
+ 1-5, [17-1 = rulMo + lotw = ot | |[f Q) || + 1V = Vit [ Wino19a |
- n

|,3n - ,Bn—1|

Mlen—ﬁn_lyn_l||]

n-1
185 = 8na [y Gy ll] + M [ 2i +
i=0

S (1 - (1 - P)Oln) ”yn _yn—ln + |,3n - ,Bn—1|||yn—1 - Zn—l” + |rn—1 - rn|M0
+ lotn = ot | |[f Out) || + 19 = Vit Woncrdnea |l + 180 = 8u-a [,y Gy |

n-1
|ﬁn ﬁn 1|
M| | ri+ n — Pn-1Yn-
+ || ]-ﬂnl”x Bu-1ynll

< (1 - (1 - p)an)[”xn _xn—IH + |Un - Un—ll ||ny,_1 _]r,,_l Gxn—l” + |rn - rn—l|M0]

+1Bn = Bualllyn-1 — zn-1ll + 111 — ralMo + |y — 1] ”f(yn—l) ”
n-1
1= Vet W9t |+ 18 = S5t Gyt |+ M [
i=0
|,Bn ,Bn 1| ”
1-8,1

= (1 -(1- p)an)”xn = x| + (|0n = 0opal| + ey — ol + 1By — Byl

A 1f Wn-1) + Ve Wiy + 3n-1r,1 GYn1 ”

n-1

1Y = Vil + 180 = o + I = ra )M + M ] 2
i=0

Where T supn>0{”f(yn)” + Wyl + ”]rnGyn” + |Gx,, - ]rnGxn” + |yn = zall + 2My} < M
for some M > 0. By Lemma 2.7 and conditions (i), (iii), and (iv), we conclude that (noting

that0<A; <b<1,Vi>0)
lim ||x,41 — %, = 0. (4.46)
n— 00

Next we show that ||x,, — Gx,|| — 0 as n — oco. Indeed, utilizing Lemma 2.3, we get from

(4.40)

13, = pI? = || 04(Gxp = p) + (1 = 0,)(J,, G — p) ||
< oullGxy, —P||2 + (1 =), Gxy —P||2 —op(l- Gn)g(||Gxn _]rnGxn”)
< oullxn —plI* + A = ) %0 = pI* = 04 (1 = 0,)g (1 Gy = T, Gxall)

= |lxn = pII* = 0u(1 - 0,)g (1 Gx, = J, G ) (4.47)
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By Lemma 2.2 (a), (4.40), and (4.47), we have

%1 - pII?

= @n(FOm) = £ ®)) + B = D) + Ya( Wiy = D) + 8,0, Gy — 1) + 2 (f0) - ) ||*

< eta(FO) £ @) + Buyn = 2) + ¥u(Woy = 1) + 841, Gy~ )|
+20,{f (p) = p,J (X1 — p))

< @ufO) £ @) + Ballyn =PI + ¥l Woys =PI + 8411/, Gy — pII?
+20,{f (p) = p,] (Xns1 - P))

< aupllyn =PI + Bullyu = I + Vullyw = I* + 8ullyn - pII?
+ 20, [f () = p| %1 — P

= (1= a1 = 0))lyn = p1I* + 20| () - p | I121 - Pl

<y = pII* + 20 |[f (p) = | 191 = Pl

< lxw = pII* = 041 = 0,)g (I Gxw — J1,, G ) + 20t |[f (0) = p | %1 — P,

which yields

o,(1— cr,,)g(|| Gxy, — Jy, Gxy ||)
< %0 = pII* = 1%ns1 — pI* + 200 [ (0) = p | %1 =

< (I = Il + 1941 = PI) 160 = X1 | + 20 |[f @) = || 156041 = P

Since «,, — 0 and ||x,,1 — %,]| = 0, from condition (v) and the boundedness of {x,}, it
follows that

Tim (G ~Jy, Gxull) = 0.
Utilizing the properties of g, we have
Tim [|Gxy — y, Gty || = . (4.48)
On the other hand, observe that x,,; can be rewritten as

Xp+l = ar(f(yn) + /Snyn + Vn Wnyn + 8n]r,, Gyn

ann n +5n]rnG n
:anf(yn)+ﬂnyn+(yn+8n) JJ]/ +3 %

= ouyf OUn) + BuVn + €nZns (4.49)

where e, =y, + 68, and z,, = W By Lemma 2.4, (4.3), and (4.49), we have

(196241 —P||2 = ||Otn(f()/n) —P) + Bu(Vn —p) + en(Z, — p) ”2

< @ulf ) = || + Bullyn — I + eallZn — pII> = Buengi (122 — yull)
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= &, [f ) = p| + Bullyn = 2II* = Buengi (1120 = yull)
te, Vanyn + (Sn]rnGyn —p >
Vi + 6n

= &, [f ) =P + Bullyn = 2II* = Buengi (112, = yull)

2

Vn Oy
(Wuyn —p) + Ur.Gyn —p)
Yn+ On Yn + On

< aulfO) = || + Bullyn — PI> = Buengi (125 — yull)

¥, 8
- ”Wnyn —19||2+ -
_yn"'an Vn+8n

< au|lfO) = || + Bullyn — > = Buengi (125 — yull)

+ €

N

+ ey

”]r,, Gyn —19||2:|

Vn 2 8y 2
te —pl*+ -
nl:yn s ¥ = Pl ot 5, ly» = pll }

= &, [f5n) —p|” + A= )y — I = Buengi (1120 = yull)
< au|f0n) = | + 130 = PI? = Buengi (1120 = yul)
< au|[f ) = || + 120 = PI* = Buengi (12 =yl

which implies that

Breni (122 = yull) < ctulf ) = 2| + 120 = pI? = 01 = pII?

2
< [0 = p[* + (120 =PI+ Wes = 1) 6 = il
Utilizing (4.46), conditions (i), (ii), (v), and the boundedness of {x,} and {f(y,)}, we get
Tim g1 (112s - yul)) = 0.
From the properties of g, we have
lim 12, — y,ll = 0. (4.50)
n— 00

Utilizing Lemma 2.3 and the definition of z,, we have

o —pl? = | 2ot ST G I*
" Vi + On
2
| W= p) + =07, Gy p)
Yt 8y Ty N, IR
Vn 2 Sn 2
< W,y — Gy —
_W+%H,szI+W+%an pll
YnOn
RN 1 G n = Wn n
(W+%P@0Uny yall)
VuOn
=< ”yn —P||2 - ﬁgZ(”]rnGyn - Wnyn||)7

+ 38,
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which leads to

Yun .
ng(lenGyn = Woyull) < lyn —pI? = 12, - pII?
n n

< (Iyn =2 + 120 = Pl Y0 = Zall-
Since {y,} and {2,,} are bounded, from (4.50) and condition (ii), we deduce
lim gZ(” Wnyn _]rnGyn”) =0.
n—0Q
From the properties of g, we have
nlingo | Woyn _]rnGyn” =0.
Furthermore, x,,,; can also be rewritten as

Xp+l = ar(f(yn) + ﬂnyn +Vn Wnyn + 8n]r,, Gyn
ouf Vn) + )y, Gy

o, + 6,

= ,Bnyn + Vanyn + (an + (Sn)
= BuYn + YaWnln + dnZn,

anf()’n)‘*‘&«]m

where d,, = a,, + 8, and z,, = - Gy, Utilizing Lemma 2.4, the convexity of

and (4.3), we have

01— 212
= B2 = 1) + Y Woy = p) + du(Z - p)|*
< Bullyn =PI + ¥l Wods =PI + dullZ = PI* = Buugs (190 = Wall)
nf V) + 8,J1, Gyn

o, + 6,

2

= Bullyn _P||2 + Yull Wi _P||2 +d,

- IBnJ/ngfi(”yn -~ W ”)

Uy

O
(fom) —p) + U, Gyn —p)

= Bullyn _P||2 + Vull Wiy _P||2 +d,
oy, + 6,

o, + 6,

- :Bnyng?)(”yn - Wauyn ”)
3y

< Ballys = pI* + yullys - pII? +dn[a
_:Bnyng3(||yn - Wnyn”)

<oy Hf(yn) —P”2 + (ﬁn + Vn)”yn —P||2 + Bn”yn —P||2 - ﬂnyng3(”yn - Wnyn”)

=0y “f()’n) _P”2 + (1= o)1y —P||2 - ﬂnyng3(||yn - Wn_yn”)

<@ [f o) = p” + Iyn = P12 = Buvags (19 = Wayal)

< aufon) = p|* + 120 = PI? = Buvugs (13 = Woyall),

Page 34 of 67
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2

oy 2 _ 2
n+ 0y Hf()/n) —p” " o, + 8, Wy Gy =Pl i|
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which implies that

Buvn&s (190 = Wuyall) < @ [f ) = 2| + 16 = P11 = %01 — 1>
< aulf O) = | + (120 =PIl + et =PI 196 = X |-

From (4.46), conditions (i), (ii), (v), and the boundedness of {x,} and {f(y,)}, we have
Tim g3([lyn — Waynll) = 0.
Utilizing the properties of g3, we have
Tim [y, ~ Wl =0. (4.52)
Thus, from (4.51) and (4.52), we get
170 =10 GYull < 1Yn = Wadnll + IWayn =JruGynll = 0 as n— oo,
that is,
1im [y~ Jra Gyl = 0. (4.53)
Therefore, from (4.40), (4.46), (4.52), (4.53), and o, — 0, we have

1% = ¥l
< 1% = et | + (%11 = Y
< 119 = Znar | + € [f On) = Y| + Vil Worde = yull + 8ullJ 7 Gy =yl
< %0 = Xt Il + @ |[fOn) = || + I Woadn = Yl + W7u Gy = yull = 0 as n— o0,

that is,
lim ||x, — y,|| =0. (4.54)
Utilizing (4.40), (4.48), and (4.54), we obtain

e = Gxull < 96 = Yull + 1170 — Gl
= |ln = yull + (1- Un)”]r,, Gx, — G, ||

< 1% = Yull + 1/, G — GXull = 0 asm— o0,
that is,
nlggo I, — G, || = O. (4.55)
In addition, from (4.52) and (4.54), we have

16 = Woxnll < 1160 = Yull + 170 = Wadnll + | Wiyn — Waxall

< 20xn = Yull + Iy = Wiyull = 0 asn — oo,
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that is,
lim ||x, — W,x,|| = 0. (4.56)
n— o0

Note that

”xn _]r,,xn” S ”xn - Gxn” + ”Gxn _]r,,Gxn” + ”]r,,Gxn _]rnxn”

< 2|x, — Gyl + |Gy, _]rnGxn”'
So, from (4.48) and (4.55), it follows that
lim ”xn _]rnxn” =0. (457)
n—00
Repeating the same argument as in (4.28) in the proof of Theorem 4.1, we get
lim e = Jrxull = 0, (458)
n—00

for a fixed number r such that ¢ > r > 0.

Suppose that g, = B for some fixed 8,y € (0,1) satisfying a,, + 8 + v, + 8, = 1 for
all # > 0. Define a mapping Vx = (1 — 6, — 6,)],x + 6, Wx + 0,Gx, where 6,0, € (0,1)
are two constants with 6; + 6, < 1. Then, by Lemmas 2.5 and 2.13, we have Fix(V) =
Fix(J,) N Fix(W) N Fix(G) = F. For each k > 1, let {px} be a unique element of C such that

Pk = %f(ﬁk) + <1— %)Vplo

From Lemma 2.9, we conclude that py — g € Fix(V) = F as k — 00. Observe that for every
n, k
%041 — Wpkll
< au|f ) = Wore| + Bllyn = Worll + vull Woyn — Warll
+ 80 (I GYn = Wiyl + | Wiy — Wikl
=t ||[f ) = Wik || + Bllyn = Worll + (a + 8| Wouyn = Wkl + 84171, Gy — Waull
= |[f ) = Wi | + Bllyn — Worll + A =y — B Wiy — Wik
+8ulJr, Gyn — Wiyl
< a|f () = Wor| + Bllyn — Wkl
+ (L= atn = B[ Wiy = Woprell + | Wk = Wpill] + 84/, GYn = Wil
< au|fn) = Wor| + Bllyn = Worll + (L= a = B)(Ilyn — picll + | Wapk = Woll)
+ 8ullSr, GYn = Wyl
< [ ) = W] + B(Il2n = Wikl + lyn = all) + (L = B[l = pill + Il = 5
+ | Wopk = Worll] + 8ull), GYn = Wil

= Ay + Bllxn — Wpill + (1= B)llxn — prll, (4.59)
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where A, = o, |f(7,) = Woll + (1 = B) (5 11yn = %all + I Wopr — Wpil) + 8,ll], Gy —
Wiynll. Since limy, o0 @y = im0 |y =X || = 1imy o0 [|Wypi = Wpill = limy— o0 1, Gy —
W.yull = 0, we know that A, — 0 as 1 — 0.

Repeating the same argument as in (4.31) and (4.32) in the proof of Theorem 4.1, we
conclude that for any Banach limit p,

Wolln = Woill? = pnllnen — Worll® < pallx, — pell®, (4.60)

and

nllon = ka”2 =< tnllxn _pk”2 and (%, _]rpk”Z =< tnll%n _pk”2- (4.61)

Utilizing (4.60) and (4.61), we obtain

2
Wnlln = Vil = | (1= 61 = 02)(n = J1p) + 016 — W) + 62(x — Gpi) |
< (1 -6 - GZ)MVI”xn _]rpk||2 + 01 pnll, — kallz + O, — ka”z

< tnllxn = prcll*. (4.62)

Repeating the same argument as in (4.36) in the proof of Theorem 4.1, we get

1
el —pill? = walf 1) = pro T (% — i) (4.63)

Since px — q € Fix(V) = F as k — 00, by the uniform Gateaux differentiability of the norm
of X, we have

Mn(f(q) - q!](xn - q)) E 0.

On the other hand, from (4.4) and the norm-to-weak* uniform continuity of / on bounded
subsets of X, it follows that

lim |(f(q) = q.) (ena1 = @) = (f(q) = 0.] (5 = )| = 0. (4.64)

Using Lemma 2.14, we deduce from (4.63) and (4.64) that

limsup(f (q) - ¢,] (x» — q)) < 0.

n—00

Finally, we show that x, — g as n — oc. It is easy to see from (4.1) that

1y = ql* < 0ullGx = qlI* + (1 = 0,) 5, Gxn — g1 < Il — 1>

Utilizing Lemma 2.2(a), from (4.1) and the convexity of | - ||> we get

2
l%441 = 4l

= ||an(f(J/n) _f(q)) + ,Bn(yn - q) + yn(Wnyn - q) + (Sn(]rnGyn - q) + an(f(q) - q) H2
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< @l fOn) ~F @ + Ballyn — @l + vul Wy = @1 + 84111, Gy — a1
+20,(f (@) — ¢ ] %1 — @)

< anpllyn—ql* + Ballyn = all* + vullyn — qll* + 8ullyn — ql>
+20u(f (@) = @] (K1 — 7))

= (1=, = ) llyn — qlI” + 20{f (@) — 4,] K1 — )

)z(f(Q) - q’](xnﬂ - q))
1-p ’

< (IT-anl-p)llxn—gll* + au(1 - p (4.65)
Applying Lemma 2.7 to (4.65), we obtain x, — ¢ as n — o0. This completes the proof.
O

Corollary 4.2 Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has an uniformly Gateaux differentiable norm. Let I1c be a sunny non-
expansive retraction from X onto C and A C X x X be an accretive operator in X such
that D(A) c C C Voo RU + rA). Let V : C — C be a mapping such that [ -V :C — X
is ¢-strictly pseudocontractive and 0-strongly accretive with 0 + ¢ > 1. Let f : C — C be
a contraction with coefficient p € (0,1) and {T;}{5, be an infinite family of nonexpansive
mappings of C into itself such that F = (;5, Fix(T:) N Fix(V) N A70 # (. For arbitrarily
given xy € C, let {x,} be the sequence generated by

>0

Yn =0, (L=DI+IV)xy + A= 0,)], (L= DI +1IV)x,,

(4.66)
Xn+l = ar(f(yn) + IBnyn + Vu Wnyn + 8n]rn ((1 - l)I + lv)ym Vn >0,

ﬁ(l - /%) <1<1, W, is the W-mapping generated by (2.1). Assume that

Assumption 4.1 holds except condition (iii), which is replaced by the following condition:
(iii) Zilﬂan — Opotl + oty — 01| + 1By — Buil + [Vn — Vu-il + 8, — 8411) < 00.
Then

(a) llmnﬁoo ||xn+1 _xn” = O;

where 1 —

(b) the sequence {x,}52, converges strongly to some q € F which is a unique solution of
the following variational inequality problem (VIP):

(=g J(q-p)) <0, VpeF,
provided B, = B for some fixed 8 € (0,1).

Proof In Theorem 4.2, we put B; =I—V, By =0 and j1; = [ where1— - (1— /%) <Il<l.

1+¢
Then SVI (3.1) is equivalent to the VIP of finding x* € C such that

(Bix*,J(x—x*)) >0, VxeC.
In this case, B; : C — X is ¢ -strictly pseudocontractive and 6 -strongly accretive. Repeating
the same arguments as in the proof of Corollary 4.1, we can infer that Fix(V) = VI(C, By).

Accordingly, F = (5, Fix(T;) N 2 N A™0 = (N5, Fix(T;) NFix(V) N A0,

Gx, = ((1 - DI+ lV)xn and Gy, = ((1 DI+ lV)yn.
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So, the scheme (4.4.0) reduces to (4.66). Therefore, the desired result follows from Theo-
rem 4.2. O

Remark 4.1 Theorems 4.1 and 4.2 improve and extend [30, Theorem 3.2], [20, Theo-
rem 3.1] and [29, Theorem 3.1] in the following aspects.

(a)

(b)

(f)

The problem of finding a point g € (), Fix(7,,) N 2 N A™0 in Theorems 4.1 and 4.2
is more general and more subtle than the problem of finding a point g € (", Fix(T,)
in [30, Theorem 3.2], the problem of finding a point g € ("), Fix(T,,) N §2 in [20,
Theorem 3.1] and the problem of finding a point g € A~10 in [29, Theorem 3.1].
Theorems 4.1 and 4.2 are proved without the assumption of the asymptotical
regularity of {x,} in [29, Theorem 3.1] (that is, lim,,— « ||, — %41 ]| = 0).

The iterative scheme in [20, Theorem 3.1] is extended to develop the iterative
schemes (4.1) and (4.40) in Theorems 4.1 and 4.2 by virtue of the iterative schemes
of [30, Theorem 3.2] and [29, Theorem 3.1]. The iterative schemes (4.1) and (4.40)
in Theorems 4.1 and 4.2 are more advantageous and more flexible than the iterative
scheme in [20, Theorem 3.1] because they involve several parameter sequences.
The iterative schemes (4.1) and (4.40) in Theorems 4.1 and 4.2 are different from
the iterative schemes in [30, Theorem 3.2], [20, Theorem 3.1] and [29, Theorem 3.1]
because the mapping G in [20, Theorem 3.1] and the mapping /,, in [29,

Theorem 3.1] are replaced by the composite mapping /,,, G in Theorems 4.1 and 4.2.
The proof of [20, Theorem 3.1] depends on the argument techniques in [10], the
inequality in 2-uniformly smooth Banach spaces, and the inequality in smooth and
uniform convex Banach spaces. Because the composite mapping J,,, G appears in the
iterative scheme (4.1) of Theorem 4.1, the proof of Theorem 4.1 depends on the
argument techniques in [10], the inequality in 2-uniformly smooth Banach spaces,
the inequality in smooth and uniform convex Banach spaces, the inequalities in
uniform convex Banach spaces, and the properties of the W-mapping and the
Banach limit. However, the proof of our Theorem 4.2 does not depend on the
argument techniques in [10], the inequality in 2-uniformly smooth Banach spaces,
and the inequality in smooth and uniform convex Banach spaces. It depends on only
the inequalities in uniform convex Banach spaces and the properties of the

W -mapping and the Banach limit.

The assumption of the uniformly convex and 2-uniformly smooth Banach space X
in [20, Theorem 3.1] is weakened to the uniformly convex Banach space X having a
uniformly Gateaux differentiable norm in Theorem 4.2.

5 Composite viscosity algorithms and convergence criteria

In this section, we introduce composite viscosity algorithms in real smooth and uniformly

convex Banach spaces and study the strong convergence theorems. We first state the fol-

lowing important and useful lemma which will be used in the sequel.

Lemma 5.1 [27] Let C be a nonempty closed convex subset of a Banach space X and

S0,S1,... be a sequence of mappings of C into itself. Suppose that y -, sup{||S,x — S,_1%| :

x € C} < 0o. Then, for each y € C, {S,y} converges strongly to some point in C. Moreover, let

S : C — C be a mapping defined by Sy =1im,_,» S,y for all y € C. Then lim,,_, »c sup{||Sx —

Sux|| :

xeC}=0.
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Assumption 5.1 Let {«,}, {8.}, {¥n}, {6}, {04} be the sequences in (0,1) such that «,, +
Bu + Vn + 8, =1forall n > 0. Suppose that the following conditions hold:
(i) limy— oo, =0and Y 2o oy = 00;
(ii) {yu}, {6n} C [c,d] for some ¢, d € (0,1);
(iii) Doy (10w = Ono1l + 10t — @t | + 1B = Buctl + Vi = Vot | + 185 = 81 ) < 005
(iv) Yooy lry —ry1l <ocoand r, > &> 0 forall n> 0;
)

(v) 0<liminf,_ s B, <limsup,_, . B <1and 0 <liminf,_, . 0, <limsup,_, 0, < 1.
We now state and prove our first result on the composite implicit viscosity algorithm.

Theorem 5.1 Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space X. Let Ilc be a sunny nonexpansive retraction from X
onto C and A C X x X be an accretive operator on X such that D(A) C C C ()., RU + rA).
Let the mapping B; : C — X be a;-inverse strongly accretive for i = 1,2, and f : C — C be

>0

a contraction with coefficient p € (0,1). Let {S;}35, be an infinite family of nonexpansive
mappings of C into itself such that F = (2, Fix(S;) N 2 N A0 # @ with 0 < y; < % for
i =1,2. Suppose that Assumption 5.1 holds. For arbitrarily given xo € C, let {x,} be the
sequence generated by

Vi = &f V) + Bun + VuSun + 8r, Gy
Xnel = OpYn + (1 - Un)]r,, Gym Vn > 0.

(5.1)

Assume that Y -, sup,cp |Sux — Sy_1x|| < 00 _for any bounded subset D of C, S : C — C be
a mapping defined by Sx = lim,,_, o Syx for all x € C, and Fix(S) = (.2, Fix(S,,). Then the
sequence {x,} converges strongly to q € F, which solves the following VIP:

{a-f(@.J(g-p) <0, VpeF.

Proof First of all, let us show that the sequence {x,} is bounded. Indeed, take a fixed p € F
arbitrarily. Then we get p = Gp, p = S,p and p = J,, p for all > 0. By Lemma 2.11, G is
nonexpansive. Then, from (5.1), we have
lyn =PIl < @ulfO) = p[| + Bullan =PIl + Vall Suttn = pIl + 84T, G —
< au([fOn) ~f @) + [f@) = pl) + Ballotn =PIl + vl = Pl + 84l Gt ~ p
< au(pllyn = pll + [f@) = p|) + Balltn =PIl + vl = Pl + 8ulls ~ P

= (L—an)llxn = pll + oupllyn —pll + | f(0) - p|.

which implies that

(1 - ) n n
%) lon =l + 1 _aanp lF ) - .- 5:2)

lyn —pll < <1—
So, we have

%1 =PIl < oullyn —pIl + (1- Gn)”]rnGyn -pl

< oullyn —pll + A = 0)IGy, - pl

Page 40 of 67
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< oulyn —pl + A =0u)llyn —pll

= llyn—pll
(1_ )an

5(1——" )nxn pll+
Jo

l-«w,
_ (1_ (l_p)an>”xn_p” + (1-p)ay ”f(p -pl

1-aup 1-aup 1-p
< maX{llxn -pl, ”ﬂp) p”}
-p
By induction, we obtain
If (p) - pll
I SmaX{on ~pll, lf(’”_ 2L wn=o. (5.3)

Hence, {x,} is bounded, and so are the sequences {y,}, {Gx,}, {Gy,}, and {f(y,)}.
Let us show that

lim [|%,11 — %[l = 0. (5.4)
n— o0
Observe that y, can be rewritten as

Yn = :ann + (l - ﬁn)zm

where z,, = a"f(y”)w"ls ”;:Jra”]’” S Note that
”Zn —Zp ”
_ arzf(yn) + ynSnxn + Sn]rn Gxn _ an—lf(yn—l) + yn—ISn—lxn—l + (Sn—l]r,,_l Gxn—l
1- /3,, 1- /3;1—1
_ - IBVIxn _ Yn-1— ﬂn—lxn—l
1- lgn 1- ﬁn—l
_ - ﬂnxn _ yn—l - ﬂn—lxn—l yn—l - lgn—lxn—l _ yn—l - ﬂn—lxn—l
l_ﬂn l_ﬁn l—lgn l—ﬁn—l
< Yn — ﬁnxn _ Yn-1— lgn—lxn—l i ‘ Yn-1— ﬁn—lxn—l _ Yn-1— ,Bn—lxn—l
N 1_131'1 1—/3,, 1_/3;1 1_,3;1—1
||yn - ,ann (yn 1- ,371 1%n-1 ” + ! ”yn 1 _ﬂn 1%Xn— 1”
T1- /3 1- 84 C1- ,3,,_
1B = Bl
,ann (yn—l ,Bn—lxn—l)” + (1 — ﬁnf )(1 — ﬂn) ”yn—l ,Bn—lxn—ln
1 /3 ”anf()/n + Vn nxn + 8n]r,, Gxn an—lf(yn 1 Vn—lSn—lxn—l - 8;1—1]}"”,1 Gxn—l ||
|,3n - ,371— |
+ P lyn-1 = Bn-1%n-1ll

1= Bu-1)d = By)

1
1 /3 [Oln “f(yn) _f(yn—l) H +Vn ”Snxn - Sn—lxn—l ” + 671 ”]rn Gxn _]r,,,l Gxn—l ”
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+ lay — ey Hf(Yn—l)” +1¥Yn = Y1 1 Sncaxna | + 16, = Sualllr,_, Gxn—l”]

|ﬁn - ,Bn—1|

A A= gy Pt~ Pl (5.5)

On the other hand, if r,_; <r,, using the resolvent identity in Proposition 2.2,

Tn-1 Tn-1
]r,,xn =]rn,1 <_xn + (1 - )]rnxn>:
I'n I'n

we get

”]rn Gx, — ]rn_l Gxy1 ||

Tn-1 Tn-1
]r,,_l <—ny, + (1 - —)]rn Gxn) _]Vn—l Gxn—l
T,

n T'n

Ip-1

IA

”Gxn - erkl” + (1 - r:_l ) ”]rn Gxn - Gxn—l”

n n

IA

Ty —Tp-1
ey — %1l + — I, Gxn — Gy ||
n

< Vo =21+ 1 =l G~ G
If r, <r,_1, then it is easy to see that
1
W, Gn = Ty G | < N1 — 201l + E|rn—l = Tl r, s GXu1 — GX |-
Thus, combining the above cases, we obtain

”]rn Gxn - ]rn,l Gxn—l ”

|rn—l_rn|

< n1 — xall + f SUP{ Wr, Gxu — Gt |l + Wi,y Gua — Gl }’ Vn>1
n>1
In a similar way, we derive
”]rn Gyn - ]ry,,l Gyn—l ”
|rn—1 - rn|
S na=yull+ —/— sup{ 1/, Gy = Gy ll + W,y GYna = Gyull},  Vm > 1.
n>1

Therefore, we have

”]rn Gxn _]r,,,l Gxn—l” = ”xn—l _xn” + |rn—1 - I",,,|M0, (56)

”]rnGyn _]rn,len—IH =< ”_yn—l _yn” + |rn—l - rn|M0:

for all # > 1, where
1
Sup{ g (”]r,, Gxn - Gxn—l” + ”]r,,,l Gxn—l - Gxn”)} = MO:

n>1

and

1
Sup{ g (”]rnGyn - Gyl + ”]Vn—l Gyp-1 - Gyn”)} < My,

n>1
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for some Mj > 0. Combining (5.6) and (5.5), we have

”Zn _Zn—lll
1
= 1-8 [an Hf(yn) _f(yn—l)H + VullSuxn — Sp-1%p-1|
+ 8 (11601 — %ull + Molru_1 = ral) + letn = uca | |[f 1) | + 17 = Voo || Sucana |

|Bn = Bl

+ 184 = 8pal iy Gxn—l”] + A B)

”yn—l - ﬁn—lxn—l ”

1
< 1 }3 [anp”yn _yn—lll + yrl”Snxn - Snxn—ln + 8n(||xn—1 - xn” +]\/IOVn—l - rn|)
~— Pn
+ 1oty = @t [f O |+ 17 = Yt lISuana Il + 185 = 8ual I,y Gl
+ Vu ”Snxn—l - Sn—lxn—l ”]
|,3n - ,Bn—l|
+ _ 1) + Vu1Sn_1%n-1 + 6 Gx,_
1=, )05 ”an VOn-1) + Vuo1Sn-1%u-1 + 8, Ur,1 Gx 1”
1
= 1-8 [O(np“yn = Y1l + (Vi + 8 %01 — %] +M(|Ol,,, = Qy1| + [V = Vi1
~— Pn
+ 18y = Syl + |11 — rn|) + Yl SuXn-1 — Sn—lxn—lll]
! 1B = Bu-11M (5.7)
bt —————————|Bn = BualM, .
(l_ﬁn—l)(l_ﬂn) ! "

where sup, .o {Mo + [f )| + 1Suxall + 1)1,, G ||} < M for some M > 0. By simple calcula-
tions, we have

Yn—Yn-1= Brn®n —xu-1) + (1= Bu)(2n — 2u-1) + (Br — Bu-1)Fu1 — Zu1). (5.8)

Taking into account condition (v), without loss of generality, we may assume that {8,} C
[a, b] for some a, b € (0,1). Hence, from (5.7) and (5.8), we deduce

”yn _ynfl”

< Bullxn =%l + (L= Bl zw = zua | + By = Bucal 11 — Zua |
1
< Bullxn = xnall + (L= By) ﬁ [anp“yn = Y1l + (Vi + ) %601 — %]
- n
+M(|an =yl + | Vn = Vol + |80 = Sua| + |71 — rn|) + Yl Snn-1 — Sn—lxn—lu]
1
+
1= Bu1)A - By)

= (1 —an)lxn-1 = %ull + 2w lyn = Yuall + M(lOl,, = 1| + [V = Vuoa| + 180 = 81l

|ﬁn - ﬁn1|M} + |,Bn - ,Bn—1| ”xn—l - Zn—l”

+ |rn—1 - rn|) + Vn”Snxn—l - Sn—lxn—ln
1
1- ,Bn—l

< (I =a)llxp-1 = xull + npllyn = Yl +M1(|05n =yl + 1By = Bual + [V = Yl

+

|,3n - ,Bn—l |M + |IBVI - ,Bn—l| ”xn—l - Zn—l”

+ |8n - (Sn—ll + |rn—1 - rn|) + ”Snxn—l _Sn—lxn—lnv
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where supnzo{% + |2, — 24|} < M; for some M; > 0. This leads to

1yn = Yu-ll
(1-p)a
< (1= = )l = ll + ———(letw = ctnal + 1B = Bual + ¥ = Y
1-anp 1-aup
+ 18y = Spal + |11 — rn|) + |Snn-1 = Sp-1%xn1l- (5.9)
1- Ay P

Again by simple calculations, we have

Xnsl — Xy = Un(yn _yn—l) + (Un - Gn—l)(yn—l _]Vn—l Gyn—l)
+(1- On)(]ry, Gyn - ]r,,,l Gyn—l)'

This together with (5.6) and (5.9) implies that

%41 = %l < 0ullYn = Y1l + 10w = O Y1 = T,y GVl
+ A =0, Gyn =iy Gyl
< 0ullyn = yuall + 10w = oualllyn-a =T,y GYnall
+ (1= 0) (191 = Y|l + [Pn1 = 7| Mo)

< 1yn=yu-1ll + low = 01 lllyna _]Vn—l Gyu-t1ll + [ru-1 = ru| Mo

(1-p) M
< (1= L2 N iwus =2l + ———(loty = | + 1B — B
1-aup 1-anp

+ |yn - yn—1| + |8n - 8r1—1| + |rn—1 - rn|) + 1 ”Snxn—l _Sn—lxn—ln

n

+ |0n - Un—l”b’n—l _]anl Gyn—ln + |rn—1 —Tn |MO

(1-p)a ~
=< (1 -— %61 = %l +M(|Gn —op1l| + oy =yl + 1By — Bual
1—(1,,,0

+ |Vn - yn—1| + |8n - 8n—1| + |rn—1 - rn| + ”Snxn—l - Sn—lxn—ln):

where sup,,..o{ Mirl 4 Afo + yn =T, GYull} < M for some M > 0. Noting that % >(1-

1-anp
p)a, forall n > 0, from condition (i), we know that > - % = 00. Utilizing Lemma 2.7,

we conclude from conditions (iii), (iv), and the assumption on {S,} that
lim ||%,.1 — x4l = 0.
n— 00

Next we show that ||x, — Gx,|| = 0 as n — oo.
Indeed, according to Lemma 2.2(a), we have from (5.1)

”yn _P”2
= @n(FO) = D)) + Buln = ) + Vu(Sun = D) + 8,1, Gt — p) + 0 (f(0) - p) ||*

< |l Gn) = @) + Buln = ) + Vu(Sut — ) + 8,0, G — p)||°
+ Z(xn(f(p) =) O _p))


http://www.fixedpointtheoryandapplications.com/content/2014/1/29

Ceng et al. Fixed Point Theory and Applications 2014, 2014:29 Page 45 of 67
http://www.fixedpointtheoryandapplications.com/content/2014/1/29

< @l f0) O + Balltn =PI + ¥l Sutn = P11 + 84l Gt — pI?
+20,(f (p) = ]y — P))
< up*lyn = pI* + Bulltn — pI* + vull%u — P> + 811G — pII?
+20,(f (p) = ]y = P))
< aupllyn =PI + Bull®n = 1> + Vaulxn = pI* + 8ullxn — plI?
+20,(f (p) = ]y — P))
= aupllyn = pI” + (1= an)llxn — plI* + 20u{f (0) — 2. J 4 — D)), (5.10)

which implies that

2 _M) o2 2 e _
lyn =Pl s(l T %, = pll +1_anp(f(10) I = p)).

Utilizing Lemma 2.3, we get from (5.1) and (5.10)

| ESY —P||2 = ”(In(Yn -p)+ 1 -0,)0.,,Gy, - p) ”2
=< 0n||yn —19||2 +(1- Gn)||]rnGyn —P||2 —o,(1- an)g(”yn _]rnGyn”)
< oullyn —19||2 + (1 =0)llyn —P||2 —o,(l- Un)g(||yn _]rnGyn”)

= ||Yn —P||2 —ou(1- Un)g(”yn _]rnGyn”)

(1_ ) n 2 n
< (1— %) I =PI+ 1= ) =P O =)

- Un(l - Un)g(”yn _]rnG_yn”)

20,
S @) = 2|1y - pll = 000 = 0,8 (19 = Jon Gyl

<l =pIP T2
—WYn

and hence

0u(L = 0)g(Iyn = 11, Gyull)

20,
> If @) -p|ly. - pl

2 2
= %0 =PI = % =PI + -

20,

lf @) -p|[ly. - pl.

< (In = Il + 121 = P 160 = s || +
1 — P

Since «,, — 0 and ||x,,1 — x| — 0, from condition (v) and the boundedness of {x,} and

{y4}, it follows that
lim (115 = Jr, Gyull) = 0.
n—00
Utilizing the properties of g, we have

1im {1y~ Jp, Gyall = 0. (5.11)
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Observe that

”xn _yn” = ”xn _xn+l|| + ”xVH-l _yn”
= |l — X ll + 1 - 0n)||]rn GYp = yull

< “xn _xn+1|| + ”]ry,Gyn _yn”
From (5.4) and (5.11), we have
lim ||x, — yu|l = 0. (5.12)
n—00

For simplicity, put g = ITc(p — 2Bap), uy, = Hc(x, — woBaxy,) and v, = Hc(u, — n1Biuy,).
Then v,, = Gx,, for all # > 0. From Lemma 2.8, we have

it = g% = | Tc(en = 112Bo) — Me(p — paBop) |

< ||%n = p = 12 (Boxs — Bop) |

%2 = pII” = 22 (o2 — * 112) | Baxn — Bopl|?, (5.13)

IA

and

v = pI* = | Hc(tn — p1Biun) — Mc(q — 11B1q) ||2
< ||ttn — g = 1 (Busn - B1g)|)?
< llun = ql* = 211 (o1 = k> 1) | Biusy, — Bag*. (5.14)

Combining (5.13) and (5.14), we obtain

v = pI* < ln = pII* = 22 (02 — k% 112) | Box — Bop||?
=21 (o1 — k1) | Buuy, — Bagll*. (5.15)

By Lemma 2.2(a), (5.1), and (5.15), we have

Iy - plI?

= len(FGn) =F(©)) + Buln = D) + Vu(Sutn = ) + 8,0, Gt — ) + i (f (1) = p) ||*

<au|fa) -f(p) ||2 + Bullxn =PI + Yl Sun — pII* + 8ull],, Gn — pII?
+2a,(f () = p,J Y — P))

<P’ lyn = pI* + Bull%n = pI + Vullxn = pI* + 8ullva — pII>
+ 20, |f (p) = p| Iy - p

< oupllyn = pII* + Bull®n = PII* + Vaulln — pI* + 8 lxn — pII>
=243 (02 — k% 2) 1oty — Bopl|” — 2pa1 (o1 — k% 1a1) | Bt — Bug|?]

+ 20, ]|f (2) - p||Ily» - Pl


http://www.fixedpointtheoryandapplications.com/content/2014/1/29

Ceng et al. Fixed Point Theory and Applications 2014, 2014:29 Page 47 of 67
http://www.fixedpointtheoryandapplications.com/content/2014/1/29

< aullyn =PI + (L= )% — plI* = 28, [ 112 (02 — 6> p2) 1Baxn — Bop |

+ w1 (o = k% 01) 1Brgy — Bigl*] + 200 | f(0) = p | yu = P

Thus, we have

28,2 (0t = 6 12) 1Bay — Bopll® + pua (o — i 1) | Biug — Bagl*]
< (I —ap)llxy —P||2 - =an)llyn —P||2 + 20 ”f(p) —19” ly. - pl
< (L =) (% = Pl + 1y = pI) %5 = ¥l + 20 [ (2) = p| 17 - P

Since 0 < u; < :—5 for i =1,2, from (5.12) and conditions (i), (ii), we obtain
lim ||Byx, —Byp| =0 and lim |Biu, —Big| =0. (5.16)
n—oQ n—0o0

Utilizing Proposition 2.2 and Lemma 2.10, we have

ln = ql® = | (e — 112Bo%s) = He(p - p12Bop) |
< (% — naBaxy — (0 — n2Bop), J (4 - q))

= (0 — 1]ty — @)) + p2(Bop — Bain, ) (thn — q))

< %[Hxn =PI+l = qll” = & (|2 = - (0 - D))

+ 2| Bap — Boxullllttw — qll,
which implies that
letw = ql® < s = pI* = g1 (%0 = 10 = 0 = @)|}) + 211211Bop = Boullllun = qll. ~ (5.17)
In the same way, we derive

2
v —plI* = | My — p1Biug) — Mg — m1Biq) |
< (tn — t1Brtty = (q — p1B19),J (Vs - p))

= (ttn — ¢,](vu = P)) + 11(B1g — Brttn,J (v — p))

1
< 5[l = al + 10 =PI = ([l = v + (0 - )]

+ p1llB1g = Biun |l = plI,
which implies that
1V = pII* < lltn = qlI* = o ([ = v + 0 = @)|) + 201 1Big = Byl llv = pll. ~ (5.18)
Combining (5.17) and (5.18), we get

v =pI* < =PI =gi(|#n = n = 0= D) —@2(|ttn = v + - 9)|))
+ 2121 Bap = Boxy |||ty — gl + 21| Brg — Bruy || |V = pI. (5.19)
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By Lemma 2.2(a), (5.1), and (5.19), we have

Iy - pII?
= len(FGn) = (P)) + Buln = D) + Vu(Sutn = ) + 820, Gt — ) + i (f (1) = p) ||*
< @l fOn) ~F @) + Bulls =PI + Vull Suts — I + 84l Gt — pII?
+20,(f (p) = ]y — P))
< @upllyn = pI? + Balln = pII* + vl =PI + 8ullve — pII* + 20, | (0) = p || 190 — P
< @upllyn = pI? + Balln = pI* + vl = P11 + 8,1, — pII?
~ g1 (|2~ 1t~ @~ )|)) ~&2(|[ttn = v + (0 = D) + 214211 Bop ~ Botlll| 24 ~
+2u11B1g = Butty | 1V, = pll] + 20 | (2) = p | 19 — P
< aullyn —pII* + (L= @)z, — plI* = 8ug1 (| %0 — 0 — (0 - 9) )
+ @ ([t = va + = @)]))] + 2021Bop — Boxull 14 — gl

+ 211 [|1Big = Buuy |||V = pll + 200, |[f () = p | 1y — Pl

and hence

Sulgr (|20 —1n = (0 = D) + &2(|ttn = vu + 0 - 9] )]
< (=)l —plI* = A=) lyn = pI* + 214211 Bop — Bosiul |4 — |
+2111[1B1g — Butty | |V = pll + 200, ||f (p) = p | 17 = P
< (1= ) (1% = pIl + Iy = pU) 1w = ull + 21221 Bap = Bose [, — |

+2u1l1Big = Bittull 1V = pll + 20 | () = p[| 192 — Pl

Utilizing conditions (i), (ii), from (5.12) and (5.16), we have

Tim g ([0~ ~(p-q)) =0 and  lim g([[un—va+(p-q)]) =0. (5.20)
Utilizing the properties of g and g, we have

Jim |, ~ 1wy~ (p-q)| =0 and  lim |, — v, + (p-q)| = 0. (5.21)
From (5.21), we get

1% = Vull < [|%n = th == @)| + ||t v+ P - )| > 0 asn— oo,
that is,

lim [, — Goxy|| = 0. (5.22)

Next, let us show that

lim ||/, %, —%,| =0 and lim |S,x, —x,| =0.
n—00 n—oo
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Indeed, observe that y, can be rewritten as

Vi = Quf ) + Bukn + YuSukn + 84l Gy

VlSVl n 87[ 14 G
= anf(yn) + Buxy + (Vn + SH)M

Vi + 8n
= anf(yn) + By + €nZny (5.23)

where e, =y, +68, and z,, = W Utilizing Lemma 2.4 and (5.23), we have

llyn - pII>
= ”an(f(yn) —19) + Bu(xn — p) + €4(2, — p) ||2
< au|[f o) =p|* + Bulltn = DI + enllzn — P11 = Bungs (120 — %411)

=0y “f(yn) —P||2 + Bullxn —P||2 - ,BnengS(”%n _xn”)

VuSuXn + 8n]rn Gx, _ >
! Vi + B
2 A~
=& [|[f ) = | + Balltw = pII* = Brenga(112n — 1))
2
Yn Sn
+ e, (S —P) + Urn Gx, _P)
Vn +6n Vi + On
2 S
< au|[f ) =p|” + Balltn = pII* = Buenga (112n — xall)
i Vn On
+éy ”Snxn —P||2 + ”]rnGxn —P||2]
L ¥ + 8n Yn + On
2 A~
=y “f(yn)_p” + Bullxn _p”2_ﬂneng3(||zn_xn”)
- y 5
+ey " ||xn = pll + —— 1%y —Pllﬂ
LVn t 871 Yn t (Sn

=, [f ) -p|* + (= )l%s = pI* = Buengs (124 — %4l)

=ay Hf(yn) —P||2 + |l%, —P||2 - lgnengS(”%n _xn”):

which implies that

Buengs (122 = %all) < au[f ) = p||* + 1% =PI = Il - pII

< alfO) = || + (10 =PIl + 1y = pI) %0 = 2l

Utilizing (5.12), conditions (i), (ii), (v), and the boundedness of {x,}, {y,}, and {f(y,)}, we
get

lim gB(”‘%n _xn”) =0.
n— 00
From the properties of g3, we have

lim ||z, — x,| = 0.
n—00
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Utilizing Lemma 2.3 and the definition of z,,, we have

VuSulkn + 8u)1 G ||

Yn + 6

2 2
12, = pII” = ‘

2

8
Yt Sty = 1) + —— (], G — D)
Vn + On Y + 0O

)
Syt — p? + —
Vi + 6n Vi + 6n

Iy, Gxn — plI*

IA

VnOn
- m&}(”]m Gxy — Suxn ||)

YnOn
< llxn - pl* - Ty )2g4(||1rnny, ~ Sutull),
n n

which leads to

V8 )
o1 5778 (U G = Sueall) < lea = pI” = 122 = pI”

(Vn +
< (I = Il + 120 = 211 1% = 2.

Since {x,} and {2,,} are bounded and ||z, — x,,|| — 0 as # — 00, we deduce from condition

(ii) that
Tim g4 (1S~ J, Gull) = 0.
From the properties of g;, we have
Tim 18,42 ~ J, Gl = 0. (5.24)

On the other hand, y, can also be rewritten as

Vn = Qnf ) + Bukn + VuSukn + 84l Gy

anf(yn) + 8n]rn Gxn
o, + 6,

= BuXn + VnSuXn + (0t +8) = BuXn + YnSuXu + dnZy,

where d,, = @, + 8, and 3, = 2/ On)tOnlr, Gan Utilizing Lemma 2.4 and the convexity of || - ||%,

oty
we have
17, - pII?
= ”,Bn(xn _p) + Vn(Snxn —P) + dn(gn —P)||2
< Bullxn _17”2 + Yl Snxn —P||2 +dy ||z, _17”2 - ﬁnyngs(”xn - Snxn”)
ar(f(yn) + (Sn]rn Gxn

o, + 6,

2

= Bullxn —P||2 + Yl Sun —P||2 +d,

- ,BnVngS(”xn = Sy ”)

S 2

o, + 6,

Oy

= Bullxn _17”2 + Yl Snn _P”z +dy, (f(yn) _P) + U, Gxn — p)

o, + 6,
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- ,BnyngS(”xn = Sy ”)

8n
Iy, Gt — pnz}
+ 6,

Oy

If o) -p| +

< Bullxn =PI + Vaulln - plI* + dn[
oy, + 6, oy

- IBnyngS(”xn - Snxn”)
<&, |[f3) = 2| + Bu + v 150 = DI + 8l — PII* = Buyngs (120 — Sutall)
= a,[f o) - p|* + A = @)l = plI> = Buyags (160 — Suxull)

<&, |[f ) = || + 1% = I = Buvugs (1% — Suall),

which implies that

Bungs (160 = Suxull) < @ |[f ) = 2| + 1% = I = 1y - pII?
< aulf ) = | + (120 = 21l + 11y = pI) %0 = 3l

From (5.12), conditions (i), (ii), (v), and the boundedness of {x,}, {y,}, and {f (y,)}, we have
lim gs(”xn - Snxn”) =0.
n—00

Utilizing the properties of g5, we have
lim ||x, — Sy, = 0. (5.25)
n—00

By Lemma 5.1, we get
16 = S ll < N2 = Sl + 1Suxn — Sxull — 0 as n— oo,

that is,
lim ||x, — Sx,|| = 0. (5.26)
n—00

We note that

”xn _]rnxn” = ”xn - Snxn“ + ”Snxn _]rnGxn” + ”]r,,Gxn _]rnxn”

< wn = Suxnll + 11Snxsy _]rnGxn" + |Gxy — x4l
So, from (5.22), (5.24), and (5.25), it follows that
lim ”xn _]rnxn” =0. (527)
n— o0

Furthermore, we claim that lim,_, o ||, — J,x,|| = O for a fixed number r such that & >
r > 0. In fact, taking into account the resolvent identity in Proposition 2.2, we have

r r
]r<_xn + (1 - _>]rnxn) _]rxn
ry Iy

r
< <1 - r—) 1% = Tl < 1% = T %ol (5.28)

n

”]rnxn _]rxn || =
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From (5.27) and (5.8), we get

1% = Jrull < [l%n _]r,,xn” + ”]rnxn = Jrxull < %0 _]ry,xn” + [[%y _]rﬂxn”

= 2||xy, = Jy, x4l > 0 asn— o0,
that is,
lim ”xn _]rxn” =0. (529)
n—00
Define a mapping Wx = (1 — 61 — 62)],x + 6,Sx + 0, Gx, where 01,0, € (0,1) are two constants

with 0; + 6, < 1. Then by Lemma 2.5, we have Fix(W) = Fix(J,) N Fix(S) N Fix(G) = F. We
observe that

”xn - Wxn” = ”(1 - 01 - 92)(96;1 _]rxn) + 91(9&3" - an) + 92(xn - Gxn)”

< (=01 = 02) %0 = Jrxull + O1l1%n = Sxull + 02|60 — G|l
From (5.22), (5.26), and (5.29), we obtain
nlingo [l — Wx, || = 0. (5.30)
Now, we claim that

limsuplf (q) - q,] (x» — q)) <0, (5.31)

n—00

where g = s — lim;_, ¢ x; with x; being the fixed point of the contraction
x> tf(x) + (1 —£) Wa.

Then x; solves the fixed point equation x; = #f(x;) + (1 — £) Wx;. Thus, we have
Il =l = || (L = O)(Wate =) + £ (f () = %) |-

By Lemma 2.2(a), we obtain

e — a1
= = )(Wat, — ) + £(F (xe) — ) |
< (1= )| Wty — 20l + 22(f () — %, J (1 — %))
< (1= £ (1| Wate — Wit + [ Wat = xall)” + 26(f (x2) — 2 T (5, — )
< (U= 0% (I = 2l + 11 Wt = 54l1)” + 26{F (x2) = 0, ] (x — 6,))
= (1= £l = > + 20162 = 21| Wity = | + 1| Waty — 25112
+ 28{f (%) — %0, T (%0 — %)) + 263, — 0, (0 — %))

= (1= 2t + 2%) ey — xall® + £ (&) + 26{f (o) = X2, ] (31 = 26)) + 2126, — ]|, (5.32)
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where
JAGEXIES t)2(2||x, — Xl + % — Wx,,||)||xn - Wx,|l — 0, asn— oo. (5.33)

It follows from (5.32) that

ot F =) = Sl + 2 f) (5.34)

Letting n — oo in (5.34) and noticing (5.33), we derive

tim sup{x, — £ (), T (x — %)) < gMz, (5.35)

n—00

where M, > 0 is a constant such that ||, — x,||?> < M, for all £ € (0,1) and n > 0. Taking
t — 0in (5.35), we have

lim sup lim sup(xt —f ), J (e — x,,)) <0. (5.36)

t—0 n—00

On the other hand, we have

{f(@-a)xn— )
={f(@) - @] % — D) = (F(@) — @ T %n — ) + (f(@) — q,] (xn — %))
—(f(q) = x0T Gen — ) + {f (@) — e, (o6 — 20)) = (f (30) — %2, (% — %2))
() — 20, (0 — 1)
={f(@) — 4] @n — q) — T (@n — %)) + (0 = q,T (0 — %))
+ (@) = f 0), T (en = 20)) + (f (1) — %0, ] (360 — 1).

It follows that

limsup(f(q) — ¢, (x» — q)) < limsuplf (q) — q,] (% — q) = J (% — %¢))

n—00 n—00

+ [|l%: — gl limsup [|x, — x|l + pllg — x| lim sup [|x, — x|
n—00 n—oo

+lim sup{f(xt) — %, J (%, — xt)>~

n—00

Taking into account that x; — g as t — 0, we have from (5.36)

limsuplf (q) - ¢,/ (xu — q)) = 111:1 sup limsuplf(q) - q.J (x» - q))

< limsuplim sup(f(q) —q.J(x,—q) = J(x, — xt)>. (5.37)
t—0 n— 00

Since X has a uniformly Fréchet differentiable norm, the duality mapping J is norm-to-
norm uniformly continuous on bounded subsets of X. Consequently, the two limits are
interchangeable and hence (5.31) holds. From (5.12) we get (y, —g) — (x» —¢q) — 0. Noticing
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that / is norm-to-norm uniformly continuous on bounded subsets of X, we deduce from
(5.31) that

limsup(f(q) - 4,] (3 — q))

n— 00

=limsup((f(q) - ¢.J(xn — @) + {f (@) = 2. T On — @) = J (% — 9)))

n— 00

=lim sup(f(q) -q,] (%, — q)) <o0.

n—0o0

Finally, let us show that x, — g as n — 00. We observe that

lyn — ql*
= en (FOm) = £ (@) + Bult = @) + V(S — @) + 8401, Gtn — @)+ (F(q) - ) |
= Han(f(yn ) + Bu(xn — )+Vn(Snxn_q)""sn(]rnGxn_q)Hz

+20,(f (q) = 4, ] O — )

< & |[fOn) ~ @ + Balltn = a1 + Vull Suts — g1 + 8,11, Gt — 1>
+20,(f(q) = 4, ] O — 9))

< anpllyn —ql* + A= an)llxn — qlI* + 2(f (@) = 4, n — D)),

which implies that

a,(1-p) a,(1-p) 2 (61)—61,/ n_q)>
lyn —qll”> < (1= =—=)llx. —qll* + 2 o (5.38)
1-anp 1-aup 1-p
From (5.1) and the convexity of | - |2, we get
%01 = ql1* < 0ullyn — gl + A = 0) 1, Gy —gl®
< lly.—qll
1- 1=0) 2(F(@) - Ty —
< (1-%=p) - qll? + & 1-p) 2(f(@)-q]0n—q) (5.39)
l-«, l-a,p 1-p

Applying Lemma 2.7 to (5.39), we obtain x,, — g as n — oo. This completes the proof. OJ

Corollary 5.1 Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space X. Let I1c be a sunny nonexpansive retraction from X
onto C and A C X x X be an accretive operator on X such that D(A) C C C (.0 RU + FA).
Let the mapping B; : C — X be «;-inverse strongly accretive fori=1,2,and f : C — C be a

>0

contraction with coefficient p € (0,1). Let S : C — C be a nonexpansive mapping such that
F=Fix(S) N2 NAT0#P with 0 < u; < %for i =1,2. For arbitrarily given xo € C, let {x,}
be the sequence generated by

Yn = ar(f(yn) + ﬂnxn + )/nan + an]rn me
Xp+l = OpYp + (1 - G”)]Vn Gym Vn > 0.
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Suppose that Assumption 5.1 holds. Assume that Y ., sup,p |S,x — S,_1|| < 0o for any
bounded subset D of C, S : C — C is a mapping defined by Sx = lim,,_, o S,x for all x € C,
and Fix(S) = (oo Fix(S,). Then the sequence {x,} converges strongly to q € F, which solves
the following VIP:

(a-f@),J(@-p)<0, VYpeF.

We now establish the following strong convergence result on the composite explicit vis-

cosity algorithm.

Theorem 5.2 Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gédteaux differentiable norm. Let I1c be a sunny nonex-
pansive retraction from X onto C and A C X x X be an accretive operator on X such that
DA)cCc (.0 RUA + rA). For each i = 1,2, let B; : C — X be a A;-strictly pseudocontrac-

tive and o;-strongly accretive mapping with o; + A; > 1. Let f : C — C be a contraction with

r>0

coefficient p € (0,1) and {S;}°, be an infinite family of nonexpansive mappings S;: C — C

such that F = (25, Fix($;) N 2 N A0 # ¥ with 1 - £ - /5%) < p; <1 fori=1,2.

Suppose that Assumption 5.1 holds. For arbitrarily given x, € C, let {x,} be the sequence

generated by

Yn = 0,GXy + (1- Un)]r,, Gxy,
Xntl = ar(f(yn) + IBnyn + )/nSnyn + (Sn]rn Gyn; Vn > 0.

(5.40)

Assume that ) -, sup,cp [1Sux — Sy_1x|| < 00 for any bounded subset D of C, S: C — C is
a mapping defined by Sx = 1im,,_, o0 Sy for all x € C, and Fix(S) = (e, Fix(S,). Then {x,}
converges strongly to q € F, which solves the following VIP:

(a-f@,.J(a-p)<0, VpeF.

Proof Take a fixed p € F arbitrarily. Then we obtain p = Gp, p = S,,p and J,, p = p for all
n > 0. Moreover, by Lemma 4.2, we have

lyn —pll < 0ullGx, —pll + (1- an)||]rnGxn -pl
< oullxn = pll + 1 = 04)llx, — pll

= |z, —pll, (5.41)
and therefore

%01 = Pl < @ [f ) = 2| + Bullyn = Bl + Yull Suyn = Pl + 8T, Gy — Pl
< a,(|[fon) —f@) | + |f®) - p|) + Bullyx - pl
+ Yullyn = pll + 8ullyn - pll
< @upllyn = pll + o [f () = p|| + (Bu + v + 819 — Pl
= (1= s =) lyn —pll + @] f(0) - p||
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< (1= au(1 = p))llxn = pll + au[f(0) - P

If () - pll
= (1- (1= ) oy — pll + (1~ p) - Wf—”
-p

§max{||xn—p||,w}.

1-p

By induction, we get
) —
||xn—p||smax{||xo—p||,”f(l’”_7p”" RZEL

which implies that {x,} is bounded and so are the sequences {y,}, {Gx,}, {Gy.}, {f (v.)}-
Let us show that |x,,1 — x,|| = 0 as n — co. As a matter of fact, repeating the same
arguments as those in the proof of Theorem 4.1, we obtain

”]rn Gxn _]Vn—l Gxn—l” = ”xn—l _xn” + |rn—1 - rn|MO’ (542)

||]rnGyn _]rn_len—IH < NYn1 = Iull + [rue1 —rulMo, Vn =1,

where

1
Sup{ E (”]rn Gxn - Gxn—l” + ”]Vn—l Gxn—l - Gxn”)} =< MO;

n>1

and

1
Sup{ g(”]rnGyn - G_yn—ln + ”]'”n—l Gyn—l - Gyn”)} = MO:

n>1
for some Mj > 0. By (5.40) and simple calculations, we have

Yn—Yn-1= 0n(Gxy — Gxy1) + (0 — 0021) (G _]Vn—l Gxy-1)

+(1- Oln)(]rﬂ Gx,, — ]r,,_l Gxy1).
It follows that

171 = yn-1ll < 0ullGxn = Gxpall + l0w = 01 | GXpt = T,y GXpa l
+ (=), Gxy = T,y G|
< oulln = xuall + 0w — 001 11GXu-1 — Ty G |l
+ (1= 0) (%01 = %l + [7um1 = 74| Mo )
< % = xnall + 10w — 0nal1Gxy1 = i,y Gapa | + |70 = 11 [ M. (5.43)

Taking into account condition (v), without loss of generality we may assume that {8,} C
|a, b] for some a, b € (0,1). From (5.40), x,,,1 can be rewritten as

X+l = ,Bnyn + (1 - ,Bn)zm (544')

Page 56 of 67


http://www.fixedpointtheoryandapplications.com/content/2014/1/29

Ceng et al. Fixed Point Theory and Applications 2014, 2014:29 Page 57 of 67
http://www.fixedpointtheoryandapplications.com/content/2014/1/29

an()’n)"‘l/nsn)’n +5n]rn

where z,, = 5, Gy, Utilizing (5.42) and (5.43), we have

”Zn —Zp-1 ”
ar(f(yn) + J/nsnyn + an]rn Gyn _ an—lf()’n—l) + Vn—lSn—lyn—l + 6n—l]r,q_l Gyn—l
1- ,Bn 1- ,Bn—l

X+l — ﬂnyn Xpy — ﬂn—lyn—l

1_:3;1 l_lgn—l

Xn+l — lsnyn Xn — ,Bn—lyn—l Xp — ,Bn—lyn—l _ Xn — ,Bn—lyn—l

1-Bu 1-B, 1- By 1-Bua
< Xns1 — Buyn _ Xn — Bu-1Yn-1 Xn — Bu-1Yn-1 _ Xn = Bn1Yn
N l_ﬁn 1_,371 l_ﬁn 1_,3;1—1
= L ||xn+l = Buyn — (0 — ﬁn—l}’n—l)” + ; - ! l%n = Bu-1yn-1ll
1_/371 1_ﬂn l_ﬂn—l
1 |/3n - ,Bn—1|
= 1 —,Bn ||xn+1 ﬂnyn (xn /Sn—lyn—l)” + (l—ﬂn_l)(l—ﬂn) ”xn ,Bn—lyn—ln
1
= 1— ,3 ”ar(f()/n) + ynsnyn + 8;1]}‘,, Gyn - an—]f(yn—l) - Vn—lSn—lyn—l - Sn—ljr,,_l Gyn—l ”
1B = Bl
+ 1-B,)0-8) 16 = Bu-1yn-1l
1
= 1 5 [Oln Hf(yn) _f(yn—l)H + yn”Snyn - Sn—lyn—lll + 5;’1”]1‘,, Gyn _]r,,,l Gyn—ln
+ oy, — oty |Lf(yn—1)|| + Vi = Va1 1Sn-1yu-all + 18, = 841l ”]rn,l Gyna ”]
|81 — Bu-1l
+ 1% — Bu-1nl
(= Br)(T— B2) e
1
=< 1-8 [Olnp”yn _yn—lll + Vn”Sn}’n - Snynfln + Sn[Hyn—l _yn” + =1y |M0]
+ lotn = ot [ @n-) | + 17 = Vuct NSt | + ¥all Sucr = Spayna |
|ﬁn - ﬁn—1|
8n_8n— r,Gn— 1 0 /1 o\ n — Pn-1)n-
+ 111, Gy 1||]+(1_ﬁn_1)(1_ﬁn)||x By |
1
= 1-8 [(Oly,,O + Y+ 8 Y1 = Yull + [1nc1 = rulMo + |ty — i ”f(yn—l)”
~ Pn
+ |)/n - yn—l| ”Sn—lyn—l” + yn”Snyn—l - Sn—l_)’n—l” + |8n - 5n—1| ”]r,,,l Gyn—ln]
|,6n - IBn— |
% = Bu1ynl

1= Bu1)X - By)
(1 - ,O)Cln 1
= <1 - 7) lyn = Ynall + —[lrn—l = ralMo + |oty — 0ty ”f(yn—l)H

1- ﬁn 1- ﬁn
+ Vi = Vi1l ”Sn—lyn—l” + |8, — 8l ”]rn,l Gyn—ln] + ”SnynA - Snd)’n—l”
|,3n - ,Bn— |
@, = Buaynal, (5.45)

(1 - IBn—l)(l - ,Bn)

By simple calculations and (5.44), we get

Xl — Xy = ,Bn(yn _yn—l) + (,Bn - ,Bn—l)(yn—l - Zn—l) + (1 - ﬁn)(zn - Zn—l)'
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This together with (5.43) and (5.45) implies that

”xn+1 —Xn ”

< Bullyn = yuaall +1B8n = Buallyn-1 — zna |l + (L= B)llzn — znall

1- n
< Bullyn = Yu-1ll + 180 = Bualllyn-1 — zu-1ll + (1- ,Bn){ (1 - %) lyn = yn-ll

+

1
-5 [17-1 = rulMo + lotw = ot | |[f Q) || + 1 = Vit [ Sp-1yma |
- n
+ |8n - 8n—1| ”]r,,,l Gyn—ln] + ”Snyn—l - Sn—l_)’n—l”

N |Bn = Bnal
(1 - :3;1—1)(1 - ,Bn)

S (1 - (1 - p)an)"yn —}’n—1|| + |ﬁn - ﬁn—l”b’n—l _Zn—IH + |Vn—1 - Vn|MO

"xn - ﬁn—lyn—l ” }

+ lotn = ot | |[F Q) || + 1Y = Vit W Sn-1dmet Il + 18 = 8ty GYnt |

|,Bn - ,Bn— |
1Syt = Snaynal + =" w = Buayua |
1- ﬁn—l

=< (1 - (1 - p)an)[”xn _xn—IH + |Un - Un—ll ”Gxn—l _]anl Gxn—l” + |rn - rn—1|M0]
+1Bn = Bualynot = Zua || + 171 = 1l Mo + loty = et | [ f () |

+ |yn - yn—l| ”Sn—lyn—l” + |5n - 5n—l| ”]"n—l Gyn—ln + ”Snyn—l - Sn—lyn—ln

+ % ”an—lf(yn—l) + Vn—lsn—lyn—l + Sn—ljrn_l Gyn—l ”

= (1 - (1 - p)an)”xn _xn—IH + (|0n - an—1| + |an - an—l| + |/3n - ,Bn—l|

+ |Vn - Vn—1| + |8n - 871—1' + |rn—1 - rn|)M + ”Snyn—l _Sn—lyn—ln;

where = sup,,_ o {If G) | + 1Suyull + 11, Gyl + 1G% = T, Gn | + |1y — 2all + 2Mo} < M for
some M > 0. So, in terms of Lemma 2.7 and conditions (i), (iii), and (iv), we conclude that

lim ||x,41 — %, = 0. (5.46)
n— 00

Next we show that ||x, — Gx,,|| = 0 as n — oo.
Indeed, utilizing Lemma 2.3 and (5.40), we get
1y =PI = |0(G = p) + (1 = 0,) U, Gt = )|
< 0ullGxn = plI*> + A = 0) )y, Gt — PII* — 041 — 0:)g (1 Gt — ], Gl
< oullxn = plI* + A = )% — plI* = 0,(1 - 0,)¢ (1 G,y — ], Gt )
= [0 = pII* = 0u (1 ~ 0:)g (G — J, Gatall). (5.47)

According to Lemma 2.2, we have from (5.40) and (5.47)

2
l%n41 = Pl

= “an(fO/n) —f(P)) + Bu(n = ) + VYu(Spyn — p) + 8., Gy — p) + an(f(p) —P) ||2
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< en(F3) = £ ®)) + BaOn = ) + Vu(Suyn = P) + 8,0, Gy = )|
+20,(f (p) = p, ] (Kni1 — P))

< |[f @) =@ + Ballyn = I* + Vull Suyn = I + 841, Gy — pII?
+20,(f () = p, ] (X1 — P))

< w02y = pI* + Bullyn = PI* + vullyn = PII* + 841Gy — pII?
+ 20, (f (p) = p J (X1 — p))

< aupllyn = I + Ballyu =PI + Vullyn = PI* + 84llyn — pII?
+ 20, |[f (0) = p | %001 -

= (1=, (1= ) llyn = pI* + 20 [f B) = p | 101 = Pl

< llyn = pI* + 20 |[f () = p |11 — Pl

< lxw = pII* = 041 = 0,)g (I Gxn = J1,, G ) + 20t |[f () = p | %1 = P,

which hence yields

on(1- an)g(IIGx,, —Jr Gxnll)
< 1% = pI* = %01 = pII* + 200, ||f (p) = p || 1001 — P

< (Ilen = 2l + 0s1 = PI) 1% = a1 | + 20 [ () = p|| 1631 — I

Since a,, — 0 and ||x,4,1 — %,]| = O, from condition (v) and the boundedness of {x,}, it
follows that

lim g(||Gx,, — J,,Gxll) = 0.
n—oQ
Utilizing the properties of g, we have
lim ||Gx, - J,,, Gx,| = 0. (5.48)
n— 00
On the other hand, x,,; can be rewritten as

Xp+l = ar(f(yn) + ﬂnyn + VnSnyn + an]rn Gyn

VuSu¥n + 81l GYn
Vo + Oy

= ouyf Un) + BuVn + €nZn, (5.49)

= ar(f(yn) + lsnyn + (Vn + 8;1)

wheree, =y, +8,and 2, = V”S"y'y’;+£’”®” Utilizing Lemma 2.4, from (5.41) and (5.49), we

have

%241 —P||2 = ”an(f(yn) —P) + Bu(yn —p) + sz, — p) ||2
< @ulf ) = || + Bullyn — I + eallZn — pII> = Buengi (122 — yull)
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= &, [f ) = p| + Bullyn = 2II* = Buengi (1120 = yull)

VnSnyn + (Sn]rn Gyn _ >

Vi + 6n
= &, [f ) =P + Bullyn = 2II* = Buengi (112, = yull)

+ ey

2
Vn 3u
(Suyn—p) + Ur.Gyn —p)
Va + 8 Y+ 8u

< aulfO) = || + Bullyn — PI> = Buengi (125 — yull)

¥, 1)
- ”Snyn —P||2 + -
L Vn +8n Vn +5n

< aulfO) = || + Bullyn — I> = Buengi (125 — yull)

+ €

N

+ ey

”]rn Gyn —P||2]

Vn 2 8y 2
te —pl*+ -
nl:yn s ¥ = Pl ot 5, ly» = pll }

= &, [f5n) —p|” + A= )y — I = Buengi (1120 = yull)
< au|f0n) = | + 130 = PI? = Buengi (1120 = yul)
< au|[f ) = || + 120 = PI* = Buengi (12 =yl

which hence implies that

Breni (122 = yull) < ctulf ) = 2| + 120 = pI? = 01 = pII?

2
< [0 = p[* + (120 =PI+ Wes = 1) 6 = il
Utilizing (5.46), conditions (i), (ii), (v), and the boundedness of {x,} and {f(y,)}, we get
Tim g1 (112s —yul)) = 0.
From the properties of g, we have
lim 12, — y,ll = 0. (5.50)
n— 00

Utilizing Lemma 2.3 and the definition of z,, we have

12—l = ‘ S + Sl G _ [
Vi + On
= ‘ yn)fan (Snyn—p) + yn(i"an U+ GYn = P) 2
< ynyj 51500 =PI+ yn‘i” 5V, G = I
- (yﬁ—‘sgn)zgz(nfm Gy = Suyull)
< llyn—pli* - %gz(llfmGyn S,

+ 38,
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which leads to

Yun .
ng(lenGyn = Suyull) < llyn —pI* = 12, - pII?
n n

< (lyn =2l + 120 = PI) 1Y = Zull-
Since {y,,} and {2,,} are bounded, we deduce from (5.50) and condition (ii) that
lim gZ(”Snyn _]rnGyn”) =0.
n—0Q
From the properties of g, we have
fim (1S, — Jy, Gyall = 0. (551)
Furthermore, x,,,; can also be rewritten as

Xp+l = ar(f(yn) + ﬂnyn + Vnsnyn + 8n]rn Gyn
of Vu) + )y, Gy

o, + 6,

= ,Bnyn + VnSnyn + (an + (Sn)
= Buyn + VuSuYn + AnZn,

anf(yn)"'lsnlrn

whered, = a, +8,and z, = L S Utilizing Lemma 2.4 and the convexity of | - |12,

we have from (5.41)

01— 212
= 1 BuGn — 1) + Vu(Suyu — P) + du(Eu )|
< Bullyn =PI + ¥l Suyn =PI + dullZn — PI = Bu¥ugs (19 — Suyall)
2nf On) + 1, Gy

o, + 6,

2

= Bullyn _P||2 + VullSnyn —P||2 +d,

- IBnJ/ngfi(”yn —Snyn ”)

2
o

:5;1 (f(yn) —P) +

Sn
8 (]rnGyn —P)

= Bullyn _P||2 + VullSnyn —P||2 +d,
o+

Oy

- IBnVng?x(”yn = Snyn ”)

oy 2 8;1 2
A on) =l + - G-

< Bullyn =PI + Vulyu — pI? +dn[a
_:Bnyng3(||yn _Snyn”)

<oy Hf(yn) —P”2 + (ﬁn + Vn)”yn —P||2 + Bn”yn —P||2 - ﬂnyng3(”yn - Snyn”)

=0y “f()’n) _P”2 + (1= o)1y —P||2 - ﬂnyng3(||yn - Snyn”)

< an[f ) = p|* + 19 = PII* = B (13n = Suval)

< au[f o) = 2| + 120 = 21 = Buvugs (13 = Suyul),
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which implies that

,BnVngS(”yn _Snyn”) = oy ”f(yn) —PHZ + ”xn —P||2 - ||xn+1 —P||2

< o fG) =p[” + (150 = 1l + 12001 = P11 6 = 2ol
From (5.46), conditions (i), (ii), (v), and the boundedness of {x,} and {f(y,)}, we have
Tim g3([lyn = Suyull) = 0.
Utilizing the properties of g3, we have
lim 1y, - Suyull = 0. (552)
n—>00
Thus, from (5.51) and (5.52), we get
yn = JruGYull < Y0 = Suyull + 1S0Yn = JruGyull = 0 as n — o0,
that is,
Jim ly, = Jr, Gy, = 0. (5.53)
Therefore, from (5.40), (5.46), (5.52), (5.53), and o, — 0, it follows that

”xn _yn”
=< ”xn _xn+1|| + ||xn+1 _yn”
< %0 = Xt | + @ [fOn) = V|| + VullSuyn = yull + 8ullTru Gy = ¥l

<%0 = Xt | + @ [fOn) = V|| + 1Su¥n = Yl + Wru Gy = yull = 0 as m— o0,
that is,
Jim lx, =y, = 0. (5.54)
Utilizing (5.40), (5.48), and (5.54), we obtain

1%, = Gxull < [I%n _yn” + ”yn — Gxyll = |l%, _yn” +(1- Jn)||]rn Gxy, — Gxy ||

< 1% = yull + IV, GXn — Gxull > 0 as n— o0,
that is,
nlig)lo 1%, — Gx,|| = 0. (5.55)
In addition, from (5.52) and (5.54), we have

16 = Suxnll < %60 = Yull + 1130 = Suull + 1Suyn = Snxnll

< 2[1%0 = Yull + 1y = Suyull > 0 as n — oo,
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lim ||x, — Syx,| = 0. (5.56)
n—0oQ
In terms of (5.56) and Lemma 2.6, we have
”xn - an” = ”xn - Snxn” + ”Snxn - an” -0 asn— 00,
that is,
lim ||, — Sx,|| = 0. (5.57)
n—0oQ
We note that

”xn _]r,,xn” S ”xn _.yn” + ”_yn _]rnGyn” + ”]rnGyn _]rnGxn” + ”]rnGxn _]rnxn”

=20 = yull + lyn _]rnGyn” + |Gy = .
So, from (5.53), (5.54), and (5.55), we obtain
lim (%, —J;,, x4l = 0. (5.58)
n—00

Furthermore, repeating the same arguments as those of (5.29) in the proof of Theo-

rem 4.1, we can derive
lim ”xn _]rxn” =0, (559)
n—0oQ
for a fixed number r € (0, ¢). Define a mapping Wx = (1 — 6; — 63)],x + 61Sx + 6,Gx, where
61,0, € (0,1) are two constants with 6; + 6, < 1. Then by Lemma 2.5, we have Fix(W) =

Fix(J,) N Fix(S) N Fix(G) = F. We observe that

%, — Wyl = ” (1 =61 = 62) (% = Jrx) + 61 (0 — Sx) + O2(%0 — Gxn)”

< (1 =01 = 0) %0 = Jrxull + O1llxn — Sxll + Oallx, — G,
From (5.55), (5.57), and (5.59), we obtain
lim [|%, — Wi, | = 0. (5.60)
n—00
Now, we claim that

limsuplf (q) - ¢,/ (x» — q)) <0, (5.61)

n—o0

where g = s — lim;_, ¢ x; with x; being the fixed point of the contraction

x> tf (x) + (1 - £) Wa.
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Then x; solves the fixed point equation x; = #f(x;) + (1 — t) Wx,. Repeating the same argu-
ments as those of (5.36) in the proof of Theorem 4.1, we derive

lim sup lim sup<xt —flxe), J(xe — x,,)) <0. (5.62)

t—0 n—00

Repeating the same arguments as those of (5.37) in the proof of Theorem 4.1, we obtain

limsup(f(q) - 4,] (. — q))

n—0o0

= limsuplim sup(f(q) — ¢,J (% — q))

t—0 n—00
<limsuplim sup(f(q) —q,](xp—q) = J(x, — xt)). (5.63)
t—0 n—00

Since X has a uniformly Gateaux differentiable norm, the duality mapping J is norm-to-
weak* uniformly continuous on bounded subsets of X. Consequently, the two limits are
interchangeable, and hence (5.61) holds. From (5.46), we get (x,,1 — q) — (x, — g) — O.
Noticing the norm-to-weak* uniform continuity of J on bounded subsets of X, we deduce
from (5.61) that

limsuplf (q) - ¢, (%n1 — 9))

=limsup({f(q) - 4, @ns1 — q) =T (% — @) + (@) — @] (%0 — 9)))

n— 00

=lim sup(f(q) —q,](x, - q)> <0.

n—0o0

Finally, let us show that x, — g as n — oco. We observe that

1 —qll = ”an (G(xn) - !Z) +(1-ay) (]rn G(x,) - q) ”

< dull%n —qll + (L= o) %0 — gl = 1% — 41,

and hence

%1 = ql* = eulf On) —f (@) + £ (@) — 4] @ni1 — )
+(Bun = @) + Vu(Suyn — @) + 8,(J1, G) — 9), ] (Xns1 — 9))
< au|f ) = F(@ || 11201 — qll + €ulf (@) — 4, T (61 — )
1 Bun = @) + ¥u(Su¥n = @) + 8401, Gn) = @) | %1 —
< w10 = qll%ni1 — qll + @ulf (@) — ¢, (i1 — )
+ (Bullyn = all + ¥Yullyn = qll + 8ullyn — qll) %001 — 4l
= oullyn — qlllxn — qll + @nlf (@) — 4,] Fn1 — 9))
+ (1 =) llyn = qllllxni1 — gl
< (1-au@=0))lyn — qlll%ni1 — gll + @alf (@) — @] i1 — )

< (1-an@ = 0)) %0 — qll1%ne1 — qll + otulf (@) — 4,] (i1 — 9))
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1—a,(1—
= #(Hxn - 61||2 + Hxnﬂ - q||2) + OlyI(f(q) — q,](xn+1 _q))
1—a,(1- 1
< # “xn - Q||2 + 5 ||xn+1 - q”2 + an(f(q) — q,](xn+1 — q))

Thus, we have

”xn+1 - q”2 =< (1 - an(l - ,0)) ”xn - 51||2 + 20‘n<f(q) - q’](xrnl - q)>

2{f(q) — q,J X1 — q)) )

1—» (5.64)

(1= au(1 - p))ll%s — gll* + @u(1 - p)

Since Y2 a, = 0o and limsup,,_, . (f(q) — ¢,/ (%41 — g)) < 0, by Lemma 2.7, we conclude
from (5.64) that x,, — g as n — o0. This completes the proof. g

Corollary 5.2 Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gateaux differentiable norm. Let I1c be a sunny nonex-
pansive retraction from X onto C and A C X x X be an accretive operator on X such
that D(A) c C c N
tractive and o;-strongly accretive with o; + ,; > 1 for i =1,2. Let f : C — C be a con-

o RU + rA). Let the mapping B; : C — X be );-strictly pseudocon-
traction with coefficient p € (0,1) and S : C — C be a nonexpansive mapping such that
F=Fix(S)N 2 NA"0 # 0 with 1 - %(1 - /%) < u; <1 fori=1,2. Suppose that As-
sumption 5.1 holds. For arbitrarily given xo € C, let {x,} be the sequence generated by

Yn = UnGxn + (1 - Gn)]r,, me
Xn+l = anf()’n) + ,Bnyn + VnSyn + (Sn]ry, Gym Vn>0.

Then the sequence {x,} converges strongly to q € F, which solves the following VIP:

(a-f(@),J(g-p)) <0, VpeF.

Remark 5.1 Our Theorems 5.1 and 5.2 improve and extend [30, Theorem 3.2], [20, The-
orem 3.1] and [29, Theorem 3.1] in the following aspects.
(a) The problem of finding a point g € (), Fix(S,) N £2 N A70 in Theorems 5.1 and 5.2
is more general and more subtle than the problem of finding g € (), Fix(T,) in [30,
Theorem 3.2], the problem of finding g € ("), Fix(T,,) N §2 in [20, Theorem 3.1] and
the problem of finding ¢ € A710 in [29, Theorem 3.1].
(b) Theorems 5.1 and 5.2 are proved without the asymptotical regularity assumption of
{x,} in [29, Theorem 3.1] (that is, lim,_, o [|%; — X1 = 0).
() The iterative scheme in [20, Theorem 3.1] is extended to develop the iterative
schemes (5.1) and (5.40) in Theorems 5.1 and 5.2 by virtue of the iterative schemes
of [30, Theorem 3.2] and [29, Theorem 3.1]. The iterative schemes (5.1) and (5.40)
in Theorems 5.1 and 5.2 are more advantageous and more flexible than the iterative
scheme in [20, Theorem 3.1] because they involves several parameter sequences.
(d) The iterative schemes (5.1) and (5.40) in Theorems 5.1 and 5.2 are different from the
one given in [30, Theorem 3.2], [20, Theorem 3.1] and [29, Theorem 3.1] because
the first iteration step in (5.1) is implicit and because the mapping G in [20,
Theorem 3.1] and the mapping /., in [29, Theorem 3.1] are replaced by the same
composite mapping J,, G in Theorems 5.1 and 5.2.
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(e) The proof of [20, Theorem 3.1] depends on the argument techniques in [10], the
inequality in 2-uniformly smooth Banach spaces and the inequality in smooth and
uniform convex Banach spaces. Because the composite mapping /., G appears in the
iterative scheme (5.1) in Theorem 5.1, the proof of Theorem 5.1 depends on the
argument techniques in [10], the inequality in 2-uniformly smooth Banach spaces,
the inequality in smooth and uniform convex Banach spaces, and the inequalities in
uniform convex Banach spaces. However, the proof of our Theorem 5.1 does not
depend on the argument techniques in [10], the inequality in 2-uniformly smooth
Banach spaces, and the inequality in smooth and uniform convex Banach spaces. It
depends on only the inequalities in uniform convex Banach spaces.

(f) The assumption of the uniformly convex and 2-uniformly smooth Banach space X
in [20, Theorem 3.1] is weakened to the one of the uniformly convex Banach space

X having a uniformly Géateaux differentiable norm in Theorem 5.2.
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