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Abstract
In this paper, we present relaxed and composite viscosity methods for computing a
common solution of a general systems of variational inequalities, common fixed
points of infinitely many nonexpansive mappings and zeros of accretive operators in
real smooth and uniformly convex Banach spaces. The relaxed and composite
viscosity methods are based on Korpelevich’s extragradient method, the viscosity
approximation method and the Mann iteration method. Under suitable assumptions,
we derive some strong convergence theorems for relaxed and composite viscosity
algorithms not only in the setting of a uniformly convex and 2-uniformly smooth
Banach space but also in a uniformly convex Banach space having a uniformly
Gâteaux differentiable norm. The results presented in this paper improve, extend,
supplement, and develop the corresponding results given in the literature.

1 Introduction
The theory of variational inequalities is well established and a tool to solvemany problems
arising from science, engineering, social sciences, etc., see, for example, [–] and the ref-
erences therein. One of the interesting directions, from the research view point, in the
theory of variational inequalities is to develop some new iterative methods for comput-
ing the approximate solutions of different kinds of variational inequalities. In , Kor-
pelevich [] proposed an iterative algorithm for solving variational inequalities (VI) in the
finite dimensional space setting, It is now known as the extragradient method. Korpele-
vich’s extragradient method has received great attention by many authors, who improved
it in various ways and in different directions, see, for example [–] and the references
therein. In the recent past, several iterative methods for solving VI were proposed and an-
alyzed in [–] in the setting of Banach spaces. In the last three decades, the system of
variational inequalities is used as a tool to study the Nash equilibrium problem for a finite
or infinite number of players, see, for example, [, , , ] and the references therein. Cai
and Bu [] considered a system of two variational inequalities (SVI) in the setting of real
smooth Banach spaces. They proposed and analyzed an iterative method for computing
the approximate solutions of system of variational inequalities. Such a solution is also a
common fixed point of a family of nonexpansive mappings.
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One of the most interesting problems in nonlinear analysis is to find a zero of an ac-
cretive operator. In , Aoyama et al. [] suggested a Halpern type iterative method
for finding a common fixed point of a countable family of nonexpansive mappings and a
zero of an accretive operator. They studied the strong convergence of the sequence gen-
erated by the proposed method in the setting of a uniformly convex Banach space having
a uniformly Gâreaux differentiable norm. Ceng et al. [] introduced and analyzed the
composite iterative scheme to compute a zero of m-accretive operator A defined on a
uniformly smooth Banach space or a reflexive Banach space having a weakly sequentially
continuous duality mapping. It is shown that the iterative process in each case converges
strongly to a zero of A. Subsequently, Jung [] studied a viscosity approximationmethod,
which generalizes the composite method in [], to investigate the zero of an accretive
operator.
During the last decade, several iterative methods have been proposed and analyzed to

find a common solution of two different fixed point problems, a fixed point problem and
a variational inequality problem, a fixed point problem for a family of nonexpansive map-
pings and a variational inequality problem or a fixed point problem and a system of vari-
ational inequalities, etc. See, for example, [, , , , ] and the references therein.
In the present paper, we mainly propose two different methods, namely, relaxed viscos-

ity method and composite viscosity method, to find a common fixed point of an infinite
family of nonexpansivemappings, a system of variational inequalities and zero of an accre-
tive operator in the setting of a uniformly convex and -uniformly smooth Banach spaces.
Thesemethods are based onKorpelevich’s extragradientmethod, viscosity approximation
method and Mann iteration method. Under suitable assumptions, we derive some strong
convergence theorems for relaxed and composite viscosity algorithms not only in the set-
ting of a uniformly convex and -uniformly smooth Banach space but also in the setting of
uniformly convex Banach spaces having a uniformly Gâteaux differentiable norm. The re-
sults presented in this paper improve, extend, supplement, and develop the corresponding
results in [, , , , ].

2 Preliminaries
Throughout the paper, unless otherwise specified, we adopt the following assumptions
and notations.
Let X be a real Banach space whose dual space is denoted by X∗. Let C be a nonempty

closed convex subset of X. We denote by ΞC the set of all contractive mappings from C
into itself.
The normalized duality mapping J : X → X∗ is defined by

J(x) =
{
x∗ ∈ X∗ :

〈
x,x∗〉 = ‖x‖ = ∥∥x∗∥∥}, ∀x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing. It is an immediate consequence of the
Hahn-Banach Theorem that J(x) is nonempty for each x ∈ X.
Let U = {x ∈ X : ‖x‖ = } denote the unite sphere in X. A Banach space X is said to be

uniformly convex if for each ε ∈ (, ], there exists δ >  such that for all x, y ∈U ,

‖x – y‖ ≥ ε ⇒ ‖x + y‖


≤  – δ.
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It is well known that a uniformly convex Banach space is reflexive and strictly convex.
A Banach space X is said to be smooth if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

,

exists for all x, y ∈U ; in this case, X is also said to have aGâteaux differentiable norm. X is
said to have a uniformly Gâteaux differentiable norm if for each y ∈U , the limit is attained
uniformly for all x ∈U . Moreover, it is said to be uniformly smooth if this limit is attained
uniformly for all x, y ∈ U . The norm of X is said to be Fréchet differentiable if, for each
x ∈U , this limit is attained uniformly for all y ∈U . A function ρ : [,∞) → [,∞) defined
by

ρ(τ ) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ X,‖x‖ = ,‖y‖ = τ

}

is called themodulus of smoothness ofX. It is well known thatX is uniformly smooth if and
only if limτ→ ρ(τ )/τ = . Let q be a fixed real number with  < q ≤ . Then a Banach space
X is said to be q-uniformly smooth if there exists a constant c >  such that ρ(τ ) ≤ cτ q

for all τ > . As pointed out in [], no Banach space is q-uniformly smooth for q > .
In addition, it is also known that J is single-valued if and only if X is smooth, whereas if
X is uniformly smooth, then the mapping J is norm-to-norm uniformly continuous on
bounded subsets of X. If X has a uniformly Gâteaux differentiable norm then the duality
mapping J is norm-to-weak∗ uniformly continuous on bounded subsets of X. For further
details of the geometry of Banach spaces, we refer to [–].
Now, we present some lemmas which will be used in the sequel.

Lemma . [] Let X be a -uniformly smooth Banach space. Then

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x)

〉
+ ‖κy‖, ∀x, y ∈ X,

where κ is the -uniformly smooth constant of X .

The following lemma is an immediate consequence of the subdifferential inequality of
the function 

‖ · ‖.

Lemma . [] Let X be a real Banach space X. Then, for all x, y ∈ X,
(a) ‖x + y‖ ≤ ‖x‖ + 〈y, j(x + y)〉, ∀j(x + y) ∈ J(x + y);
(b) ‖x + y‖ ≥ ‖x‖ + 〈y, j(x)〉, ∀j(x) ∈ J(x).

Lemma . [] Given a number r > . A real Banach space X is uniformly convex if and
only if there exists a continuous strictly increasing function g : [,∞) → [,∞), g() = ,
such that

∥∥λx + ( – λ)y
∥∥ ≤ λ‖x‖ + ( – λ)‖y‖ – λ( – λ)g

(‖x – y‖)
for all λ ∈ [, ] and x, y ∈ X such that ‖x‖ ≤ r and ‖y‖ ≤ r.
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Lemma . [] Let X be a uniformly convex Banach space and Br = {x ∈ X : ‖x‖ ≤ r},
r > . Then there exists a continuous, strictly increasing, and convex function g : [,∞] →
[,∞], g() =  such that

‖αx + βy + γ z‖ ≤ α‖x‖ + β‖y‖ + γ ‖z‖ – αβg
(‖x – y‖)

for all x, y, z ∈ Br and all α,β ,γ ∈ [, ] with α + β + γ = .

Proposition . [] Let X be a real smooth and uniform convex Banach space and r > .
Then there exists a strictly increasing, continuous, and convex function g : [, r] → R,
g() =  such that

g
(‖x – y‖)≤ ‖x‖ – 

〈
x, J(y)

〉
+ ‖y‖, ∀x, y ∈ Br ,

where Br = {x ∈ X : ‖x‖ ≤ r}.

Lemma . [] Let C be a nonempty closed convex subset of a strictly convex Banach
space X. Let {Tn}∞n= be a sequence of nonexpansive mappings from C into itself such that⋂∞

n= Fix(Tn) is nonempty. Let {λn} be a sequence of positive numbers with
∑∞

n= λn = .
Then a mapping S : C → C defined by Sx =

∑∞
n= λnTnx, for all x ∈ C, is well defined and

nonexpansive, and Fix(S) =
⋂∞

n= Fix(Tn).

Lemma . [] Let {xn} and {zn} be bounded sequences in a Banach space X and {βn}
be a sequence of nonnegative numbers in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Suppose that xn+ = βnxn + ( – βn)zn for all integers n ≥  and lim supn→∞(‖zn+ – zn‖ –
‖xn+ – xn‖)≤ . Then limn→∞ ‖xn – zn‖ = .

Lemma . [] Let {sn} be a sequence of nonnegative real numbers satisfying

sn+ ≤ ( – αn)sn + αnβn + γn, ∀n≥ ,

where {αn}, {βn}, and {γn} satisfy the conditions:
(i) {αn} ⊂ [, ] and

∑∞
n= αn =∞;

(ii) lim supn→∞ βn ≤ ;
(iii) γn ≥ , ∀n≥ , and

∑∞
n= γn <∞.

Then lim supn→∞ sn = .

A mapping T : C → C is called nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for every x, y ∈ C.
The set of fixed points of T is denoted by Fix(T). A mapping A : C → X is said to be
(a) accretive if for each x, y ∈ C, there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉≥ ;

(b) α-strongly accretive if for each x, y ∈ C, there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉≥ α‖x – y‖, for some α ∈ (, );
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(c) β-inverse strongly accretive if for each x, y ∈ C, there exists j(x – y) ∈ J(x – y) such
that

〈
Ax –Ay, j(x – y)

〉≥ β‖Ax –Ay‖, for some β > ;

(d) λ-strictly pseudocontractive [, ] if for each x, y ∈ C, there exists j(x – y) ∈ J(x – y)
such that

〈
Ax –Ay, j(x – y)

〉≤ ‖x – y‖ – λ
∥∥x – y – (Ax –Ay)

∥∥, for some λ ∈ (, ).

It is worth to emphasize that the definition of the inverse strongly accretive mapping is
based on that of the inverse strongly monotone mapping [].

Lemma . [, Lemma .] Let C be a nonempty closed convex subset of a real -
uniformly smooth Banach space X and for each i = , , Bi : C → X be an αi-inverse strongly
accretive mapping. Then, for each i = , ,

∥∥(I –μiBi)x – (I –μiBi)y
∥∥ ≤ ‖x – y‖ + μi

(
μiκ

 – αi
)‖Bix – Biy‖, ∀x, y ∈ C,

where μi > . In particular, if  < μi ≤ αi
κ
, then I –μiBi is nonexpansive for each i = , .

Let C be a nonempty closed convex subset of a Banach space X and T : C → C be a
nonexpansive mapping with Fix(T) �= ∅. For all t ∈ (, ) and f ∈ ΞC , let xt ∈ C be a unique
fixed point of the contraction x �→ tf (x) + ( – t)Tx on C, that is,

xt = tf (xt) + ( – t)Txt .

Lemma. [, ] Let X be an uniformly smooth Banach space, or a reflexive and strictly
convex Banach space with a uniformly Gâteaux differentiable norm. Let C be a nonempty
closed convex subset of X , T : C → C be a nonexpansive mapping with Fix(T) �= ∅, and
f ∈ ΞC . Then the net {xt} defined by xt = tf (xt) + ( – t)Txt converges strongly to a point in
Fix(T). If we define amapping Q :ΞC → Fix(T) by Q(f ) := s– limt→ xt , ∀f ∈ ΞC , then Q(f )
solves the VIP

〈
(I – f )Q(f ), J

(
Q(f ) – p

)〉≤ , ∀f ∈ ΞC ,p ∈ Fix(T).

Recall that a (possibly set-valued mapping) operator A ⊂ X × X with domain D(A) and
range R(A) in X is accretive if, for each xi ∈ D(A) and yi ∈ Axi (i = , ), there exists a
j(x – x) ∈ J(x – x) such that 〈y – y, j(x – x)〉 ≥ . An accretive operator A is said
to satisfy the range condition if D(A) ⊂ R(I + rA) for all r > . An accretive operator A is
m-accretive if R(I + rA) = X for each r > . If A is an accretive operator which satisfies
the range condition, then we define a mapping Jr : R(I + rA) → D(A) by Jr = (I + rA)– for
each r > , which is called the resolvent of A. It is well known that Jr is nonexpansive and
Fix(Jr) = A– for all r > . Therefore,

Fix(Jr) = A– =
{
z ∈D(A) :  ∈ Az

}
.

If A– �= ∅, then the inclusion  ∈ Az is solvable.

http://www.fixedpointtheoryandapplications.com/content/2014/1/29
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Proposition . (Resolvent Identity []) For λ > , μ >  and x ∈ X,

Jλx = Jμ
(

μ

λ
x +

(
 –

μ

λ

)
Jλx
)
.

Let D be a subset of C. A mapping Π : C →D is said to be sunny if

Π
[
Π (x) + t

(
x –Π (x)

)]
= Π (x),

whenever Π (x) + t(x – Π (x)) ∈ C for all x ∈ C and t ≥ . A mapping Π : C → C is called
a retraction if Π = Π . If a mapping Π : C → C is a retraction, then Π (z) = z for every
z ∈ R(Π ) where R(Π ) is the range of Π . A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D.

Lemma . [] Let C be a nonempty closed convex subset of a real smooth Banach space
X, D be a nonempty subset of C and Π be a retraction of C onto D. Then the following
statements are equivalent:
(a) Π is sunny and nonexpansive;
(b) ‖Π (x) –Π (y)‖ ≤ 〈x – y, J(Π (x) –Π (y))〉, ∀x, y ∈ C;
(c) 〈x –Π (x), J(y –Π (x))〉 ≤ , ∀x ∈ C, y ∈D.

It is well known that if X = H a Hilbert space, then a sunny nonexpansive retraction
ΠC is coincident with the metric projection from X onto C, that is, ΠC = PC . If C is a
nonempty closed convex subset of a strictly convex and uniformly smooth Banach space
X and if T : C → C is a nonexpansive mapping with the fixed point set Fix(T) �= ∅, then
the set Fix(T) is a sunny nonexpansive retract of C.

Lemma . [, Lemma .] Let C be a nonempty closed convex subset of a real -
uniformly smooth Banach space X and ΠC be a sunny nonexpansive retraction from X
onto C. For each i = , , let Bi : C → X be an αi-inverse strongly accretive mapping and
G : C → C be defined by

Gx =ΠC
[
ΠC(x –μBx) –μBΠC(x –μBx)

]
, ∀x ∈ C.

If  < μi ≤ αi
κ

for each i = , , then G : C → C is nonexpansive.

Let f ∈ ΞC with a contractive coefficient ρ ∈ (, ), {Tn}∞n= be a sequence of nonexpan-
sive self-mappings on C and {λn}∞n= be a sequence of nonnegative numbers in [, ]. For

http://www.fixedpointtheoryandapplications.com/content/2014/1/29
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any n≥ , a self-mappingWn on C defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un,n+ = I,

Un,n = λnTnUn,n+ + ( – λn)I,

Un,n– = λn–Tn–Un,n + ( – λn–)I,

· · ·
Un,k = λkTkUn,k+ + ( – λk)I,

Un,k– = λk–Tk–Un,k + ( – λk–)I,

· · ·
Un, = λTUn, + ( – λ)I,

Wn =Un, = λTUn, + ( – λ)I

(.)

is calledW-mapping [] generated by Tn,Tn–, . . . ,T and λn,λn–, . . . ,λ.

Lemma. [, Lemma .] Let C be a nonempty closed convex subset of a strictly convex
Banach space X. Let {Tn}∞n= be a sequence of nonexpansive self-mappings on C such that⋂∞

n= Fix(Tn) �= ∅ and {λn}∞n= be a sequence of positive numbers in (,b] for some b ∈ (, ).
Then, for every x ∈ C and k ≥ , the limit limn→∞ Un,kx exists.

B using Lemma ., we define a W -mapping W : C → C generated by the sequences
{Tn}∞n= and {λn}∞n= by

Wx = lim
n→∞Wnx = lim

n→∞Un,x, for every x ∈ C.

Throughout this paper, we assume that {λn}∞n= is a sequence of positive numbers in (,b]
for some b ∈ (, ).

Lemma. [, Lemma .] Let C be a nonempty closed convex subset of a strictly convex
Banach space X. Let {Tn}∞n= be a sequence of nonexpansive self-mappings on C such that⋂∞

n= Fix(Tn) �= ∅ and let {λn}∞n= be a sequence of positive numbers in (,b] for some b ∈
(, ). Then Fix(W ) =

⋂∞
n= Fix(Tn).

Let μ be a continuous linear functional on l∞ and s = (a,a, . . .) ∈ l∞. We write μn(an)
instead of μ(s). μ is called a Banach limit if μ satisfies ‖μ‖ = μn() =  and μn(an+) =
μn(an) for all (a,a, . . .) ∈ l∞. If μ is a Banach limit, then the following implications hold:
(a) for all n≥ , an ≤ cn implies μn(an) ≤ μn(cn);
(b) μn(an+r) = μn(an) for any fixed positive integer r;
(c) lim infn→∞ an ≤ μn(an) ≤ lim supn→∞ an for all (a,a, . . .) ∈ l∞.

Lemma . [] Let a ∈ R be a real number and a sequence {an} ∈ l∞ satisfy the
condition μn(an) ≤ a for all Banach limits μ. If lim supn→∞(an+r – an) ≤ , then
lim supn→∞ an ≤ a.

In particular, if r =  in Lemma ., then we obtain the following corollary.

http://www.fixedpointtheoryandapplications.com/content/2014/1/29
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Corollary . [] Let a ∈ R be a real number and a sequence {an} ∈ l∞ satisfy the
condition μn(an) ≤ a for all Banach limits μ. If lim supn→∞(an+ – an) ≤ , then
lim supn→∞ an ≤ a.

3 Formulations
Let C be a nonempty closed convex subset of a smooth Banach space X, B,B : C → X
be nonlinear mappings and μ and μ be two positive constants. The problem of system
of variational inequalities (SVI) in the setting of a real smooth Banach space X is to find
(x∗, y∗) ∈ C ×C such that⎧⎨⎩〈μBy∗ + x∗ – y∗, J(x – x∗)〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗, J(x – y∗)〉 ≥ , ∀x ∈ C.
(.)

The set of solutions of SVI (.) is denoted by SVI(C,B,B). Very recently, Cai and Bu
[] constructed an iterative algorithm for solving SVI (.) and a common fixed point
problem of an infinite family of nonexpansive mappings in a uniformly convex and -
uniformly smooth Banach space. They studied the strong convergence of the proposed
algorithm.
In particular, if X =H , a real Hilbert space, then SVI (.) reduces to the following prob-

lem of SVI of finding (x∗, y∗) ∈ C ×C such that⎧⎨⎩〈μBy∗ + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗,x – y∗〉 ≥ , ∀x ∈ C.
(.)

Further, if B = B = A, where A : C → X is an operator, and x∗ = y∗, then the SVI (.)
reduces to the classical variational inequality problem (VIP) of finding x∗ ∈ C such that

〈
Ax∗,x – x∗〉≥ , ∀x ∈ C. (.)

The solution set of the VIP (.) is denoted by VI(C,A). For details and applications of
theory of variational inequalities, we refer to [–] and the references therein.
Recently, Ceng et al. [] transformed problem (.) into a fixed point problem in the

following way.

Lemma . [] For given x̄, ȳ ∈ C, (x̄, ȳ) is a solution of problem (.) if and only if x̄ is a
fixed point of the mapping G : C → C defined by

G(x) = PC
[
PC(x –μBx) –μBPC(x –μBx)

]
, ∀x ∈ C, (.)

where ȳ = PC(x̄ –μBx̄) and PC is the projection of H onto C.

In particular, if for each i = , , Bi : C → H is a βi-inverse strongly monotone mapping,
then G is a nonexpansive mapping provided μi ∈ (, βi) for each i = , .
In particular, whenever X is a real smooth Banach space, B ≡ B ≡ A and x∗ = y∗, then

SVI (.) reduces to the variational inequality problem (VIP) of finding x∗ ∈ C such that

〈
Ax∗, J

(
x – x∗)〉≥ , ∀x ∈ C, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/29
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which was considered by Aoyama et al. []. Note that VIP (.) is connected with the
fixed point problem for nonlinear mapping [], the problem of finding a zero point of a
nonlinear operator [] and so on. It is clear that VIP (.) extends VIP (.) from Hilbert
spaces to Banach spaces. For further study on VIP in the setting of Banach spaces, we refer
to [, ] and the references therein.
Define a mapping G : C → C by

G(x) := ΠC(I –μB)ΠC(I –μB)x, ∀x ∈ C. (.)

The fixed point set of G is denoted by Ω .

Lemma . Let C be a nonempty closed convex subset of a smooth Banach space X. Let
ΠC be a sunny nonexpansive retraction from X onto C and B,B : C → X be nonlinear
mappings.Then (x∗, y∗) ∈ C×C is a solution of SVI (.) if and only if x∗ =ΠC(y∗–μBy∗),
where y∗ =ΠC(x∗ –μBx∗).

Proof We rewrite SVI (.) as

⎧⎨⎩〈x∗ – (y∗ –μBy∗), J(x – x∗)〉 ≥ , ∀x ∈ C,

〈y∗ – (x∗ –μBx∗), J(x – y∗)〉 ≥ , ∀x ∈ C,

which is obviously equivalent to

⎧⎨⎩x∗ =ΠC(y∗ –μBy∗),

y∗ =ΠC(x∗ –μBx∗),

because of Lemma .. This completes the proof. �

In terms of Lemma ., we observe that

x∗ =ΠC
[
ΠC
(
x∗ –μBx∗) –μBΠC

(
x∗ –μBx∗)],

which implies that x∗ is a fixed point of the mapping G.
Motivated and inspired by the research going on in this area, we introduce some relaxed

and composite viscosity methods for finding a zero of an accretive operator A ⊂ X × X
such that D(A)⊂ C ⊂⋂

r> R(I + rA), solving SVI (.) and the common fixed point prob-
lem of an infinite family {Tn} of nonexpansive self-mappings onC. Ourmethods are based
on Korpelevich’s extragradient method, the viscosity approximation method, and Mann’s
iteration method. Under suitable assumptions, we derive some strong convergence theo-
rems for relaxed and composite viscosity algorithms not only in the setting of uniformly
convex and -uniformly smoothBanach space but also in a uniformly convexBanach space
having a uniformly Gâteaux differentiable norm. The results presented in this paper im-
prove, extend, supplement, and develop the corresponding results given in [, , , ,
].
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4 Relaxed viscosity algorithms and convergence criteria
In this section, we introduce relaxed viscosity algorithms in the setting of real smooth
uniformly convex Banach spaces and study the strong convergence of the sequences gen-
erated by the proposed algorithms.
Throughout this paper, we denote by Ω the fixed point set of the mapping G = ΠC(I –

μB)ΠC(I –μB).

Assumption . Let {αn}, {βn}, {γn}, {δn}, {σn} be the sequences in (, ) such that αn +
βn + γn + δn =  for all n≥ . Suppose that the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn =∞;
(ii) {γn}, {δn} ⊂ [c,d] for some c,d ∈ (, );
(iii) limn→∞(|σn – σn–| + |βn – βn–| + |γn – γn–| + |δn – δn–|) = ;
(iv)

∑∞
n= |rn – rn–| < ∞ and rn ≥ ε >  for all n≥ ;

(v)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and  < lim infn→∞ σn ≤ lim supn→∞ σn < .

Theorem . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space X. Let ΠC be a sunny nonexpansive retraction from X
onto C and A ⊂ X × X be an accretive operator such that D(A) ⊂ C ⊂⋂

r> R(I + rA). For
each i = , , let Bi : C → X be αi-inverse strongly accretive mapping and f : C → C be
a contraction with coefficient ρ ∈ (, ). Let {Ti}∞i= be an infinite family of nonexpansive
mappings from C into itself such that F :=

⋂∞
i= Fix(Ti) ∩ Ω ∩ A– �= ∅ with  < μi < αi

κ

for i = , . Assume that Assumption . holds. For arbitrarily given x ∈ C, let {xn} be a
sequence generated by

⎧⎨⎩yn = σnxn + ( – σn)JrnGxn,

xn+ = αnf (yn) + βnxn + γnWnyn + δnJrnGyn, ∀n≥ ,
(.)

where Wn is the W-mapping generated by (.). Then
(a) limn→∞ ‖xn+ – xn‖ = ;
(b) the sequence {xn}∞n= converges strongly to some q ∈ F which is a unique solution of

the following variational inequality problem (VIP):

〈
(I – f )q, J(q – p)

〉≤ , ∀p ∈ F ,

provided βn ≡ β for some fixed β ∈ (, ).

Proof We first claim that the sequence {xn} is bounded. Indeed, take a fixed p ∈ F ar-
bitrarily. Then we get p = Gp, p = Wnp, and p = Jrnp for all n ≥ . By Lemma ., G is
nonexpansive. Then, from (.), we have

‖yn – p‖ ≤ σn‖xn – p‖ + ( – σn)‖JrnGxn – p‖
≤ σn‖xn – p‖ + ( – σn)‖Gxn – p‖
≤ σn‖xn – p‖ + ( – σn)‖xn – p‖
= ‖xn – p‖ (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/29
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and

‖xn+ – p‖ ≤ αn
∥∥f (yn) – p

∥∥ + βn‖xn – p‖ + γn‖Wnyn – p‖ + δn‖JrnGyn – p‖
≤ αn

(∥∥f (yn) – f (p)
∥∥ + ∥∥f (p) – p

∥∥) + βn‖xn – p‖ + γn‖yn – p‖ + δn‖Gyn – p‖
≤ αn

(
ρ‖yn – p‖ + ∥∥f (p) – p

∥∥) + βn‖xn – p‖ + γn‖yn – p‖ + δn‖yn – p‖
≤ αn

(
ρ‖xn – p‖ + ∥∥f (p) – p

∥∥) + βn‖xn – p‖ + γn‖xn – p‖ + δn‖xn – p‖

=
(
 – αn( – ρ)

)‖xn – p‖ + αn( – ρ)
‖f (p) – p‖

 – ρ

≤ max

{
‖xn – p‖, ‖f (p) – p‖

 – ρ

}
.

By induction, we obtain

‖xn – p‖ ≤max

{
‖x – p‖, ‖f (p) – p‖

 – ρ

}
, ∀n≥ . (.)

Hence, {xn} is bounded, and so are the sequences {yn}, {Gxn}, {Gyn}, and {f (yn)}.
Next we show that

lim
n→∞‖xn+ – xn‖ = . (.)

We note that xn+ can be rewritten as follows:

xn+ = βnxn + ( – βn)zn,

where zn =
αnf (yn)+γnWnyn+δnJrnGyn

–βn
. Observe that

‖zn – zn–‖

=
∥∥∥∥αnf (yn) + γnWnyn + δnJrnGyn

 – βn
–

αn–f (yn–) + γn–Wn–yn– + δn–Jrn–Gyn–
 – βn–

∥∥∥∥
=
∥∥∥∥xn+ – βnxn

 – βn
–
xn – βn–xn–

 – βn–

∥∥∥∥
=
∥∥∥∥xn+ – βnxn

 – βn
–
xn – βn–xn–

 – βn
+
xn – βn–xn–

 – βn
–
xn – βn–xn–

 – βn–

∥∥∥∥
≤
∥∥∥∥xn+ – βnxn

 – βn
–
xn – βn–xn–

 – βn

∥∥∥∥ + ∥∥∥∥xn – βn–xn–
 – βn

–
xn – βn–xn–

 – βn–

∥∥∥∥
=


 – βn

∥∥xn+ – βnxn – (xn – βn–xn–)
∥∥ + ∣∣∣∣ 

 – βn
–


 – βn–

∣∣∣∣‖xn – βn–xn–‖

=


 – βn

∥∥xn+ – βnxn – (xn – βn–xn–)
∥∥ + |βn – βn–|

( – βn–)( – βn)
‖xn – βn–xn–‖

=


 – βn

× ∥∥αnf (yn) + γnWnyn + δnJrnGyn – αn–f (yn–) – γn–Wn–yn– – δn–Jrn–Gyn–
∥∥

+
|βn – βn–|

( – βn–)( – βn)
‖xn – βn–xn–‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/29
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≤ 
 – βn

[
αn
∥∥f (yn) – f (yn–)

∥∥ + γn‖Wnyn –Wn–yn–‖ + δn‖JrnGyn – Jrn–Gyn–‖

+ |αn – αn–|
∥∥f (yn–)∥∥ + |γn – γn–|‖Wn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖

]
+

|βn – βn–|
( – βn–)( – βn)

‖xn – βn–xn–‖. (.)

On the other hand, if rn– ≤ rn, using the resolvent identity in Proposition .,

Jrnxn = Jrn–

(
rn–
rn

xn +
(
 –

rn–
rn

)
Jrnxn

)
,

we get

‖JrnGxn – Jrn–Gxn–‖ =
∥∥∥∥Jrn–( rn–

rn
Gxn +

(
 –

rn–
rn

)
JrnGxn

)
– Jrn–Gxn–

∥∥∥∥
≤ rn–

rn
‖Gxn –Gxn–‖ +

(
 –

rn–
rn

)
‖JrnGxn –Gxn–‖

≤ ‖xn – xn–‖ + rn – rn–
rn

‖JrnGxn –Gxn–‖

≤ ‖xn – xn–‖ + 
ε
|rn – rn–|‖JrnGxn –Gxn–‖.

If rn ≤ rn–, then it is easy to see that

‖JrnGxn – Jrn–Gxn–‖ ≤ ‖xn– – xn‖ + 
ε
|rn– – rn|‖Jrn–Gxn– –Gxn‖.

By combining the above cases, we obtain

‖JrnGxn – Jrn–Gxn–‖

≤ ‖xn– – xn‖ + |rn– – rn|
ε

sup
n≥

{‖JrnGxn –Gxn–‖ + ‖Jrn–Gxn– –Gxn‖
}
, ∀n≥ .

Similarly, we have

‖JrnGyn – Jrn–Gyn–‖

≤ ‖yn– – yn‖ + |rn– – rn|
ε

sup
n≥

{‖JrnGyn –Gyn–‖ + ‖Jrn–Gyn– –Gyn‖
}
, ∀n≥ .

Therefore, we obtain⎧⎨⎩‖JrnGxn – Jrn–Gxn–‖ ≤ ‖xn– – xn‖ + |rn– – rn|M,

‖JrnGyn – Jrn–Gyn–‖ ≤ ‖yn– – yn‖ + |rn– – rn|M, ∀n≥ ,
(.)

where

sup
n≥

{

ε

(‖JrnGxn –Gxn–‖ + ‖Jrn–Gxn– –Gxn‖
)}≤M,

and

sup
n≥

{

ε

(‖JrnGyn –Gyn–‖ + ‖Jrn–Gyn– –Gyn‖
)}≤M,

http://www.fixedpointtheoryandapplications.com/content/2014/1/29
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for some M > . Since Ti and Un,i are nonexpansive, from (.), we deduce that for each
n≥ 

‖Wnyn– –Wn–yn–‖ = ‖λTUn,yn– – λTUn–,yn–‖
≤ λ‖Un,yn– –Un–,yn–‖
= λ‖λTUn,yn– – λTUn–,yn–‖
≤ λλ‖Un,yn– –Un–,yn–‖
· · ·

≤
(n–∏

i=

λi

)
‖Un,nyn– –Un–,nyn–‖

≤M
n–∏
i=

λi, for some constantM > . (.)

By simple computations, we obtain

yn – yn– = σn(xn – xn–) + (σn – σn–)(xn– – Jrn–Gxn–)

+ ( – σn)(JrnGxn – Jrn–Gxn–).

It follows from (.) that

‖yn – yn–‖ ≤ σn‖xn – xn–‖ + |σn – σn–|‖xn– – Jrn–Gxn–‖
+ ( – σn)‖JrnGxn – Jrn–Gxn–‖

≤ σn‖xn – xn–‖ + |σn – σn–|‖xn– – Jrn–Gxn–‖
+ ( – σn)

[‖xn– – xn‖ + |rn– – rn|M
]

≤ ‖xn – xn–‖ + |σn – σn–|‖xn– – Jrn–Gxn–‖ + |rn– – rn|M. (.)

Taking into account that  < lim infn→∞ βn ≤ lim supn→∞ βn < , without loss of generality,
we may assume that {βn} ⊂ [ĉ, d̂]. Utilizing (.)-(.), we have

‖zn – zn–‖

≤ 
 – βn

[
αn
∥∥f (yn) – f (yn–)

∥∥ + γn‖Wnyn –Wn–yn–‖ + δn‖JrnGyn – Jrn–Gyn–‖

+ |αn – αn–|
∥∥f (yn–)∥∥ + |γn – γn–|‖Wn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖

]
+

|βn – βn–|
( – βn–)( – βn)

‖xn – βn–xn–‖

≤ 
 – βn

[
αn
∥∥f (yn) – f (yn–)

∥∥ + γn‖Wnyn –Wnyn–‖ + δn‖JrnGyn – Jrn–Gyn–‖

+ |αn – αn–|
∥∥f (yn–)∥∥ + |γn – γn–|‖Wn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖

+ γn‖Wnyn– –Wn–yn–‖
]
+

|βn – βn–|
( – βn–)( – βn)

‖xn – βn–xn–‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/29
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≤ 
 – βn

[
αnρ‖yn – yn–‖ + γn‖yn – yn–‖ + δn

(‖yn– – yn‖ + |rn– – rn|M
)

+ |αn – αn–|
∥∥f (yn–)∥∥ + |γn – γn–|‖Wn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖

+ γnM
n–∏
i=

λi

]
+

|βn – βn–|
( – βn–)( – βn)

‖xn – βn–xn–‖

=


 – βn

[(
 – βn – αn( – ρ)

)‖yn – yn–‖

+


 – βn

[
δn|rn– – rn|M + |αn – αn–|

∥∥f (yn–)∥∥]
+ |γn – γn–|‖Wn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖ + γnM

n–∏
i=

λi

]

+
|βn – βn–|

( – βn–)( – βn)
∥∥αn–f (yn–) + γn–Wn–yn– + Jrn–Gyn–

∥∥
=
(
 –

αn( – ρ)
 – βn

)
‖yn – yn–‖ + 

 – βn

[
δn|rn– – rn|M + |αn – αn–|

∥∥f (yn–)∥∥
+ |γn – γn–|‖Wn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖ + γnM

n–∏
i=

λi

]

+
|βn – βn–|

( – βn–)( – βn)
∥∥αn–f (yn–) + γn–Wn–yn– + Jrn–Gyn–

∥∥
≤ ‖yn – yn–‖ + 

 – βn

[
δn|rn– – rn|M + |αn – αn–|

∥∥f (yn–)∥∥
+ |γn – γn–|‖Wn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖ + γnM

n–∏
i=

λi

]

+
|βn – βn–|

( – βn–)( – βn)
∥∥αn–f (yn–) + γn–Wn–yn– + Jrn–Gyn–

∥∥
≤ ‖xn – xn–‖ + |σn – σn–|‖xn– – Jrn–Gxn–‖ + |rn– – rn|M

+


 – βn

[
δn|rn– – rn|M + |αn – αn–|

∥∥f (yn–)∥∥
+ |γn – γn–|‖Wn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖ + γnM

n–∏
i=

λi

]

+
|βn – βn–|

( – βn–)( – βn)
∥∥αn–f (yn–) + γn–Wn–yn– + δn–Jrn–Gyn–

∥∥
≤ ‖xn – xn–‖ +

[
|σn – σn–| + |αn – αn–| + |βn – βn–| + |γn – γn–|

+ |δn – δn–| +
n–∏
i=

λi

]
M, (.)
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where supn≥{ 
(–d̂)

(‖f (yn)‖ + ‖Wnyn‖ + ‖JrnGyn‖ + ‖xn – JrnGxn‖ +M + M)} ≤ M for
someM > . Thus, it follows from (.) and conditions (i), (iii), (iv) that

lim
n→∞

(‖zn – zn–‖ – ‖xn – xn–‖
)≤ .

Since  < lim infn→∞ βn ≤ lim supn→∞ βn < , by Lemma ., we get

lim
n→∞‖xn – zn‖ = .

Consequently,

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖zn – xn‖ = .

Now we show that ‖xn –Gxn‖ →  as n → ∞. Indeed, by Lemma . and (.), we get

‖yn – p‖ =
∥∥σn(xn – p) + ( – σn)(JrnGxn – p)

∥∥
≤ σn‖xn – p‖ + ( – σn)‖JrnGxn – p‖ – σn( – σn)g

(‖xn – JrnGxn‖
)

≤ σn‖xn – p‖ + ( – σn)‖xn – p‖ – σn( – σn)g
(‖xn – JrnGxn‖

)
= ‖xn – p‖ – σn( – σn)g

(‖xn – JrnGxn‖
)
. (.)

By Lemma .(a), (.), and (.), we obtain

‖xn+ – p‖

=
∥∥αn

(
f (yn) – f (p)

)
+ βn(xn – p) + γn(Wnyn – p) + δn(JrnGyn – p) + αn

(
f (p) – p

)∥∥
≤ ∥∥αn

(
f (yn) – f (p)

)
+ βn(xn – p) + γn(Wnyn – p) + δn(JrnGyn – p)

∥∥
+ αn

〈
f (p) – p, J(xn+ – p)

〉
≤ αn

∥∥f (yn) – f (p)
∥∥ + βn‖xn – p‖ + γn‖Wnyn – p‖ + δn‖JrnGyn – p‖

+ αn
〈
f (p) – p, J(xn+ – p)

〉
≤ αnρ

‖yn – p‖ + βn‖xn – p‖ + γn‖yn – p‖ + δn‖Gyn – p‖

+ αn
〈
f (p) – p, J(xn+ – p)

〉
≤ αnρ‖yn – p‖ + βn‖xn – p‖ + γn‖yn – p‖ + δn‖yn – p‖

+ αn
〈
f (p) – p, J(xn+ – p)

〉
=
(
 – βn – αn( – ρ)

)‖yn – p‖ + βn‖xn – p‖ + αn
〈
f (p) – p, J(xn+ – p)

〉
≤ (

 – βn – αn( – ρ)
)[‖xn – p‖ – σn( – σn)g

(‖xn – JrnGxn‖
)]
+ βn‖xn – p‖

+ αn
〈
f (p) – p, J(xn+ – p)

〉
=
(
 – αn( – ρ)

)‖xn – p‖ – ( – βn – αn( – ρ)
)
σn( – σn)g

(‖xn – JrnGxn‖
)

+ αn
〈
f (p) – p, J(xn+ – p)

〉
≤ ‖xn – p‖ – ( – βn – αn( – ρ)

)
σn( – σn)g

(‖xn – JrnGxn‖
)

+ αn
∥∥f (p) – p

∥∥‖xn+ – p‖,
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and thus

(
 – βn – αn( – ρ)

)
σn( – σn)g

(‖xn – JrnGxn‖
)

≤ ‖xn – p‖ – ‖xn+ – p‖ + αn
∥∥f (p) – p

∥∥‖xn+ – p‖
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + αn

∥∥f (p) – p
∥∥‖xn+ – p‖.

Since αn →  and ‖xn+ – xn‖ → , from condition (v) and the boundedness of {xn}, it
follows that

lim
n→∞ g

(‖xn – JrnGxn‖
)
= .

Utilizing the properties of g , we have

lim
n→∞‖xn – JrnGxn‖ = , (.)

and thus,

lim
n→∞‖yn – xn‖ = lim

n→∞( – σn)‖JrnGxn – xn‖ = . (.)

For simplicity, we put q =ΠC(p–μBp), un =ΠC(xn –μBxn) and vn =ΠC(un –μBun).
Then vn =Gxn for all n≥ . From Lemma ., we have

‖un – q‖ =
∥∥ΠC(xn –μBxn) –ΠC(p –μBp)

∥∥
≤ ∥∥xn – p –μ(Bxn – Bp)

∥∥
≤ ‖xn – p‖ – μ

(
α – κμ

)‖Bxn – Bp‖, (.)

and

‖vn – p‖ =
∥∥ΠC(un –μBun) –ΠC(q –μBq)

∥∥
≤ ∥∥un – q –μ(Bun – Bq)

∥∥
≤ ‖un – q‖ – μ

(
α – κμ

)‖Bun – Bq‖. (.)

By combining (.) and (.), we obtain

‖vn – p‖ ≤ ‖xn – p‖ – μ
(
α – κμ

)‖Bxn – Bp‖

– μ
(
α – κμ

)‖Bun – Bq‖. (.)

By the convexity of ‖ · ‖, we have, from (.) and (.),

‖yn – p‖

≤ σn‖xn – p‖ + ( – σn)‖JrnGxn – p‖

≤ σn‖xn – p‖ + ( – σn)‖vn – p‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/29
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≤ σn‖xn – p‖ + ( – σn)
[‖xn – p‖ – μ

(
α – κμ

)‖Bxn – Bp‖

– μ
(
α – κμ

)‖Bun – Bq‖
]

= ‖xn – p‖ – ( – σn)
[
μ
(
α – κμ

)‖Bxn – Bp‖

+μ
(
α – κμ

)‖Bun – Bq‖
]
,

and thus

( – σn)
[
μ
(
α – κμ

)‖Bxn – Bp‖ +μ
(
α – κμ

)‖Bun – Bq‖
]

≤ ‖xn – p‖ – ‖yn – p‖

≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖.

Since ‖xn – yn‖ →  and  < μi < αi
κ

for i = , , and {xn} and {yn} are bounded, we obtain
from condition (v) that

lim
n→∞‖Bxn – Bp‖ =  and lim

n→∞‖Bun – Bq‖ = . (.)

Utilizing Proposition . and Lemma ., we have

‖un – q‖ =
∥∥ΠC(xn –μBxn) –ΠC(p –μBp)

∥∥
≤ 〈

xn –μBxn – (p –μBp), J(un – q)
〉

=
〈
xn – p, J(un – q)

〉
+μ

〈
Bp – Bxn, J(un – q)

〉
≤ 


[‖xn – p‖ + ‖un – q‖ – g

(∥∥xn – un – (p – q)
∥∥)]

+μ‖Bp – Bxn‖‖un – q‖,

which implies that

‖un – q‖ ≤ ‖xn – p‖ – g
(∥∥xn – un – (p – q)

∥∥) + μ‖Bp – Bxn‖‖un – q‖. (.)

In the same way, we derive

‖vn – p‖ =
∥∥ΠC(un –μBun) –ΠC(q –μBq)

∥∥
≤ 〈

un –μBun – (q –μBq), J(vn – p)
〉

=
〈
un – q, J(vn – p)

〉
+μ

〈
Bq – Bun, J(vn – p)

〉
≤ 


[‖un – q‖ + ‖vn – p‖ – g

(∥∥un – vn + (p – q)
∥∥)]

+μ‖Bq – Bun‖‖vn – p‖,

and we get

‖vn – p‖ ≤ ‖un – q‖ – g
(∥∥un – vn + (p – q)

∥∥) + μ‖Bq – Bun‖‖vn – p‖. (.)
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Combining (.) and (.), we get

‖vn – p‖ ≤ ‖xn – p‖ – g
(∥∥xn – un – (p – q)

∥∥) – g
(∥∥un – vn + (p – q)

∥∥)
+ μ‖Bp – Bxn‖‖un – q‖ + μ‖Bq – Bun‖‖vn – p‖. (.)

By the convexity of ‖ · ‖, we have, from (.) and (.),

‖yn – p‖

≤ σn‖xn – p‖ + ( – σn)‖JrnGxn – p‖

≤ σn‖xn – p‖ + ( – σn)‖vn – p‖

≤ σn‖xn – p‖ + ( – σn)
[‖xn – p‖ – g

(∥∥xn – un – (p – q)
∥∥)

– g
(∥∥un – vn + (p – q)

∥∥) + μ‖Bp – Bxn‖‖un – q‖
+ μ‖Bq – Bun‖‖vn – p‖]

≤ ‖xn – p‖ – ( – σn)
[
g
(∥∥xn – un – (p – q)

∥∥) + g
(∥∥un – vn + (p – q)

∥∥)]
+ μ‖Bp – Bxn‖‖un – q‖ + μ‖Bq – Bun‖‖vn – p‖,

and hence

( – σn)
[
g
(∥∥xn – un – (p – q)

∥∥) + g
(∥∥un – vn + (p – q)

∥∥)]
≤ ‖xn – p‖ – ‖yn – p‖ + μ‖Bp – Bxn‖‖un – q‖ + μ‖Bq – Bun‖‖vn – p‖
≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖ + μ‖Bp – Bxn‖‖un – q‖

+ μ‖Bq – Bun‖‖vn – p‖.

From (.), (.), condition (v), and the boundedness of {xn}, {yn}, {un}, and {vn}, we
deduce

lim
n→∞ g

(∥∥xn – un – (p – q)
∥∥) =  and lim

n→∞ g
(∥∥un – vn + (p – q)

∥∥) = .

Utilizing the properties of g and g, we obtain

lim
n→∞

∥∥xn – un – (p – q)
∥∥ =  and lim

n→∞
∥∥un – vn + (p – q)

∥∥ = . (.)

Hence,

‖xn – vn‖ ≤ ∥∥xn – un – (p – q)
∥∥ + ∥∥un – vn + (p – q)

∥∥→  as n→ ∞,

that is,

lim
n→∞‖xn –Gxn‖ = . (.)

Next, we show that

lim
n→∞‖Jrnxn – xn‖ =  and lim

n→∞‖Wnxn – xn‖ = .
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Indeed, observe that xn+ can be rewritten as

xn+ = αnf (yn) + βnxn + γnWnyn + δnJrnGyn

= αnf (yn) + βnxn + (γn + δn)
γnWnyn + δnJrnGyn

γn + δn

= αnf (yn) + βnxn + enẑn, (.)

where en = γn + δn and ẑn =
γnWnyn+δnJrnGyn

γn+δn
. Utilizing Lemma . and (.), we have

‖xn+ – p‖ =
∥∥αn

(
f (yn) – p

)
+ βn(xn – p) + en(ẑn – p)

∥∥
≤ αn

∥∥f (yn) – p
∥∥ + βn‖xn – p‖ + en‖ẑn – p‖ – βneng

(‖ẑn – xn‖
)

= αn
∥∥f (yn) – p

∥∥ + βn‖xn – p‖ – βneng
(‖ẑn – xn‖

)
+ en

∥∥∥∥γnWnyn + δnJrnGyn
γn + δn

– p
∥∥∥∥

= αn
∥∥f (yn) – p

∥∥ + βn‖xn – p‖ – βneng
(‖ẑn – xn‖

)
+ en

∥∥∥∥ γn

γn + δn
(Wnyn – p) +

δn

γn + δn
(JrnGyn – p)

∥∥∥∥
≤ αn

∥∥f (yn) – p
∥∥ + βn‖xn – p‖ – βneng

(‖ẑn – xn‖
)

+ en
[

γn

γn + δn
‖Wnyn – p‖ + δn

γn + δn
‖JrnGyn – p‖

]
≤ αn

∥∥f (yn) – p
∥∥ + βn‖xn – p‖ – βneng

(‖ẑn – xn‖
)

+ en
[

γn

γn + δn
‖yn – p‖ + δn

γn + δn
‖yn – p‖

]
≤ αn

∥∥f (yn) – p
∥∥ + βn‖xn – p‖ – βneng

(‖ẑn – xn‖
)

+ en
[

γn

γn + δn
‖xn – p‖ + δn

γn + δn
‖xn – p‖

]
= αn

∥∥f (yn) – p
∥∥ + ( – αn)‖xn – p‖ – βneng

(‖ẑn – xn‖
)

≤ αn
∥∥f (yn) – p

∥∥ + ‖xn – p‖ – βneng
(‖ẑn – xn‖

)
,

which implies that

βneng
(‖ẑn – xn‖

) ≤ αn
∥∥f (yn) – p

∥∥ + ‖xn – p‖ – ‖xn+ – p‖

≤ αn
∥∥f (yn) – p

∥∥ + (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖.

Utilizing (.), conditions (i), (ii), (v), and the boundedness of {xn} and {f (yn)}, we obtain

lim
n→∞ g

(‖ẑn – xn‖
)
= .

From the properties of g, we have

lim
n→∞‖ẑn – xn‖ = .
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Utilizing Lemma . and the definition of ẑn, we have

‖ẑn – p‖ =
∥∥∥∥γnWnyn + δnJrnGyn

γn + δn
– p
∥∥∥∥

=
∥∥∥∥ γn

γn + δn
(Wnyn – p) +

δn

γn + δn
(JrnGyn – p)

∥∥∥∥
≤ γn

γn + δn
‖Wnyn – p‖ + δn

γn + δn
‖JrnGyn – p‖

–
γnδn

(γn + δn)
g
(‖JrnGyn –Wnyn‖

)
≤ ‖yn – p‖ – γnδn

(γn + δn)
g
(‖JrnGyn –Wnyn‖

)
≤ ‖xn – p‖ – γnδn

(γn + δn)
g
(‖JrnGyn –Wnyn‖

)
,

and thus

γnδn

(γn + δn)
g
(‖JrnGyn –Wnyn‖

) ≤ ‖xn – p‖ – ‖ẑn – p‖

≤ (‖xn – p‖ + ‖ẑn – p‖)‖xn – ẑn‖.

Since {xn} and {ẑn} are bounded and ‖ẑn – xn‖ →  as n→ ∞, we deduce from condition
(ii) that

lim
n→∞ g

(‖Wnyn – JrnGyn‖
)
= .

From the properties of g, we have

lim
n→∞‖Wnyn – JrnGyn‖ = . (.)

On the other hand, xn+ can also be rewritten as

xn+ = αnf (yn) + βnxn + γnWnyn + δnJrnGyn

= βnxn + γnWnyn + (αn + δn)
αnf (yn) + δnJrnGyn

αn + δn

= βnxn + γnWnyn + dnz̃n,

where dn = αn + δn and z̃n =
αnf (yn)+δnJrnGyn

αn+δn
. Utilizing Lemma . and the convexity of ‖ · ‖,

we have

‖xn+ – p‖

=
∥∥βn(xn – p) + γn(Wnyn – p) + dn(z̃n – p)

∥∥
≤ βn‖xn – p‖ + γn‖Wnyn – p‖ + dn‖z̃n – p‖ – βnγng

(‖xn –Wnyn‖
)

= βn‖xn – p‖ + γn‖Wnyn – p‖ + dn
∥∥∥∥αnf (yn) + δnJrnGyn

αn + δn
– p
∥∥∥∥
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– βnγng
(‖xn –Wnyn‖

)
= βn‖xn – p‖ + γn‖Wnyn – p‖ + dn

∥∥∥∥ αn

αn + δn

(
f (yn) – p

)
+

δn

αn + δn
(JrnGyn – p)

∥∥∥∥
– βnγng

(‖xn –Wnyn‖
)

≤ βn‖xn – p‖ + γn‖yn – p‖ + dn
[

αn

αn + δn

∥∥f (yn) – p
∥∥ + δn

αn + δn
‖JrnGyn – p‖

]
– βnγng

(‖xn –Wnyn‖
)

≤ βn‖xn – p‖ + γn‖yn – p‖ + dn
[

αn

αn + δn

∥∥f (yn) – p
∥∥ + δn

αn + δn
‖yn – p‖

]
– βnγng

(‖xn –Wnyn‖
)

≤ αn
∥∥f (yn) – p

∥∥ + (βn + γn)‖xn – p‖ + δn‖xn – p‖ – βnγng
(‖xn –Wnyn‖

)
= αn

∥∥f (yn) – p
∥∥ + ( – αn)‖xn – p‖ – βnγng

(‖xn –Wnyn‖
)

≤ αn
∥∥f (yn) – p

∥∥ + ‖xn – p‖ – βnγng
(‖xn –Wnyn‖

)
,

which implies that

βnγng
(‖xn –Wnyn‖

) ≤ αn
∥∥f (yn) – p

∥∥ + ‖xn – p‖ – ‖xn+ – p‖

≤ αn
∥∥f (yn) – p

∥∥ + (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖.

From (.), conditions (i), (ii), (v), and the boundedness of {xn} and {f (yn)}, we have

lim
n→∞ g

(‖xn –Wnyn‖
)
= .

Utilizing the properties of g, we have

lim
n→∞‖xn –Wnyn‖ = , (.)

which together with (.) and (.), implies that

‖xn –Wnxn‖ ≤ ‖xn –Wnyn‖ + ‖Wnyn –Wnxn‖
≤ ‖xn –Wnyn‖ + ‖yn – xn‖ →  as n→ ∞,

that is,

lim
n→∞‖xn –Wnxn‖ = . (.)

We note that

‖xn – Jrnxn‖
≤ ‖xn –Wnyn‖ + ‖Wnyn – JrnGyn‖ + ‖JrnGyn – JrnGxn‖ + ‖JrnGxn – Jrnxn‖
≤ ‖xn –Wnyn‖ + ‖Wnyn – JrnGyn‖ + ‖yn – xn‖ + ‖Gxn – xn‖.
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Thus, from (.), (.), (.), and (.), it follows that

lim
n→∞‖xn – Jrnxn‖ = . (.)

Now, we claim that limn→∞ ‖xn – Jrxn‖ =  for a fixed number r such that ε > r > . In
fact, using the resolvent identity in Proposition ., we have

‖Jrnxn – Jrxn‖ =
∥∥∥∥Jr( r

rn
xn +

(
 –

r
rn

)
Jrnxn

)
– Jrxn

∥∥∥∥
≤
(
 –

r
rn

)
‖xn – Jrnxn‖

≤ ‖xn – Jrnxn‖. (.)

Thus, from (.) and (.), we get

‖xn – Jrxn‖ ≤ ‖xn – Jrnxn‖ + ‖Jrnxn – Jrxn‖
≤ ‖xn – Jrnxn‖ + ‖xn – Jrnxn‖
= ‖xn – Jrnxn‖ →  as n→ ∞,

that is,

lim
n→∞‖xn – Jrxn‖ = . (.)

Suppose that βn ≡ β for some fixed β ,γ ∈ (, ) such that αn + β + γn + δn =  for all n ≥ .
Define a mapping Vx = ( – θ – θ)Jrx + θWx + θGx, where θ, θ ∈ (, ) are two con-
stants with θ + θ < . Then, by Lemmas . and ., we have Fix(V ) = Fix(Jr)∩Fix(W )∩
Fix(G) = F . For each k ≥ , let {pk} be a unique element of C such that

pk =

k
f (pk) +

(
 –


k

)
Vpk .

FromLemma ., we conclude that pk → q ∈ Fix(V ) = F as k → ∞. Observe that for every
n, k

‖xn+ –Wpk‖
=
∥∥αn

(
f (yn) –Wpk

)
+ β(xn –Wpk) + γn(Wnyn –Wpk) + δn(JrnGyn –Wpk)

∥∥
≤ αn

∥∥f (yn) –Wpk
∥∥ + β‖xn –Wpk‖ + γn‖Wnyn –Wpk‖

+ δn
(‖JrnGyn –Wnyn‖ + ‖Wnyn –Wpk‖

)
= αn

∥∥f (yn) –Wpk
∥∥ + β‖xn –Wpk‖ + (γn + δn)‖Wnyn –Wpk‖ + δn‖JrnGyn –Wnyn‖

= αn
∥∥f (yn) –Wpk

∥∥ + β‖xn –Wpk‖ + ( – αn – β)‖Wnyn –Wpk‖
+ δn‖JrnGyn –Wnyn‖

≤ αn
∥∥f (yn) –Wpk

∥∥ + β‖xn –Wpk‖
+ ( – αn – β)

[‖Wnyn –Wnpk‖ + ‖Wnpk –Wpk‖
]
+ δn‖JrnGyn –Wnyn‖
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≤ αn
∥∥f (yn) –Wpk

∥∥ + β‖xn –Wpk‖ + ( – αn – β)
[‖yn – pk‖ + ‖Wnpk –Wpk‖

]
+ δn‖JrnGyn –Wnyn‖

≤ αn
∥∥f (yn) –Wpk

∥∥ + β‖xn –Wpk‖
+ ( – β)

[‖xn – pk‖ + ‖yn – xn‖ + ‖Wnpk –Wpk‖
]
+ δn‖JrnGyn –Wnyn‖

=Δn + β‖xn –Wpk‖ + ( – β)‖xn – pk‖, (.)

whereΔn = αn‖f (yn)–Wpk‖+(–β)[‖yn–xn‖+‖Wnpk–Wpk‖]+δn‖JrnGyn–Wnyn‖. Since
limn→∞ αn = limn→∞ ‖yn – xn‖ = limn→∞ ‖Wnpk –Wpk‖ = limn→∞ ‖JrnGyn –Wnyn‖ = ,
we know that Δn →  as n→ ∞.
From (.), we obtain

‖xn+ –Wpk‖

≤ (
β‖xn –Wpk‖ + ( – β)‖xn – pk‖

)
+Δn

[

(
β‖xn –Wpk‖ + ( – β)‖xn – pk‖

)
+Δn

]
= β‖xn –Wpk‖ + ( – β)‖xn – pk‖ + β( – β)‖xn –Wpk‖‖xn – pk‖ + τn

≤ β‖xn –Wpk‖ + ( – β)‖xn – pk‖

+ β( – β)
(‖xn –Wpk‖ + ‖xn – pk‖

)
+ τn

= β‖xn –Wpk‖ + ( – β)‖xn – pk‖ + τn, (.)

where τn =Δn[(β‖xn –Wpk‖ + ( – β)‖xn – pk‖) +Δn] →  as n→ ∞.
For any Banach limit μ, from (.), we have

μn‖xn –Wpk‖ = μn‖xn+ –Wpk‖ ≤ μn‖xn – pk‖. (.)

In addition, note that

‖xn –Gpk‖ ≤ ‖xn –Gxn +Gxn –Gpk‖

≤ (‖xn –Gxn‖ + ‖xn – pk‖
)

= ‖xn – pk‖ + ‖xn –Gxn‖
(
‖xn – pk‖ + ‖xn –Gxn‖

)
,

and

‖xn – Jrpk‖ ≤ ‖xn – Jrxn + Jrxn – Jrpk‖

≤ (‖xn – Jrxn‖ + ‖xn – pk‖
)

= ‖xn – pk‖ + ‖xn – Jrxn‖
(
‖xn – pk‖ + ‖xn – Jrxn‖

)
.

It is easy to see from (.) and (.) that

μn‖xn –Gpk‖ ≤ μn‖xn – pk‖ and μn‖xn – Jrpk‖ ≤ μn‖xn – pk‖. (.)
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Utilizing (.) and (.), we have

μn‖xn –Vpk‖ = μn
∥∥( – θ – θ)(xn – Jrpk) + θ(xn –Wpk) + θ(xn –Gpk)

∥∥
≤ ( – θ – θ)μn‖xn – Jrpk‖ + θμn‖xn –Wpk‖ + θμn‖xn –Gpk‖

≤ μn‖xn – pk‖. (.)

Also, observe that

xn – pk =

k
(
xn – f (pk)

)
+
(
 –


k

)
(xn –Vpk),

that is,(
 –


k

)
(xn –Vpk) = xn – pk –


k
(
xn – f (pk)

)
. (.)

It follows from Lemma .(ii) and (.) that(
 –


k

)

‖xn –Vpk‖ ≥ ‖xn – pk‖ – 
k
〈
xn – pk + pk – f (pk), J(xn – pk)

〉
=
(
 –


k

)
‖xn – pk‖ + 

k
〈
f (pk) – pk , J(xn – pk)

〉
. (.)

So by (.) and (.), we have

(
 –


k

)

μn‖xn – pk‖ ≥
(
 –


k

)
μn‖xn – pk‖ + 

k
μn
〈
f (pk) – pk , J(xn – pk)

〉
,

and hence,


k

μn‖xn – pk‖ ≥ 
k
μn
〈
f (pk) – pk , J(xn – pk)

〉
.

This implies that


k

μn‖xn – pk‖ ≥ μn
〈
f (pk) – pk , J(xn – pk)

〉
. (.)

Since pk → q ∈ Fix(V ) = F as k → ∞, by the uniform Fréchet differentiability of the norm
of X, we have

μn
〈
f (q) – q, J(xn – q)

〉≤ .

On the other hand, from (.) and the norm-to-norm uniform continuity of J on
bounded subsets of X, we have

lim
n→∞

∣∣〈f (q) – q, J(xn+ – q)
〉
–
〈
f (q) – q, J(xn – q)

〉∣∣ = . (.)

Utilizing Lemma ., we deduce from (.) and (.) that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉≤ .
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Finally, we show that xn → q as n→ ∞. It is easy to see from (.) that

‖yn – q‖ ≤ σn‖xn – q‖ + ( – σn)‖JrnGxn – q‖ ≤ ‖xn – q‖.

Utilizing Lemma .(a), from (.) and the convexity of ‖ · ‖ we get

‖xn+ – q‖

=
∥∥αn

(
f (yn) – f (q)

)
+ βn(xn – q) + γn(Wnyn – q) + δn(JrnGyn – q) + αn

(
f (q) – q

)∥∥
≤ ∥∥αn

(
f (yn) – f (q)

)
+ βn(xn – q) + γn(Wnyn – q) + δn(JrnGyn – q)

∥∥
+ αn

〈
f (q) – q, J(xn+ – q)

〉
≤ αn

∥∥f (yn) – f (q)
∥∥ + βn‖xn – q‖ + γn‖Wnyn – q‖ + δn‖JrnGyn – q‖

+ αn
〈
f (q) – q, J(xn+ – q)

〉
≤ αnρ‖yn – q‖ + βn‖xn – q‖ + γn‖yn – q‖ + δn‖yn – q‖

+ αn
〈
f (q) – q, J(xn+ – q)

〉
≤ αnρ‖xn – q‖ + βn‖xn – q‖ + γn‖xn – q‖ + δn‖xn – q‖

+ αn
〈
f (q) – q, J(xn+ – q)

〉
=
(
 – αn( – ρ)

)‖xn – q‖ + αn
〈
f (q) – q, J(xn+ – q)

〉
=
(
 – αn( – ρ)

)‖xn – q‖ + αn( – ρ)
〈f (q) – q, J(xn+ – q)〉

 – ρ
. (.)

Applying Lemma . to (.), we obtain xn → q as n → ∞. This completes the proof.
�

Corollary . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space X and ΠC be a sunny nonexpansive retraction from X
onto C. Let A ⊂ X × X be an accretive operator such that D(A) ⊂ C ⊂⋂

r> R(I + rA). Let
V : C → C be α-strictly pseudocontractive mapping and f : C → C be a contraction with
coefficient ρ ∈ (, ). Let {Ti}∞i= be an infinite family of nonexpansive mappings from C into
itself such that F =

⋂∞
i= Fix(Ti) ∩ Fix(V ) ∩ A– �= ∅. Suppose that Assumption . holds.

For arbitrarily given x ∈ C, let {xn} be the sequence generated by⎧⎨⎩yn = σnxn + ( – σn)Jrn (( – l)I + lV )xn,

xn+ = αnf (yn) + βnxn + γnWnyn + δnJrn (( – l)I + lV )yn, ∀n≥ ,
(.)

where  < l < α

κ
,Wn is the W-mapping generated by (.). Then

(a) limn→∞ ‖xn+ – xn‖ = ;
(b) the sequence {xn}∞n= converges strongly to some q ∈ F which is a unique solution of

the following variational inequality problem (VIP):

〈
(I – f )q, J(q – p)

〉≤ , ∀p ∈ F ,

provided βn ≡ β for some fixed β ∈ (, ).
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Proof In Theorem ., we put B = I – V , B =  and μ = l where  < l < α

κ
. Then SVI

(.) is equivalent to the VIP of finding x∗ ∈ C such that

〈
Bx∗, J

(
x – x∗)〉≥ , ∀x ∈ C.

In this case, B : C → X is α-inverse strongly accretive. It is not hard to see that Fix(V ) =
VI(C,B). Indeed, for l > , we have

u ∈VI(C,B) ⇔ 〈
Bu, J(y – u)

〉≥  ∀y ∈ C

⇔ 〈
u – lBu – u, J(u – y)

〉≥  ∀y ∈ C

⇔ u =ΠC(u – lBu)

⇔ u =ΠC(u – lu + lVu)

⇔ 〈
u – lu + lVu – u, J(u – y)

〉≥  ∀y ∈ C

⇔ 〈
u –Vu, J(u – y)

〉≤  ∀y ∈ C

⇔ u = Vu

⇔ u ∈ Fix(V ).

Accordingly, we have F =
⋂∞

i= Fix(Ti)∩ Ω ∩A– =
⋂∞

i= Fix(Ti)∩ Fix(V )∩A–, and

ΠC(I–μB)ΠC(I–μB)xn =ΠC(I–μB)xn =ΠC
(
(– l)xn+ lVxn

)
=
(
(– l)I+ lV

)
xn.

Similarly, we get

ΠC(I –μB)ΠC(I –μB)yn =
(
( – l)I + lV

)
yn.

So, the scheme (.) reduces to (.), and therefore, the desired result follows from The-
orem .. �

We give the following important lemmas which will be used in our next result.

Lemma. Let C be a nonempty closed convex subset of a smooth Banach space X and Bi :
C → X be λi-strictly pseudocontractive mappings and αi-strongly accretive with αi +λi ≥ 
for i = , . Then, for μi ∈ (, ],

∥∥(I –μiBi)x – (I –μiBi)y
∥∥≤

{√
 – αi

λi
+ ( –μi)

(
 +


λi

)}
‖x – y‖, ∀x, y ∈ C,

for i = , . In particular, if  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤ , then I – μiBi is nonexpansive for
i = , .

Proof Using the λi-strict pseudocontractivity of Bi, we derive for every x, y ∈ C

λi
∥∥(I – Bi)x – (I – Bi)y

∥∥ ≤ 〈
(I – Bi)x – (I – Bi)y, J(x – y)

〉
≤ ∥∥(I – Bi)x – (I – Bi)y

∥∥‖x – y‖,
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which implies that

∥∥(I – Bi)x – (I – Bi)y
∥∥≤ 

λi
‖x – y‖.

Hence,

‖Bix – Biy‖ ≤ ∥∥(I – Bi)x – (I – Bi)y
∥∥ + ‖x – y‖

≤
(
 +


λi

)
‖x – y‖.

Utilizing the αi-strong accretivity and λi-strict pseudocontractivity of Bi, we get

λi
∥∥(I – Bi)x – (I – Bi)y

∥∥ ≤ ‖x – y‖ – 〈Bix – Biy, J(x – y)
〉

≤ ( – αi)‖x – y‖.

So, we have

∥∥(I – Bi)x – (I – Bi)y
∥∥≤

√
 – αi

λi
‖x – y‖.

Therefore, for μi ∈ (, ], we have

∥∥(I –μiBi)x – (I –μiBi)y
∥∥ ≤ ∥∥(I – Bi)x – (I – Bi)y

∥∥ + ( –μi)‖Bix – Biy‖

≤
√
 – αi

λi
‖x – y‖ + ( –μi)

(
 +


λi

)
‖x – y‖

=
{√

 – αi

λi
+ ( –μi)

(
 +


λi

)}
‖x – y‖.

Since  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤ , it follows that

√
 – αi

λi
+ ( –μi)

(
 +


λi

)
≤ .

This implies that I –μiBi is nonexpansive for i = , . �

Lemma . Let C be a nonempty closed convex subset of a smooth Banach space X and
ΠC be a sunny nonexpansive retraction from X onto C. For each i = , , let Bi : C → X be
λi-strictly pseudocontractive and αi-strongly accretive with αi + λi ≥ . Let G : C → C be
the mapping defined by

G(x) =ΠC
[
ΠC(x –μBx) –μBΠC(x –μBx)

]
, ∀x ∈ C.

If  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤ , then G : C → C is nonexpansive.
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Proof By Lemma ., I – μiBi is nonexpansive for i = , . Therefore, for all x, y ∈ C, we
have

∥∥G(x) –G(y)
∥∥ =

∥∥ΠC
[
ΠC(x –μBx) –μBΠC(x –μBx)

]
–ΠC

[
ΠC(y –μBy) –μBΠC(y –μBy)

]∥∥
=
∥∥ΠC(I –μB)ΠC(I –μB)x –ΠC(I –μB)ΠC(I –μB)y

∥∥
≤ ∥∥(I –μB)ΠC(I –μB)x – (I –μB)ΠC(I –μB)y

∥∥
≤ ∥∥ΠC(I –μB)x –ΠC(I –μB)y

∥∥
≤ ∥∥(I –μB)x – (I –μB)y

∥∥
≤ ‖x – y‖.

This shows that G : C → C is nonexpansive. This completes the proof. �

Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gâteaux differentiable norm. Let ΠC be a sunny nonex-
pansive retraction from X onto C and A ⊂ X × X be an accretive operator in X such that
D(A) ⊂ C ⊂⋂

r> R(I + rA). For each i = , , let Bi : C → X be λi-strictly pseudocontractive
and αi-strongly accretive with αi + λi ≥  and f : C → C be a contraction with coefficient
ρ ∈ (, ). Let {Ti}∞i= be an infinite family of nonexpansive mappings from C into itself such
that F =

⋂∞
i= Fix(Ti)∩ Ω ∩A– �= ∅ with  – λi

+λi
( –

√
–αi
λi

) ≤ μi ≤  for i = , . For arbi-
trarily given x ∈ C, let {xn} be the sequence generated by

⎧⎨⎩yn = σnGxn + ( – σn)JrnGxn,

xn+ = αnf (yn) + βnyn + γnWnyn + δnJrnGyn, ∀n≥ ,
(.)

where Wn is the W-mapping generated by (.). Assume that Assumption . holds except
condition (iii), which is replaced by the following condition:
(iii)

∑∞
n=(|σn – σn–| + |αn – αn–| + |βn – βn–| + |γn – γn–| + |δn – δn–|) <∞.

Then
(a) limn→∞ ‖xn+ – xn‖ = ;
(b) the sequence {xn}∞n= converges strongly to some q ∈ F which is the unique solution of

the following variational inequality problem (VIP):

〈
(I – f )q, J(q – p)

〉≤ , ∀p ∈ F ,

provided βn ≡ β for some fixed β ∈ (, ).

Proof Take a fixed p ∈ F arbitrarily. Then we obtain p = Gp, p =Wnp and Jrnp = p for all
n≥ . By using Lemma . and the same argument as in the proof beginning of the proof
of Theorem ., we have {xn}, {yn}, {Gxn}, {Gyn}, {f (yn)} are bounded sequences. Let us
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show that ‖xn+ – xn‖ →  as n→ ∞. In fact, repeating the same argument as those in the
proof of Theorem ., we obtain⎧⎨⎩‖JrnGxn – Jrn–Gxn–‖ ≤ ‖xn– – xn‖ + |rn– – rn|M,

‖JrnGyn – Jrn–Gyn–‖ ≤ ‖yn– – yn‖ + |rn– – rn|M, ∀n≥ ,
(.)

where

sup
n≥

{

ε

(‖JrnGxn –Gxn–‖ + ‖Jrn–Gxn– –Gxn‖
)}≤M

and

sup
n≥

{

ε

(‖JrnGyn –Gyn–‖ + ‖Jrn–Gyn– –Gyn‖
)}≤M,

for someM > . By (.) and simple calculations, we have

yn – yn– = σn(Gxn –Gxn–) + (σn – σn–)(Gxn– – Jrn–Gxn–)

+ ( – αn)(JrnGxn – Jrn–Gxn–).

It follows that

‖yn – yn–‖ ≤ σn‖Gxn –Gxn–‖ + |σn – σn–|‖Gxn– – Jrn–Gxn–‖
+ ( – αn)‖JrnGxn – Jrn–Gxn–‖

≤ σn‖xn – xn–‖ + |σn – σn–|‖Gxn– – Jrn–Gxn–‖
+ ( – σn)

(‖xn– – xn‖ + |rn– – rn|M
)

≤ ‖xn – xn–‖ + |σn – σn–|‖Gxn– – Jrn–Gxn–‖ + |rn – rn–|M. (.)

Repeating the same argument as in (.) in the proof of Theorem ., we get

‖Wnyn– –Wn–yn–‖ ≤M
n–∏
i=

λi, for some constantM > . (.)

Considering condition (v), without loss of generality, we may assume that {βn} ⊂ [ĉ, d̂] for
some ĉ, d̂ ∈ (, ). From (.), it follows that xn+ can be rewritten as

xn+ = βnyn + ( – βn)zn, (.)

where zn =
αnf (yn)+γnWnyn+δnJrnGyn

–βn
. Utilizing (.) and (.) we have

‖zn – zn–‖

=
∥∥∥∥αnf (yn) + γnWnyn + δnJrnGyn

 – βn
–

αn–f (yn–) + γn–Wn–yn– + δn–Jrn–Gyn–
 – βn–

∥∥∥∥
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=
∥∥∥∥xn+ – βnyn

 – βn
–
xn – βn–yn–

 – βn–

∥∥∥∥
=
∥∥∥∥xn+ – βnyn

 – βn
–
xn – βn–yn–

 – βn
+
xn – βn–yn–

 – βn
–
xn – βn–yn–

 – βn–

∥∥∥∥
≤
∥∥∥∥xn+ – βnyn

 – βn
–
xn – βn–yn–

 – βn

∥∥∥∥ + ∥∥∥∥xn – βn–yn–
 – βn

–
xn – βn–yn–

 – βn–

∥∥∥∥
=


 – βn

∥∥xn+ – βnyn – (xn – βn–yn–)
∥∥ + ∣∣∣∣ 

 – βn
–


 – βn–

∣∣∣∣‖xn – βn–yn–‖

=


 – βn

∥∥xn+ – βnyn – (xn – βn–yn–)
∥∥ + |βn – βn–|

( – βn–)( – βn)
‖xn – βn–yn–‖

=


 – βn

× ∥∥αnf (yn) + γnWnyn + δnJrnGyn – αn–f (yn–) – γn–Wn–yn– – δn–Jrn–Gyn–
∥∥

+
|βn – βn–|

( – βn–)( – βn)
‖xn – βn–yn–‖

≤ 
 – βn

[
αn
∥∥f (yn) – f (yn–)

∥∥ + γn‖Wnyn –Wn–yn–‖ + δn‖JrnGyn – Jrn–Gyn–‖

+ |αn – αn–|
∥∥f (yn–)∥∥ + |γn – γn–|‖Wn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖

]
+

|βn – βn–|
( – βn–)( – βn)

‖xn – βn–yn–‖

≤ 
 – βn

[
αnρ‖yn – yn–‖ + γn‖Wnyn –Wnyn–‖ + δn

[‖yn– – yn‖ + |rn– – rn|M
]

+ |αn – αn–|
∥∥f (yn–)∥∥ + |γn – γn–|‖Wn–yn–‖ + γn‖Wnyn– –Wn–yn–‖

+ |δn – δn–|‖Jrn–Gyn–‖
]
+

|βn – βn–|
( – βn–)( – βn)

‖xn – βn–yn–‖

≤ 
 – βn

[
(αnρ + γn + δn)‖yn– – yn‖ + |rn– – rn|M + |αn – αn–|

∥∥f (yn–)∥∥
+ |γn – γn–|‖Wn–yn–‖ + γnM

n–∏
i=

λi + |δn – δn–|‖Jrn–Gyn–‖
]

+
|βn – βn–|

( – βn–)( – βn)
‖xn – βn–yn–‖

≤
(
 –

( – ρ)αn

 – βn

)
‖yn – yn–‖ + 

 – βn

[|rn– – rn|M + |αn – αn–|
∥∥f (yn–)∥∥

+ |γn – γn–|‖Wn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖
]
+M

n–∏
i=

λi

+
|βn – βn–|

( – βn–)( – βn)
‖xn – βn–yn–‖. (.)

By simple calculations, (.) implies that

xn+ – xn = βn(yn – yn–) + (βn – βn–)(yn– – zn–) + ( – βn)(zn – zn–).
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This together with (.) and (.) we have

‖xn+ – xn‖
≤ βn‖yn – yn–‖ + |βn – βn–|‖yn– – zn–‖ + ( – βn)‖zn – zn–‖

≤ βn‖yn – yn–‖ + |βn – βn–|‖yn– – zn–‖ + ( – βn)

{(
 –

( – ρ)αn

 – βn

)
‖yn – yn–‖

+


 – βn

[|rn– – rn|M + |αn – αn–|
∥∥f (yn–)∥∥ + |γn – γn–|‖Wn–yn–‖

+ |δn – δn–|‖Jrn–Gyn–‖
]
+M

n–∏
i=

λi +
|βn – βn–|

( – βn–)( – βn)
‖xn – βn–yn–‖

}

≤ (
 – ( – ρ)αn

)‖yn – yn–‖ + |βn – βn–|‖yn– – zn–‖ + |rn– – rn|M

+ |αn – αn–|
∥∥f (yn–)∥∥ + |γn – γn–|‖Wn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖

+M
n–∏
i=

λi +
|βn – βn–|
 – βn–

‖xn – βn–yn–‖

≤ (
 – ( – ρ)αn

)[‖xn – xn–‖ + |σn – σn–|‖Gxn– – Jrn–Gxn–‖ + |rn – rn–|M
]

+ |βn – βn–|‖yn– – zn–‖ + |rn– – rn|M + |αn – αn–|
∥∥f (yn–)∥∥

+ |γn – γn–|‖Wn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖ +M
n–∏
i=

λi

+
|βn – βn–|
 – βn–

∥∥αn–f (yn–) + γn–Wn–yn– + δn–Jrn–Gyn–
∥∥

≤ (
 – ( – ρ)αn

)‖xn – xn–‖ +
(|σn – σn–| + |αn – αn–| + |βn – βn–|

+ |γn – γn–| + |δn – δn–| + |rn– – rn|
)
M̂ +M

n–∏
i=

λi,

where 
–d̂

supn≥{‖f (yn)‖ + ‖Wnyn‖ + ‖JrnGyn‖ + ‖Gxn – JrnGxn‖ + ‖yn – zn‖ + M} ≤ M̂
for some M̂ > . By Lemma . and conditions (i), (iii), and (iv), we conclude that (noting
that  < λi ≤ b < , ∀i≥ )

lim
n→∞‖xn+ – xn‖ = . (.)

Next we show that ‖xn –Gxn‖ →  as n→ ∞. Indeed, utilizing Lemma ., we get from
(.)

‖yn – p‖ =
∥∥σn(Gxn – p) + ( – σn)(JrnGxn – p)

∥∥
≤ σn‖Gxn – p‖ + ( – σn)‖JrnGxn – p‖ – σn( – σn)g

(‖Gxn – JrnGxn‖
)

≤ σn‖xn – p‖ + ( – σn)‖xn – p‖ – σn( – σn)g
(‖Gxn – JrnGxn‖

)
= ‖xn – p‖ – σn( – σn)g

(‖Gxn – JrnGxn‖
)
. (.)
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By Lemma . (a), (.), and (.), we have

‖xn+ – p‖

=
∥∥αn

(
f (yn) – f (p)

)
+ βn(yn – p) + γn(Wnyn – p) + δn(JrnGyn – p) + αn

(
f (p) – p

)∥∥
≤ ∥∥αn

(
f (yn) – f (p)

)
+ βn(yn – p) + γn(Wnyn – p) + δn(JrnGyn – p)

∥∥
+ αn

〈
f (p) – p, J(xn+ – p)

〉
≤ αn

∥∥f (yn) – f (p)
∥∥ + βn‖yn – p‖ + γn‖Wnyn – p‖ + δn‖JrnGyn – p‖

+ αn
〈
f (p) – p, J(xn+ – p)

〉
≤ αnρ‖yn – p‖ + βn‖yn – p‖ + γn‖yn – p‖ + δn‖yn – p‖

+ αn
∥∥f (p) – p

∥∥‖xn+ – p‖
=
(
 – αn( – ρ)

)‖yn – p‖ + αn
∥∥f (p) – p

∥∥‖xn+ – p‖
≤ ‖yn – p‖ + αn

∥∥f (p) – p
∥∥‖xn+ – p‖

≤ ‖xn – p‖ – σn( – σn)g
(‖Gxn – JrnGxn‖

)
+ αn

∥∥f (p) – p
∥∥‖xn+ – p‖,

which yields

σn( – σn)g
(‖Gxn – JrnGxn‖

)
≤ ‖xn – p‖ – ‖xn+ – p‖ + αn

∥∥f (p) – p
∥∥‖xn+ – p‖

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + αn
∥∥f (p) – p

∥∥‖xn+ – p‖.

Since αn →  and ‖xn+ – xn‖ → , from condition (v) and the boundedness of {xn}, it
follows that

lim
n→∞ g

(‖Gxn – JrnGxn‖
)
= .

Utilizing the properties of g , we have

lim
n→∞‖Gxn – JrnGxn‖ = . (.)

On the other hand, observe that xn+ can be rewritten as

xn+ = αnf (yn) + βnyn + γnWnyn + δnJrnGyn

= αnf (yn) + βnyn + (γn + δn)
γnWnyn + δnJrnGyn

γn + δn

= αnf (yn) + βnyn + enẑn, (.)

where en = γn + δn and ẑn =
γnWnyn+δnJrnGyn

γn+δn
. By Lemma ., (.), and (.), we have

‖xn+ – p‖ =
∥∥αn

(
f (yn) – p

)
+ βn(yn – p) + en(ẑn – p)

∥∥
≤ αn

∥∥f (yn) – p
∥∥ + βn‖yn – p‖ + en‖ẑn – p‖ – βneng

(‖ẑn – yn‖
)
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= αn
∥∥f (yn) – p

∥∥ + βn‖yn – p‖ – βneng
(‖ẑn – yn‖

)
+ en

∥∥∥∥γnWnyn + δnJrnGyn
γn + δn

– p
∥∥∥∥

= αn
∥∥f (yn) – p

∥∥ + βn‖yn – p‖ – βneng
(‖ẑn – yn‖

)
+ en

∥∥∥∥ γn

γn + δn
(Wnyn – p) +

δn

γn + δn
(JrnGyn – p)

∥∥∥∥
≤ αn

∥∥f (yn) – p
∥∥ + βn‖yn – p‖ – βneng

(‖ẑn – yn‖
)

+ en
[

γn

γn + δn
‖Wnyn – p‖ + δn

γn + δn
‖JrnGyn – p‖

]
≤ αn

∥∥f (yn) – p
∥∥ + βn‖yn – p‖ – βneng

(‖ẑn – yn‖
)

+ en
[

γn

γn + δn
‖yn – p‖ + δn

γn + δn
‖yn – p‖

]
= αn

∥∥f (yn) – p
∥∥ + ( – αn)‖yn – p‖ – βneng

(‖ẑn – yn‖
)

≤ αn
∥∥f (yn) – p

∥∥ + ‖yn – p‖ – βneng
(‖ẑn – yn‖

)
≤ αn

∥∥f (yn) – p
∥∥ + ‖xn – p‖ – βneng

(‖ẑn – yn‖
)
,

which implies that

βneng
(‖ẑn – yn‖

) ≤ αn
∥∥f (yn) – p

∥∥ + ‖xn – p‖ – ‖xn+ – p‖

≤ αn
∥∥f (yn) – p

∥∥ + (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖.

Utilizing (.), conditions (i), (ii), (v), and the boundedness of {xn} and {f (yn)}, we get

lim
n→∞ g

(‖ẑn – yn‖
)
= .

From the properties of g, we have

lim
n→∞‖ẑn – yn‖ = . (.)

Utilizing Lemma . and the definition of ẑn, we have

‖ẑn – p‖ =
∥∥∥∥γnWnyn + δnJrnGyn

γn + δn
– p
∥∥∥∥

=
∥∥∥∥ γn

γn + δn
(Wnyn – p) +

δn

γn + δn
(JrnGyn – p)

∥∥∥∥
≤ γn

γn + δn
‖Wnyn – p‖ + δn

γn + δn
‖JrnGyn – p‖

–
γnδn

(γn + δn)
g
(‖JrnGyn –Wnyn‖

)
≤ ‖yn – p‖ – γnδn

(γn + δn)
g
(‖JrnGyn –Wnyn‖

)
,
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which leads to

γnδn

(γn + δn)
g
(‖JrnGyn –Wnyn‖

) ≤ ‖yn – p‖ – ‖ẑn – p‖

≤ (‖yn – p‖ + ‖ẑn – p‖)‖yn – ẑn‖.

Since {yn} and {ẑn} are bounded, from (.) and condition (ii), we deduce

lim
n→∞ g

(‖Wnyn – JrnGyn‖
)
= .

From the properties of g, we have

lim
n→∞‖Wnyn – JrnGyn‖ = . (.)

Furthermore, xn+ can also be rewritten as

xn+ = αnf (yn) + βnyn + γnWnyn + δnJrnGyn

= βnyn + γnWnyn + (αn + δn)
αnf (yn) + δnJrnGyn

αn + δn

= βnyn + γnWnyn + dnz̃n,

where dn = αn + δn and z̃n =
αnf (yn)+δnJrnGyn

αn+δn
. Utilizing Lemma ., the convexity of ‖ · ‖,

and (.), we have

‖xn+ – p‖

=
∥∥βn(yn – p) + γn(Wnyn – p) + dn(z̃n – p)

∥∥
≤ βn‖yn – p‖ + γn‖Wnyn – p‖ + dn‖z̃n – p‖ – βnγng

(‖yn –Wnyn‖
)

= βn‖yn – p‖ + γn‖Wnyn – p‖ + dn
∥∥∥∥αnf (yn) + δnJrnGyn

αn + δn
– p
∥∥∥∥

– βnγng
(‖yn –Wnyn‖

)
= βn‖yn – p‖ + γn‖Wnyn – p‖ + dn

∥∥∥∥ αn

αn + δn

(
f (yn) – p

)
+

δn

αn + δn
(JrnGyn – p)

∥∥∥∥
– βnγng

(‖yn –Wnyn‖
)

≤ βn‖yn – p‖ + γn‖yn – p‖ + dn
[

αn

αn + δn

∥∥f (yn) – p
∥∥ + δn

αn + δn
‖JrnGyn – p‖

]
– βnγng

(‖yn –Wnyn‖
)

≤ αn
∥∥f (yn) – p

∥∥ + (βn + γn)‖yn – p‖ + δn‖yn – p‖ – βnγng
(‖yn –Wnyn‖

)
= αn

∥∥f (yn) – p
∥∥ + ( – αn)‖yn – p‖ – βnγng

(‖yn –Wnyn‖
)

≤ αn
∥∥f (yn) – p

∥∥ + ‖yn – p‖ – βnγng
(‖yn –Wnyn‖

)
≤ αn

∥∥f (yn) – p
∥∥ + ‖xn – p‖ – βnγng

(‖yn –Wnyn‖
)
,
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which implies that

βnγng
(‖yn –Wnyn‖

) ≤ αn
∥∥f (yn) – p

∥∥ + ‖xn – p‖ – ‖xn+ – p‖

≤ αn
∥∥f (yn) – p

∥∥ + (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖.

From (.), conditions (i), (ii), (v), and the boundedness of {xn} and {f (yn)}, we have

lim
n→∞ g

(‖yn –Wnyn‖
)
= .

Utilizing the properties of g, we have

lim
n→∞‖yn –Wnyn‖ = . (.)

Thus, from (.) and (.), we get

‖yn – JrnGyn‖ ≤ ‖yn –Wnyn‖ + ‖Wnyn – JrnGyn‖ →  as n→ ∞,

that is,

lim
n→∞‖yn – JrnGyn‖ = . (.)

Therefore, from (.), (.), (.), (.), and αn → , we have

‖xn – yn‖
≤ ‖xn – xn+‖ + ‖xn+ – yn‖
≤ ‖xn – xn+‖ + αn

∥∥f (yn) – yn
∥∥ + γn‖Wnyn – yn‖ + δn‖JrnGyn – yn‖

≤ ‖xn – xn+‖ + αn
∥∥f (yn) – yn

∥∥ + ‖Wnyn – yn‖ + ‖JrnGyn – yn‖ →  as n→ ∞,

that is,

lim
n→∞‖xn – yn‖ = . (.)

Utilizing (.), (.), and (.), we obtain

‖xn –Gxn‖ ≤ ‖xn – yn‖ + ‖yn –Gxn‖
= ‖xn – yn‖ + ( – σn)‖JrnGxn –Gxn‖
≤ ‖xn – yn‖ + ‖JrnGxn –Gxn‖ →  as n→ ∞,

that is,

lim
n→∞‖xn –Gxn‖ = . (.)

In addition, from (.) and (.), we have

‖xn –Wnxn‖ ≤ ‖xn – yn‖ + ‖yn –Wnyn‖ + ‖Wnyn –Wnxn‖
≤ ‖xn – yn‖ + ‖yn –Wnyn‖ →  as n→ ∞,
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that is,

lim
n→∞‖xn –Wnxn‖ = . (.)

Note that

‖xn – Jrnxn‖ ≤ ‖xn –Gxn‖ + ‖Gxn – JrnGxn‖ + ‖JrnGxn – Jrnxn‖
≤ ‖xn –Gxn‖ + ‖Gxn – JrnGxn‖.

So, from (.) and (.), it follows that

lim
n→∞‖xn – Jrnxn‖ = . (.)

Repeating the same argument as in (.) in the proof of Theorem ., we get

lim
n→∞‖xn – Jrxn‖ = , (.)

for a fixed number r such that ε > r > .
Suppose that βn ≡ β for some fixed β ,γ ∈ (, ) satisfying αn + β + γn + δn =  for

all n ≥ . Define a mapping Vx = ( – θ – θ)Jrx + θWx + θGx, where θ, θ ∈ (, )
are two constants with θ + θ < . Then, by Lemmas . and ., we have Fix(V ) =
Fix(Jr)∩ Fix(W )∩ Fix(G) = F . For each k ≥ , let {pk} be a unique element of C such that

pk =

k
f (pk) +

(
 –


k

)
Vpk .

FromLemma ., we conclude that pk → q ∈ Fix(V ) = F as k → ∞. Observe that for every
n, k

‖xn+ –Wpk‖
≤ αn

∥∥f (yn) –Wpk
∥∥ + β‖yn –Wpk‖ + γn‖Wnyn –Wpk‖

+ δn
(‖JrnGyn –Wnyn‖ + ‖Wnyn –Wpk‖

)
= αn

∥∥f (yn) –Wpk
∥∥ + β‖yn –Wpk‖ + (γn + δn)‖Wnyn –Wpk‖ + δn‖JrnGyn –Wnyn‖

= αn
∥∥f (yn) –Wpk

∥∥ + β‖yn –Wpk‖ + ( – αn – β)‖Wnyn –Wpk‖
+ δn‖JrnGyn –Wnyn‖

≤ αn
∥∥f (yn) –Wpk

∥∥ + β‖yn –Wpk‖
+ ( – αn – β)

[‖Wnyn –Wnpk‖ + ‖Wnpk –Wpk‖
]
+ δn‖JrnGyn –Wnyn‖

≤ αn
∥∥f (yn) –Wpk

∥∥ + β‖yn –Wpk‖ + ( – αn – β)
(‖yn – pk‖ + ‖Wnpk –Wpk‖

)
+ δn‖JrnGyn –Wnyn‖

≤ αn
∥∥f (yn) –Wpk

∥∥ + β
(‖xn –Wpk‖ + ‖yn – xn‖

)
+ ( – β)

[‖xn – pk‖ + ‖yn – xn‖
+ ‖Wnpk –Wpk‖

]
+ δn‖JrnGyn –Wnyn‖

=Δn + β‖xn –Wpk‖ + ( – β)‖xn – pk‖, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/29


Ceng et al. Fixed Point Theory and Applications 2014, 2014:29 Page 37 of 67
http://www.fixedpointtheoryandapplications.com/content/2014/1/29

where Δn = αn‖f (yn) – Wpk‖ + ( – β)( 
–β

‖yn – xn‖ + ‖Wnpk – Wpk‖) + δn‖JrnGyn –
Wnyn‖. Since limn→∞ αn = limn→∞ ‖yn –xn‖ = limn→∞ ‖Wnpk –Wpk‖ = limn→∞ ‖JrnGyn –
Wnyn‖ = , we know that Δn →  as n → ∞.
Repeating the same argument as in (.) and (.) in the proof of Theorem ., we

conclude that for any Banach limit μ,

μn‖xn –Wpk‖ = μn‖xn+ –Wpk‖ ≤ μn‖xn – pk‖, (.)

and

μn‖xn –Gpk‖ ≤ μn‖xn – pk‖ and μn‖xn – Jrpk‖ ≤ μn‖xn – pk‖. (.)

Utilizing (.) and (.), we obtain

μn‖xn –Vpk‖ = μn
∥∥( – θ – θ)(xn – Jrpk) + θ(xn –Wpk) + θ(xn –Gpk)

∥∥
≤ ( – θ – θ)μn‖xn – Jrpk‖ + θμn‖xn –Wpk‖ + θμn‖xn –Gpk‖

≤ μn‖xn – pk‖. (.)

Repeating the same argument as in (.) in the proof of Theorem ., we get


k

μn‖xn – pk‖ ≥ μn
〈
f (pk) – pk , J(xn – pk)

〉
. (.)

Since pk → q ∈ Fix(V ) = F as k → ∞, by the uniformGâteaux differentiability of the norm
of X, we have

μn
〈
f (q) – q, J(xn – q)

〉≤ .

On the other hand, from (.) and the norm-to-weak∗ uniform continuity of J on bounded
subsets of X, it follows that

lim
n→∞

∣∣〈f (q) – q, J(xn+ – q)
〉
–
〈
f (q) – q, J(xn – q)

〉∣∣ = . (.)

Using Lemma ., we deduce from (.) and (.) that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉≤ .

Finally, we show that xn → q as n→ ∞. It is easy to see from (.) that

‖yn – q‖ ≤ σn‖Gxn – q‖ + ( – σn)‖JrnGxn – q‖ ≤ ‖xn – q‖.

Utilizing Lemma .(a), from (.) and the convexity of ‖ · ‖ we get

‖xn+ – q‖

=
∥∥αn

(
f (yn) – f (q)

)
+ βn(yn – q) + γn(Wnyn – q) + δn(JrnGyn – q) + αn

(
f (q) – q

)∥∥
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≤ αn
∥∥f (yn) – f (q)

∥∥ + βn‖yn – q‖ + γn‖Wnyn – q‖ + δn‖JrnGyn – q‖

+ αn
〈
f (q) – q, J(xn+ – q)

〉
≤ αnρ‖yn – q‖ + βn‖yn – q‖ + γn‖yn – q‖ + δn‖yn – q‖

+ αn
〈
f (q) – q, J(xn+ – q)

〉
=
(
 – αn( – ρ)

)‖yn – q‖ + αn
〈
f (q) – q, J(xn+ – q)

〉
≤ (

 – αn( – ρ)
)‖xn – q‖ + αn( – ρ)

〈f (q) – q, J(xn+ – q)〉
 – ρ

. (.)

Applying Lemma . to (.), we obtain xn → q as n → ∞. This completes the proof.
�

Corollary . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has an uniformly Gâteaux differentiable norm. Let ΠC be a sunny non-
expansive retraction from X onto C and A ⊂ X × X be an accretive operator in X such
that D(A) ⊂ C ⊂ ⋂

r> R(I + rA). Let V : C → C be a mapping such that I – V : C → X
is ζ -strictly pseudocontractive and θ -strongly accretive with θ + ζ ≥ . Let f : C → C be
a contraction with coefficient ρ ∈ (, ) and {Ti}∞i= be an infinite family of nonexpansive
mappings of C into itself such that F =

⋂∞
i= Fix(Ti) ∩ Fix(V ) ∩ A– �= ∅. For arbitrarily

given x ∈ C, let {xn} be the sequence generated by⎧⎨⎩yn = σn(( – l)I + lV )xn + ( – σn)Jrn (( – l)I + lV )xn,

xn+ = αnf (yn) + βnyn + γnWnyn + δnJrn (( – l)I + lV )yn, ∀n≥ ,
(.)

where  – ζ

+ζ
( –

√
–θ
ζ
) ≤ l ≤ , Wn is the W-mapping generated by (.). Assume that

Assumption . holds except condition (iii), which is replaced by the following condition:
(iii)

∑∞
n=(|σn – σn–| + |αn – αn–| + |βn – βn–| + |γn – γn–| + |δn – δn–|) <∞.

Then
(a) limn→∞ ‖xn+ – xn‖ = ;
(b) the sequence {xn}∞n= converges strongly to some q ∈ F which is a unique solution of

the following variational inequality problem (VIP):

〈
(I – f )q, J(q – p)

〉≤ , ∀p ∈ F ,

provided βn ≡ β for some fixed β ∈ (, ).

Proof In Theorem ., we put B = I –V , B =  andμ = l where – ζ

+ζ
(–

√
–θ
ζ
) ≤ l ≤ .

Then SVI (.) is equivalent to the VIP of finding x∗ ∈ C such that

〈
Bx∗, J

(
x – x∗)〉≥ , ∀x ∈ C.

In this case,B : C → X is ζ -strictly pseudocontractive and θ -strongly accretive. Repeating
the same arguments as in the proof of Corollary ., we can infer that Fix(V ) =VI(C,B).
Accordingly, F =

⋂∞
i= Fix(Ti)∩ Ω ∩A– =

⋂∞
i= Fix(Ti)∩ Fix(V )∩A–,

Gxn =
(
( – l)I + lV

)
xn and Gyn =

(
( – l)I + lV

)
yn.
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So, the scheme (.) reduces to (.). Therefore, the desired result follows from Theo-
rem .. �

Remark . Theorems . and . improve and extend [, Theorem .], [, Theo-
rem .] and [, Theorem .] in the following aspects.
(a) The problem of finding a point q ∈⋂n Fix(Tn)∩ Ω ∩A– in Theorems . and .

is more general and more subtle than the problem of finding a point q ∈⋂n Fix(Tn)
in [, Theorem .], the problem of finding a point q ∈⋂n Fix(Tn)∩ Ω in [,
Theorem .] and the problem of finding a point q ∈ A– in [, Theorem .].

(b) Theorems . and . are proved without the assumption of the asymptotical
regularity of {xn} in [, Theorem .] (that is, limn→∞ ‖xn – xn+‖ = ).

(c) The iterative scheme in [, Theorem .] is extended to develop the iterative
schemes (.) and (.) in Theorems . and . by virtue of the iterative schemes
of [, Theorem .] and [, Theorem .]. The iterative schemes (.) and (.)
in Theorems . and . are more advantageous and more flexible than the iterative
scheme in [, Theorem .] because they involve several parameter sequences.

(d) The iterative schemes (.) and (.) in Theorems . and . are different from
the iterative schemes in [, Theorem .], [, Theorem .] and [, Theorem .]
because the mapping G in [, Theorem .] and the mapping Jrn in [,
Theorem .] are replaced by the composite mapping JrnG in Theorems . and ..

(e) The proof of [, Theorem .] depends on the argument techniques in [], the
inequality in -uniformly smooth Banach spaces, and the inequality in smooth and
uniform convex Banach spaces. Because the composite mapping JrnG appears in the
iterative scheme (.) of Theorem ., the proof of Theorem . depends on the
argument techniques in [], the inequality in -uniformly smooth Banach spaces,
the inequality in smooth and uniform convex Banach spaces, the inequalities in
uniform convex Banach spaces, and the properties of theW -mapping and the
Banach limit. However, the proof of our Theorem . does not depend on the
argument techniques in [], the inequality in -uniformly smooth Banach spaces,
and the inequality in smooth and uniform convex Banach spaces. It depends on only
the inequalities in uniform convex Banach spaces and the properties of the
W -mapping and the Banach limit.

(f ) The assumption of the uniformly convex and -uniformly smooth Banach space X
in [, Theorem .] is weakened to the uniformly convex Banach space X having a
uniformly Gâteaux differentiable norm in Theorem ..

5 Composite viscosity algorithms and convergence criteria
In this section, we introduce composite viscosity algorithms in real smooth and uniformly
convex Banach spaces and study the strong convergence theorems. We first state the fol-
lowing important and useful lemma which will be used in the sequel.

Lemma . [] Let C be a nonempty closed convex subset of a Banach space X and
S,S, . . . be a sequence of mappings of C into itself. Suppose that

∑∞
n= sup{‖Snx – Sn–x‖ :

x ∈ C} <∞. Then, for each y ∈ C, {Sny} converges strongly to some point in C.Moreover, let
S : C → C be a mapping defined by Sy = limn→∞ Sny for all y ∈ C. Then limn→∞ sup{‖Sx –
Snx‖ : x ∈ C} = .
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Assumption . Let {αn}, {βn}, {γn}, {δn}, {σn} be the sequences in (, ) such that αn +
βn + γn + δn =  for all n≥ . Suppose that the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn =∞;
(ii) {γn}, {δn} ⊂ [c,d] for some c,d ∈ (, );
(iii)

∑∞
n=(|σn – σn–| + |αn – αn–| + |βn – βn–| + |γn – γn–| + |δn – δn–|) < ∞;

(iv)
∑∞

n= |rn – rn–| < ∞ and rn ≥ ε >  for all n≥ ;
(v)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and  < lim infn→∞ σn ≤ lim supn→∞ σn < .

We now state and prove our first result on the composite implicit viscosity algorithm.

Theorem . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space X. Let ΠC be a sunny nonexpansive retraction from X
onto C and A⊂ X ×X be an accretive operator on X such that D(A)⊂ C ⊂⋂

r> R(I + rA).
Let the mapping Bi : C → X be αi-inverse strongly accretive for i = , , and f : C → C be
a contraction with coefficient ρ ∈ (, ). Let {Si}∞i= be an infinite family of nonexpansive
mappings of C into itself such that F =

⋂∞
i= Fix(Si) ∩ Ω ∩ A– �= ∅ with  < μi < αi

κ
for

i = , . Suppose that Assumption . holds. For arbitrarily given x ∈ C, let {xn} be the
sequence generated by⎧⎨⎩yn = αnf (yn) + βnxn + γnSnxn + δnJrnGxn,

xn+ = σnyn + ( – σn)JrnGyn, ∀n≥ .
(.)

Assume that
∑∞

n= supx∈D ‖Snx – Sn–x‖ < ∞ for any bounded subset D of C, S : C → C be
a mapping defined by Sx = limn→∞ Snx for all x ∈ C, and Fix(S) =

⋂∞
n= Fix(Sn). Then the

sequence {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉≤ , ∀p ∈ F .

Proof First of all, let us show that the sequence {xn} is bounded. Indeed, take a fixed p ∈ F
arbitrarily. Then we get p = Gp, p = Snp and p = Jrnp for all n ≥ . By Lemma ., G is
nonexpansive. Then, from (.), we have

‖yn – p‖ ≤ αn
∥∥f (yn) – p

∥∥ + βn‖xn – p‖ + γn‖Snxn – p‖ + δn‖JrnGxn – p‖
≤ αn

(∥∥f (yn) – f (p)
∥∥ + ∥∥f (p) – p

∥∥) + βn‖xn – p‖ + γn‖xn – p‖ + δn‖Gxn – p‖
≤ αn

(
ρ‖yn – p‖ + ∥∥f (p) – p

∥∥) + βn‖xn – p‖ + γn‖xn – p‖ + δn‖xn – p‖
= ( – αn)‖xn – p‖ + αnρ‖yn – p‖ + αn

∥∥f (p) – p
∥∥,

which implies that

‖yn – p‖ ≤
(
 –

( – ρ)αn

 – αnρ

)
‖xn – p‖ + αn

 – αnρ

∥∥f (p) – p
∥∥. (.)

So, we have

‖xn+ – p‖ ≤ σn‖yn – p‖ + ( – σn)‖JrnGyn – p‖
≤ σn‖yn – p‖ + ( – σn)‖Gyn – p‖
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≤ σn‖yn – p‖ + ( – σn)‖yn – p‖
= ‖yn – p‖

≤
(
 –

( – ρ)αn

 – αnρ

)
‖xn – p‖ + αn

 – αnρ

∥∥f (p) – p
∥∥

=
(
 –

( – ρ)αn

 – αnρ

)
‖xn – p‖ + ( – ρ)αn

 – αnρ

‖f (p) – p‖
 – ρ

≤ max

{
‖xn – p‖, ‖f (p) – p‖

 – ρ

}
.

By induction, we obtain

‖xn – p‖ ≤max

{
‖x – p‖, ‖f (p) – p‖

 – ρ

}
, ∀n≥ . (.)

Hence, {xn} is bounded, and so are the sequences {yn}, {Gxn}, {Gyn}, and {f (yn)}.
Let us show that

lim
n→∞‖xn+ – xn‖ = . (.)

Observe that yn can be rewritten as

yn = βnxn + ( – βn)zn,

where zn =
αnf (yn)+γnSnxn+δnJrnGxn

–βn
. Note that

‖zn – zn–‖

=
∥∥∥∥αnf (yn) + γnSnxn + δnJrnGxn

 – βn
–

αn–f (yn–) + γn–Sn–xn– + δn–Jrn–Gxn–
 – βn–

∥∥∥∥
=
∥∥∥∥yn – βnxn

 – βn
–
yn– – βn–xn–

 – βn–

∥∥∥∥
=
∥∥∥∥yn – βnxn

 – βn
–
yn– – βn–xn–

 – βn
+
yn– – βn–xn–

 – βn
–
yn– – βn–xn–

 – βn–

∥∥∥∥
≤
∥∥∥∥yn – βnxn

 – βn
–
yn– – βn–xn–

 – βn

∥∥∥∥ + ∥∥∥∥yn– – βn–xn–
 – βn

–
yn– – βn–xn–

 – βn–

∥∥∥∥
=


 – βn

∥∥yn – βnxn – (yn– – βn–xn–)
∥∥ + ∣∣∣∣ 

 – βn
–


 – βn–

∣∣∣∣‖yn– – βn–xn–‖

=


 – βn

∥∥yn – βnxn – (yn– – βn–xn–)
∥∥ + |βn – βn–|

( – βn–)( – βn)
‖yn– – βn–xn–‖

=


 – βn

∥∥αnf (yn) + γnSnxn + δnJrnGxn – αn–f (yn–) – γn–Sn–xn– – δn–Jrn–Gxn–
∥∥

+
|βn – βn–|

( – βn–)( – βn)
‖yn– – βn–xn–‖

≤ 
 – βn

[
αn
∥∥f (yn) – f (yn–)

∥∥ + γn‖Snxn – Sn–xn–‖ + δn‖JrnGxn – Jrn–Gxn–‖
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+ |αn – αn–|
∥∥f (yn–)∥∥ + |γn – γn–|‖Sn–xn–‖ + |δn – δn–|‖Jrn–Gxn–‖

]
+

|βn – βn–|
( – βn–)( – βn)

‖yn– – βn–xn–‖. (.)

On the other hand, if rn– ≤ rn, using the resolvent identity in Proposition .,

Jrnxn = Jrn–

(
rn–
rn

xn +
(
 –

rn–
rn

)
Jrnxn

)
,

we get

‖JrnGxn – Jrn–Gxn–‖ =
∥∥∥∥Jrn–( rn–

rn
Gxn +

(
 –

rn–
rn

)
JrnGxn

)
– Jrn–Gxn–

∥∥∥∥
≤ rn–

rn
‖Gxn –Gxn–‖ +

(
 –

rn–
rn

)
‖JrnGxn –Gxn–‖

≤ ‖xn – xn–‖ + rn – rn–
rn

‖JrnGxn –Gxn–‖

≤ ‖xn – xn–‖ + 
ε
|rn – rn–|‖JrnGxn –Gxn–‖.

If rn ≤ rn–, then it is easy to see that

‖JrnGxn – Jrn–Gxn–‖ ≤ ‖xn– – xn‖ + 
ε
|rn– – rn|‖Jrn–Gxn– –Gxn‖.

Thus, combining the above cases, we obtain

‖JrnGxn – Jrn–Gxn–‖

≤ ‖xn– – xn‖ + |rn– – rn|
ε

sup
n≥

{‖JrnGxn –Gxn–‖ + ‖Jrn–Gxn– –Gxn‖
}
, ∀n≥ .

In a similar way, we derive

‖JrnGyn – Jrn–Gyn–‖

≤ ‖yn– – yn‖ + |rn– – rn|
ε

sup
n≥

{‖JrnGyn –Gyn–‖ + ‖Jrn–Gyn– –Gyn‖
}
, ∀n≥ .

Therefore, we have⎧⎨⎩‖JrnGxn – Jrn–Gxn–‖ ≤ ‖xn– – xn‖ + |rn– – rn|M,

‖JrnGyn – Jrn–Gyn–‖ ≤ ‖yn– – yn‖ + |rn– – rn|M,
(.)

for all n ≥ , where

sup
n≥

{

ε

(‖JrnGxn –Gxn–‖ + ‖Jrn–Gxn– –Gxn‖
)}≤M,

and

sup
n≥

{

ε

(‖JrnGyn –Gyn–‖ + ‖Jrn–Gyn– –Gyn‖
)}≤M,
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for someM > . Combining (.) and (.), we have

‖zn – zn–‖

≤ 
 – βn

[
αn
∥∥f (yn) – f (yn–)

∥∥ + γn‖Snxn – Sn–xn–‖

+ δn
(‖xn– – xn‖ +M|rn– – rn|

)
+ |αn – αn–|

∥∥f (yn–)∥∥ + |γn – γn–|‖Sn–xn–‖

+ |δn – δn–|‖Jrn–Gxn–‖
]
+

|βn – βn–|
( – βn–)( – βn)

‖yn– – βn–xn–‖

≤ 
 – βn

[
αnρ‖yn – yn–‖ + γn‖Snxn – Snxn–‖ + δn

(‖xn– – xn‖ +M|rn– – rn|
)

+ |αn – αn–|
∥∥f (yn–)∥∥ + |γn – γn–|‖Sn–xn–‖ + |δn – δn–|‖Jrn–Gxn–‖

+ γn‖Snxn– – Sn–xn–‖
]

+
|βn – βn–|

( – βn–)( – βn)
∥∥αn–f (yn–) + γn–Sn–xn– + δn–Jrn–Gxn–

∥∥
≤ 

 – βn

[
αnρ‖yn – yn–‖ + (γn + δn)‖xn– – xn‖ +M

(|αn – αn–| + |γn – γn–|

+ |δn – δn–| + |rn– – rn|
)
+ γn‖Snxn– – Sn–xn–‖

]
+


( – βn–)( – βn)

|βn – βn–|M, (.)

where supn≥{M + ‖f (yn)‖ + ‖Snxn‖ + ‖JrnGxn‖} ≤ M for some M > . By simple calcula-
tions, we have

yn – yn– = βn(xn – xn–) + ( – βn)(zn – zn–) + (βn – βn–)(xn– – zn–). (.)

Taking into account condition (v), without loss of generality, we may assume that {βn} ⊂
[a,b] for some a,b ∈ (, ). Hence, from (.) and (.), we deduce

‖yn – yn–‖
≤ βn‖xn – xn–‖ + ( – βn)‖zn – zn–‖ + |βn – βn–|‖xn– – zn–‖

≤ βn‖xn – xn–‖ + ( – βn)
{


 – βn

[
αnρ‖yn – yn–‖ + (γn + δn)‖xn– – xn‖

+M
(|αn – αn–| + |γn – γn–| + |δn – δn–| + |rn– – rn|

)
+ γn‖Snxn– – Sn–xn–‖

]
+


( – βn–)( – βn)

|βn – βn–|M
}
+ |βn – βn–|‖xn– – zn–‖

= ( – αn)‖xn– – xn‖ + αnρ‖yn – yn–‖ +M
(|αn – αn–| + |γn – γn–| + |δn – δn–|

+ |rn– – rn|
)
+ γn‖Snxn– – Sn–xn–‖

+


 – βn–
|βn – βn–|M + |βn – βn–|‖xn– – zn–‖

≤ ( – αn)‖xn– – xn‖ + αnρ‖yn – yn–‖ +M
(|αn – αn–| + |βn – βn–| + |γn – γn–|

+ |δn – δn–| + |rn– – rn|
)
+ ‖Snxn– – Sn–xn–‖,
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where supn≥{ M
–b + ‖xn – zn‖} ≤ M for someM > . This leads to

‖yn – yn–‖

≤
(
 –

( – ρ)αn

 – αnρ

)
‖xn– – xn‖ + M

 – αnρ

(|αn – αn–| + |βn – βn–| + |γn – γn–|

+ |δn – δn–| + |rn– – rn|
)
+


 – αnρ

‖Snxn– – Sn–xn–‖. (.)

Again by simple calculations, we have

xn+ – xn = σn(yn – yn–) + (σn – σn–)(yn– – Jrn–Gyn–)

+ ( – σn)(JrnGyn – Jrn–Gyn–).

This together with (.) and (.) implies that

‖xn+ – xn‖ ≤ σn‖yn – yn–‖ + |σn – σn–|‖yn– – Jrn–Gyn–‖
+ ( – σn)‖JrnGyn – Jrn–Gyn–‖

≤ σn‖yn – yn–‖ + |σn – σn–|‖yn– – Jrn–Gyn–‖
+ ( – σn)

(‖yn– – yn‖ + |rn– – rn|M
)

≤ ‖yn – yn–‖ + |σn – σn–|‖yn– – Jrn–Gyn–‖ + |rn– – rn|M

≤
(
 –

( – ρ)αn

 – αnρ

)
‖xn– – xn‖ + M

 – αnρ

(|αn – αn–| + |βn – βn–|

+ |γn – γn–| + |δn – δn–| + |rn– – rn|
)
+


 – αnρ

‖Snxn– – Sn–xn–‖
+ |σn – σn–|‖yn– – Jrn–Gyn–‖ + |rn– – rn|M

≤
(
 –

( – ρ)αn

 – αnρ

)
‖xn– – xn‖ + M̃

(|σn – σn–| + |αn – αn–| + |βn – βn–|

+ |γn – γn–| + |δn – δn–| + |rn– – rn| + ‖Snxn– – Sn–xn–‖
)
,

where supn≥{ M+
–αnρ

+M + ‖yn – JrnGyn‖} ≤ M̃ for some M̃ > . Noting that (–ρ)αn
–αnρ

≥ ( –
ρ)αn for all n≥ , from condition (i), we know that

∑∞
n=

(–ρ)αn
–αnρ

=∞. Utilizing Lemma .,
we conclude from conditions (iii), (iv), and the assumption on {Sn} that

lim
n→∞‖xn+ – xn‖ = .

Next we show that ‖xn –Gxn‖ →  as n→ ∞.
Indeed, according to Lemma .(a), we have from (.)

‖yn – p‖

=
∥∥αn

(
f (yn) – f (p)

)
+ βn(xn – p) + γn(Snxn – p) + δn(JrnGxn – p) + αn

(
f (p) – p

)∥∥
≤ ∥∥αn

(
f (yn) – f (p)

)
+ βn(xn – p) + γn(Snxn – p) + δn(JrnGxn – p)

∥∥
+ αn

〈
f (p) – p, J(yn – p)

〉
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≤ αn
∥∥f (yn) – f (p)

∥∥ + βn‖xn – p‖ + γn‖Snxn – p‖ + δn‖JrnGxn – p‖

+ αn
〈
f (p) – p, J(yn – p)

〉
≤ αnρ

‖yn – p‖ + βn‖xn – p‖ + γn‖xn – p‖ + δn‖Gxn – p‖

+ αn
〈
f (p) – p, J(yn – p)

〉
≤ αnρ‖yn – p‖ + βn‖xn – p‖ + γn‖xn – p‖ + δn‖xn – p‖

+ αn
〈
f (p) – p, J(yn – p)

〉
= αnρ‖yn – p‖ + ( – αn)‖xn – p‖ + αn

〈
f (p) – p, J(yn – p)

〉
, (.)

which implies that

‖yn – p‖ ≤
(
 –

( – ρ)αn

 – αnρ

)
‖xn – p‖ + αn

 – αnρ

〈
f (p) – p, J(yn – p)

〉
.

Utilizing Lemma ., we get from (.) and (.)

‖xn+ – p‖ =
∥∥σn(yn – p) + ( – σn)(JrnGyn – p)

∥∥
≤ σn‖yn – p‖ + ( – σn)‖JrnGyn – p‖ – σn( – σn)g

(‖yn – JrnGyn‖
)

≤ σn‖yn – p‖ + ( – σn)‖yn – p‖ – σn( – σn)g
(‖yn – JrnGyn‖

)
= ‖yn – p‖ – σn( – σn)g

(‖yn – JrnGyn‖
)

≤
(
 –

( – ρ)αn

 – αnρ

)
‖xn – p‖ + αn

 – αnρ

〈
f (p) – p, J(yn – p)

〉
– σn( – σn)g

(‖yn – JrnGyn‖
)

≤ ‖xn – p‖ + αn

 – αnρ

∥∥f (p) – p
∥∥‖yn – p‖ – σn( – σn)g

(‖yn – JrnGyn‖
)
,

and hence

σn( – σn)g
(‖yn – JrnGyn‖

)
≤ ‖xn – p‖ – ‖xn+ – p‖ + αn

 – αnρ

∥∥f (p) – p
∥∥‖yn – p‖

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + αn

 – αnρ

∥∥f (p) – p
∥∥‖yn – p‖.

Since αn →  and ‖xn+ – xn‖ → , from condition (v) and the boundedness of {xn} and
{yn}, it follows that

lim
n→∞ g

(‖yn – JrnGyn‖
)
= .

Utilizing the properties of g , we have

lim
n→∞‖yn – JrnGyn‖ = . (.)
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Observe that

‖xn – yn‖ ≤ ‖xn – xn+‖ + ‖xn+ – yn‖
= ‖xn – xn+‖ + ( – σn)‖JrnGyn – yn‖
≤ ‖xn – xn+‖ + ‖JrnGyn – yn‖.

From (.) and (.), we have

lim
n→∞‖xn – yn‖ = . (.)

For simplicity, put q = ΠC(p – μBp), un = ΠC(xn – μBxn) and vn = ΠC(un – μBun).
Then vn =Gxn for all n≥ . From Lemma ., we have

‖un – q‖ =
∥∥ΠC(xn –μBxn) –ΠC(p –μBp)

∥∥
≤ ∥∥xn – p –μ(Bxn – Bp)

∥∥
≤ ‖xn – p‖ – μ

(
α – κμ

)‖Bxn – Bp‖, (.)

and

‖vn – p‖ =
∥∥ΠC(un –μBun) –ΠC(q –μBq)

∥∥
≤ ∥∥un – q –μ(Bun – Bq)

∥∥
≤ ‖un – q‖ – μ

(
α – κμ

)‖Bun – Bq‖. (.)

Combining (.) and (.), we obtain

‖vn – p‖ ≤ ‖xn – p‖ – μ
(
α – κμ

)‖Bxn – Bp‖

– μ
(
α – κμ

)‖Bun – Bq‖. (.)

By Lemma .(a), (.), and (.), we have

‖yn – p‖

=
∥∥αn

(
f (yn) – f (p)

)
+ βn(xn – p) + γn(Snxn – p) + δn(JrnGxn – p) + αn

(
f (p) – p

)∥∥
≤ αn

∥∥f (yn) – f (p)
∥∥ + βn‖xn – p‖ + γn‖Snxn – p‖ + δn‖JrnGxn – p‖

+ αn
〈
f (p) – p, J(yn – p)

〉
≤ αnρ

‖yn – p‖ + βn‖xn – p‖ + γn‖xn – p‖ + δn‖vn – p‖

+ αn
∥∥f (p) – p

∥∥‖yn – p‖
≤ αnρ‖yn – p‖ + βn‖xn – p‖ + γn‖xn – p‖ + δn

[‖xn – p‖

– μ
(
α – κμ

)‖Bxn – Bp‖ – μ
(
α – κμ

)‖Bun – Bq‖
]

+ αn
∥∥f (p) – p

∥∥‖yn – p‖
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≤ αn‖yn – p‖ + ( – αn)‖xn – p‖ – δn
[
μ
(
α – κμ

)‖Bxn – Bp‖

+μ
(
α – κμ

)‖Bun – Bq‖
]
+ αn

∥∥f (p) – p
∥∥‖yn – p‖.

Thus, we have

δn
[
μ
(
α – κμ

)‖Bxn – Bp‖ +μ
(
α – κμ

)‖Bun – Bq‖
]

≤ ( – αn)‖xn – p‖ – ( – αn)‖yn – p‖ + αn
∥∥f (p) – p

∥∥‖yn – p‖
≤ ( – αn)

(‖xn – p‖ + ‖yn – p‖)‖xn – yn‖ + αn
∥∥f (p) – p

∥∥‖yn – p‖.

Since  < μi < αi
κ

for i = , , from (.) and conditions (i), (ii), we obtain

lim
n→∞‖Bxn – Bp‖ =  and lim

n→∞‖Bun – Bq‖ = . (.)

Utilizing Proposition . and Lemma ., we have

‖un – q‖ =
∥∥ΠC(xn –μBxn) –ΠC(p –μBp)

∥∥
≤ 〈

xn –μBxn – (p –μBp), J(un – q)
〉

=
〈
xn – p, J(un – q)

〉
+μ

〈
Bp – Bxn, J(un – q)

〉
≤ 


[‖xn – p‖ + ‖un – q‖ – g

(∥∥xn – un – (p – q)
∥∥)]

+μ‖Bp – Bxn‖‖un – q‖,

which implies that

‖un – q‖ ≤ ‖xn – p‖ – g
(∥∥xn – un – (p – q)

∥∥) + μ‖Bp – Bxn‖‖un – q‖. (.)

In the same way, we derive

‖vn – p‖ =
∥∥ΠC(un –μBun) –ΠC(q –μBq)

∥∥
≤ 〈

un –μBun – (q –μBq), J(vn – p)
〉

=
〈
un – q, J(vn – p)

〉
+μ

〈
Bq – Bun, J(vn – p)

〉
≤ 


[‖un – q‖ + ‖vn – p‖ – g

(∥∥un – vn + (p – q)
∥∥)]

+μ‖Bq – Bun‖‖vn – p‖,

which implies that

‖vn – p‖ ≤ ‖un – q‖ – g
(∥∥un – vn + (p – q)

∥∥) + μ‖Bq – Bun‖‖vn – p‖. (.)

Combining (.) and (.), we get

‖vn – p‖ ≤ ‖xn – p‖ – g
(∥∥xn – un – (p – q)

∥∥) – g
(∥∥un – vn + (p – q)

∥∥)
+ μ‖Bp – Bxn‖‖un – q‖ + μ‖Bq – Bun‖‖vn – p‖. (.)
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By Lemma .(a), (.), and (.), we have

‖yn – p‖

=
∥∥αn

(
f (yn) – f (p)

)
+ βn(xn – p) + γn(Snxn – p) + δn(JrnGxn – p) + αn

(
f (p) – p

)∥∥
≤ αn

∥∥f (yn) – f (p)
∥∥ + βn‖xn – p‖ + γn‖Snxn – p‖ + δn‖JrnGxn – p‖

+ αn
〈
f (p) – p, J(yn – p)

〉
≤ αnρ‖yn – p‖ + βn‖xn – p‖ + γn‖xn – p‖ + δn‖vn – p‖ + αn

∥∥f (p) – p
∥∥‖yn – p‖

≤ αnρ‖yn – p‖ + βn‖xn – p‖ + γn‖xn – p‖ + δn
[‖xn – p‖

– g
(∥∥xn – un – (p – q)

∥∥) – g
(∥∥un – vn + (p – q)

∥∥) + μ‖Bp – Bxn‖‖un – q‖
+ μ‖Bq – Bun‖‖vn – p‖] + αn

∥∥f (p) – p
∥∥‖yn – p‖

≤ αn‖yn – p‖ + ( – αn)‖xn – p‖ – δn
[
g
(∥∥xn – un – (p – q)

∥∥)
+ g

(∥∥un – vn + (p – q)
∥∥)] + μ‖Bp – Bxn‖‖un – q‖

+ μ‖Bq – Bun‖‖vn – p‖ + αn
∥∥f (p) – p

∥∥‖yn – p‖,

and hence

δn
[
g
(∥∥xn – un – (p – q)

∥∥) + g
(∥∥un – vn + (p – q)

∥∥)]
≤ ( – αn)‖xn – p‖ – ( – αn)‖yn – p‖ + μ‖Bp – Bxn‖‖un – q‖

+ μ‖Bq – Bun‖‖vn – p‖ + αn
∥∥f (p) – p

∥∥‖yn – p‖
≤ ( – αn)

(‖xn – p‖ + ‖yn – p‖)‖xn – yn‖ + μ‖Bp – Bxn‖‖un – q‖
+ μ‖Bq – Bun‖‖vn – p‖ + αn

∥∥f (p) – p
∥∥‖yn – p‖.

Utilizing conditions (i), (ii), from (.) and (.), we have

lim
n→∞ g

(∥∥xn – un – (p – q)
∥∥) =  and lim

n→∞ g
(∥∥un – vn + (p – q)

∥∥) = . (.)

Utilizing the properties of g and g, we have

lim
n→∞

∥∥xn – un – (p – q)
∥∥ =  and lim

n→∞
∥∥un – vn + (p – q)

∥∥ = . (.)

From (.), we get

‖xn – vn‖ ≤ ∥∥xn – un – (p – q)
∥∥ + ∥∥un – vn + (p – q)

∥∥→  as n→ ∞,

that is,

lim
n→∞‖xn –Gxn‖ = . (.)

Next, let us show that

lim
n→∞‖Jrnxn – xn‖ =  and lim

n→∞‖Snxn – xn‖ = .
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Indeed, observe that yn can be rewritten as

yn = αnf (yn) + βnxn + γnSnxn + δnJrnGxn

= αnf (yn) + βnxn + (γn + δn)
γnSnxn + δnJrnGxn

γn + δn

= αnf (yn) + βnxn + enẑn, (.)

where en = γn + δn and ẑn =
γnSnxn+δnJrnGxn

γn+δn
. Utilizing Lemma . and (.), we have

‖yn – p‖

=
∥∥αn

(
f (yn) – p

)
+ βn(xn – p) + en(ẑn – p)

∥∥
≤ αn

∥∥f (yn) – p
∥∥ + βn‖xn – p‖ + en‖ẑn – p‖ – βneng

(‖ẑn – xn‖
)

= αn
∥∥f (yn) – p

∥∥ + βn‖xn – p‖ – βneng
(‖ẑn – xn‖

)
+ en

∥∥∥∥γnSnxn + δnJrnGxn
γn + δn

– p
∥∥∥∥

= αn
∥∥f (yn) – p

∥∥ + βn‖xn – p‖ – βneng
(‖ẑn – xn‖

)
+ en

∥∥∥∥ γn

γn + δn
(Snxn – p) +

δn

γn + δn
(JrnGxn – p)

∥∥∥∥
≤ αn

∥∥f (yn) – p
∥∥ + βn‖xn – p‖ – βneng

(‖ẑn – xn‖
)

+ en
[

γn

γn + δn
‖Snxn – p‖ + δn

γn + δn
‖JrnGxn – p‖

]
≤ αn

∥∥f (yn) – p
∥∥ + βn‖xn – p‖ – βneng

(‖ẑn – xn‖
)

+ en
[

γn

γn + δn
‖xn – p‖ + δn

γn + δn
‖xn – p‖

]
= αn

∥∥f (yn) – p
∥∥ + ( – αn)‖xn – p‖ – βneng

(‖ẑn – xn‖
)

≤ αn
∥∥f (yn) – p

∥∥ + ‖xn – p‖ – βneng
(‖ẑn – xn‖

)
,

which implies that

βneng
(‖ẑn – xn‖

) ≤ αn
∥∥f (yn) – p

∥∥ + ‖xn – p‖ – ‖yn – p‖

≤ αn
∥∥f (yn) – p

∥∥ + (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖.

Utilizing (.), conditions (i), (ii), (v), and the boundedness of {xn}, {yn}, and {f (yn)}, we
get

lim
n→∞ g

(‖ẑn – xn‖
)
= .

From the properties of g, we have

lim
n→∞‖ẑn – xn‖ = .
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Utilizing Lemma . and the definition of ẑn, we have

‖ẑn – p‖ =
∥∥∥∥γnSnxn + δnJrnGxn

γn + δn
– p
∥∥∥∥

=
∥∥∥∥ γn

γn + δn
(Snxn – p) +

δn

γn + δn
(JrnGxn – p)

∥∥∥∥
≤ γn

γn + δn
‖Snxn – p‖ + δn

γn + δn
‖JrnGxn – p‖

–
γnδn

(γn + δn)
g
(‖JrnGxn – Snxn‖

)
≤ ‖xn – p‖ – γnδn

(γn + δn)
g
(‖JrnGxn – Snxn‖

)
,

which leads to

γnδn

(γn + δn)
g
(‖JrnGxn – Snxn‖

) ≤ ‖xn – p‖ – ‖ẑn – p‖

≤ (‖xn – p‖ + ‖ẑn – p‖)‖xn – ẑn‖.

Since {xn} and {ẑn} are bounded and ‖ẑn – xn‖ →  as n→ ∞, we deduce from condition
(ii) that

lim
n→∞ g

(‖Snxn – JrnGxn‖
)
= .

From the properties of g, we have

lim
n→∞‖Snxn – JrnGxn‖ = . (.)

On the other hand, yn can also be rewritten as

yn = αnf (yn) + βnxn + γnSnxn + δnJrnGxn

= βnxn + γnSnxn + (αn + δn)
αnf (yn) + δnJrnGxn

αn + δn
= βnxn + γnSnxn + dnz̃n,

where dn = αn + δn and z̃n =
αnf (yn)+δnJrnGxn

αn+δn
. Utilizing Lemma . and the convexity of ‖ · ‖,

we have

‖yn – p‖

=
∥∥βn(xn – p) + γn(Snxn – p) + dn(z̃n – p)

∥∥
≤ βn‖xn – p‖ + γn‖Snxn – p‖ + dn‖z̃n – p‖ – βnγng

(‖xn – Snxn‖
)

= βn‖xn – p‖ + γn‖Snxn – p‖ + dn
∥∥∥∥αnf (yn) + δnJrnGxn

αn + δn
– p
∥∥∥∥

– βnγng
(‖xn – Snxn‖

)
= βn‖xn – p‖ + γn‖Snxn – p‖ + dn

∥∥∥∥ αn

αn + δn

(
f (yn) – p

)
+

δn

αn + δn
(JrnGxn – p)

∥∥∥∥
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– βnγng
(‖xn – Snxn‖

)
≤ βn‖xn – p‖ + γn‖xn – p‖ + dn

[
αn

αn + δn

∥∥f (yn) – p
∥∥ + δn

αn + δn
‖JrnGxn – p‖

]
– βnγng

(‖xn – Snxn‖
)

≤ αn
∥∥f (yn) – p

∥∥ + (βn + γn)‖xn – p‖ + δn‖xn – p‖ – βnγng
(‖xn – Snxn‖

)
= αn

∥∥f (yn) – p
∥∥ + ( – αn)‖xn – p‖ – βnγng

(‖xn – Snxn‖
)

≤ αn
∥∥f (yn) – p

∥∥ + ‖xn – p‖ – βnγng
(‖xn – Snxn‖

)
,

which implies that

βnγng
(‖xn – Snxn‖

) ≤ αn
∥∥f (yn) – p

∥∥ + ‖xn – p‖ – ‖yn – p‖

≤ αn
∥∥f (yn) – p

∥∥ + (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖.

From (.), conditions (i), (ii), (v), and the boundedness of {xn}, {yn}, and {f (yn)}, we have

lim
n→∞ g

(‖xn – Snxn‖
)
= .

Utilizing the properties of g, we have

lim
n→∞‖xn – Snxn‖ = . (.)

By Lemma ., we get

‖xn – Sxn‖ ≤ ‖xn – Snxn‖ + ‖Snxn – Sxn‖ →  as n→ ∞,

that is,

lim
n→∞‖xn – Sxn‖ = . (.)

We note that

‖xn – Jrnxn‖ ≤ ‖xn – Snxn‖ + ‖Snxn – JrnGxn‖ + ‖JrnGxn – Jrnxn‖
≤ ‖xn – Snxn‖ + ‖Snxn – JrnGxn‖ + ‖Gxn – xn‖.

So, from (.), (.), and (.), it follows that

lim
n→∞‖xn – Jrnxn‖ = . (.)

Furthermore, we claim that limn→∞ ‖xn – Jrxn‖ =  for a fixed number r such that ε >
r > . In fact, taking into account the resolvent identity in Proposition ., we have

‖Jrnxn – Jrxn‖ =
∥∥∥∥Jr( r

rn
xn +

(
 –

r
rn

)
Jrnxn

)
– Jrxn

∥∥∥∥
≤
(
 –

r
rn

)
‖xn – Jrnxn‖ ≤ ‖xn – Jrnxn‖. (.)
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From (.) and (.), we get

‖xn – Jrxn‖ ≤ ‖xn – Jrnxn‖ + ‖Jrnxn – Jrxn‖ ≤ ‖xn – Jrnxn‖ + ‖xn – Jrnxn‖
= ‖xn – Jrnxn‖ →  as n→ ∞,

that is,

lim
n→∞‖xn – Jrxn‖ = . (.)

Define a mappingWx = (– θ – θ)Jrx+ θSx+ θGx, where θ, θ ∈ (, ) are two constants
with θ + θ < . Then by Lemma ., we have Fix(W ) = Fix(Jr) ∩ Fix(S) ∩ Fix(G) = F . We
observe that

‖xn –Wxn‖ =
∥∥( – θ – θ)(xn – Jrxn) + θ(xn – Sxn) + θ(xn –Gxn)

∥∥
≤ ( – θ – θ)‖xn – Jrxn‖ + θ‖xn – Sxn‖ + θ‖xn –Gxn‖.

From (.), (.), and (.), we obtain

lim
n→∞‖xn –Wxn‖ = . (.)

Now, we claim that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉≤ , (.)

where q = s – limt→ xt with xt being the fixed point of the contraction

x �→ tf (x) + ( – t)Wx.

Then xt solves the fixed point equation xt = tf (xt) + ( – t)Wxt . Thus, we have

‖xt – xn‖ =
∥∥( – t)(Wxt – xn) + t

(
f (xt) – xn

)∥∥.
By Lemma .(a), we obtain

‖xt – xn‖

=
∥∥( – t)(Wxt – xn) + t

(
f (xt) – xn

)∥∥
≤ ( – t)‖Wxt – xn‖ + t

〈
f (xt) – xn, J(xt – xn)

〉
≤ ( – t)

(‖Wxt –Wxn‖ + ‖Wxn – xn‖
) + t

〈
f (xt) – xn, J(xt – xn)

〉
≤ ( – t)

(‖xt – xn‖ + ‖Wxn – xn‖
) + t

〈
f (xt) – xn, J(xt – xn)

〉
= ( – t)

[‖xt – xn‖ + ‖xt – xn‖‖Wxn – xn‖ + ‖Wxn – xn‖
]

+ t
〈
f (xt) – xt , J(xt – xn)

〉
+ t

〈
xt – xn, J(xt – xn)

〉
=
(
 – t + t

)‖xt – xn‖ + fn(t) + t
〈
f (xt) – xt , J(xt – xn)

〉
+ t‖xt – xn‖, (.)
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where

fn(t) = ( – t)
(
‖xt – xn‖ + ‖xn –Wxn‖

)‖xn –Wxn‖ → , as n→ ∞. (.)

It follows from (.) that

〈
xt – f (xt), J(xt – xn)

〉≤ t

‖xt – xn‖ + 

t
fn(t). (.)

Letting n → ∞ in (.) and noticing (.), we derive

lim sup
n→∞

〈
xt – f (xt), J(xt – xn)

〉≤ t

M, (.)

where M >  is a constant such that ‖xt – xn‖ ≤ M for all t ∈ (, ) and n ≥ . Taking
t →  in (.), we have

lim sup
t→

lim sup
n→∞

〈
xt – f (xt), J(xt – xn)

〉≤ . (.)

On the other hand, we have

〈
f (q) – q, J(xn – q)

〉
=
〈
f (q) – q, J(xn – q)

〉
–
〈
f (q) – q, J(xn – xt)

〉
+
〈
f (q) – q, J(xn – xt)

〉
–
〈
f (q) – xt , J(xn – xt)

〉
+
〈
f (q) – xt , J(xn – xt)

〉
–
〈
f (xt) – xt , J(xn – xt)

〉
+
〈
f (xt) – xt , J(xn – xt)

〉
=
〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
+
〈
xt – q, J(xn – xt)

〉
+
〈
f (q) – f (xt), J(xn – xt)

〉
+
〈
f (xt) – xt , J(xn – xt)

〉
.

It follows that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ lim sup
n→∞

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
+ ‖xt – q‖ lim sup

n→∞
‖xn – xt‖ + ρ‖q – xt‖ lim sup

n→∞
‖xn – xt‖

+ lim sup
n→∞

〈
f (xt) – xt , J(xn – xt)

〉
.

Taking into account that xt → q as t → , we have from (.)

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
= lim sup

t→
lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
≤ lim sup

t→
lim sup
n→∞

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
. (.)

Since X has a uniformly Fréchet differentiable norm, the duality mapping J is norm-to-
norm uniformly continuous on bounded subsets of X. Consequently, the two limits are
interchangeable and hence (.) holds. From (.) we get (yn–q)–(xn–q) → . Noticing
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that J is norm-to-norm uniformly continuous on bounded subsets of X, we deduce from
(.) that

lim sup
n→∞

〈
f (q) – q, J(yn – q)

〉
= lim sup

n→∞
(〈
f (q) – q, J(xn – q)

〉
+
〈
f (q) – q, J(yn – q) – J(xn – q)

〉)
= lim sup

n→∞
〈
f (q) – q, J(xn – q)

〉≤ .

Finally, let us show that xn → q as n→ ∞. We observe that

‖yn – q‖

=
∥∥αn

(
f (yn) – f (q)

)
+ βn(xn – q) + γn(Snxn – q) + δn(JrnGxn – q) + αn

(
f (q) – q

)∥∥
≤ ∥∥αn

(
f (yn) – f (q)

)
+ βn(xn – q) + γn(Snxn – q) + δn(JrnGxn – q)

∥∥
+ αn

〈
f (q) – q, J(yn – q)

〉
≤ αn

∥∥f (yn) – f (q)
∥∥ + βn‖xn – q‖ + γn‖Snxn – q‖ + δn‖JrnGxn – q‖

+ αn
〈
f (q) – q, J(yn – q)

〉
≤ αnρ‖yn – q‖ + ( – αn)‖xn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
,

which implies that

‖yn – q‖ ≤
(
 –

αn( – ρ)
 – αnρ

)
‖xn – q‖ + αn( – ρ)

 – αnρ
· 〈f (q) – q, J(yn – q)〉

 – ρ
. (.)

From (.) and the convexity of ‖ · ‖, we get

‖xn+ – q‖ ≤ σn‖yn – q‖ + ( – σn)‖JrnGyn – q‖

≤ ‖yn – q‖

≤
(
 –

αn( – ρ)
 – αnρ

)
‖xn – q‖ + αn( – ρ)

 – αnρ
· 〈f (q) – q, J(yn – q)〉

 – ρ
. (.)

Applying Lemma . to (.), we obtain xn → q as n→ ∞. This completes the proof. �

Corollary . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space X. Let ΠC be a sunny nonexpansive retraction from X
onto C and A⊂ X ×X be an accretive operator on X such that D(A)⊂ C ⊂⋂

r> R(I + rA).
Let the mapping Bi : C → X be αi-inverse strongly accretive for i = , , and f : C → C be a
contraction with coefficient ρ ∈ (, ). Let S : C → C be a nonexpansive mapping such that
F = Fix(S)∩ Ω ∩A– �= ∅ with  < μi < αi

κ
for i = , . For arbitrarily given x ∈ C, let {xn}

be the sequence generated by⎧⎨⎩yn = αnf (yn) + βnxn + γnSxn + δnJrnGxn,

xn+ = σnyn + ( – σn)JrnGyn, ∀n≥ .
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Suppose that Assumption . holds. Assume that
∑∞

n= supx∈D ‖Snx – Sn–x‖ < ∞ for any
bounded subset D of C, S : C → C is a mapping defined by Sx = limn→∞ Snx for all x ∈ C,
and Fix(S) =

⋂∞
n= Fix(Sn). Then the sequence {xn} converges strongly to q ∈ F , which solves

the following VIP:

〈
q – f (q), J(q – p)

〉≤ , ∀p ∈ F .

We now establish the following strong convergence result on the composite explicit vis-
cosity algorithm.

Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gâteaux differentiable norm. Let ΠC be a sunny nonex-
pansive retraction from X onto C and A ⊂ X × X be an accretive operator on X such that
D(A) ⊂ C ⊂⋂

r> R(I + rA). For each i = , , let Bi : C → X be a λi-strictly pseudocontrac-
tive and αi-strongly accretive mapping with αi +λi ≥ . Let f : C → C be a contraction with
coefficient ρ ∈ (, ) and {Si}∞i= be an infinite family of nonexpansive mappings Si : C → C
such that F =

⋂∞
i= Fix(Si) ∩ Ω ∩ A– �= ∅ with  – λi

+λi
( –

√
–αi
λi

) ≤ μi ≤  for i = , .
Suppose that Assumption . holds. For arbitrarily given x ∈ C, let {xn} be the sequence
generated by⎧⎨⎩yn = σnGxn + ( – σn)JrnGxn,

xn+ = αnf (yn) + βnyn + γnSnyn + δnJrnGyn, ∀n≥ .
(.)

Assume that
∑∞

n= supx∈D ‖Snx – Sn–x‖ < ∞ for any bounded subset D of C, S : C → C is
a mapping defined by Sx = limn→∞ Snx for all x ∈ C, and Fix(S) =

⋂∞
n= Fix(Sn). Then {xn}

converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉≤ , ∀p ∈ F .

Proof Take a fixed p ∈ F arbitrarily. Then we obtain p = Gp, p = Snp and Jrnp = p for all
n≥ . Moreover, by Lemma ., we have

‖yn – p‖ ≤ σn‖Gxn – p‖ + ( – σn)‖JrnGxn – p‖
≤ σn‖xn – p‖ + ( – σn)‖xn – p‖
= ‖xn – p‖, (.)

and therefore

‖xn+ – p‖ ≤ αn
∥∥f (yn) – p

∥∥ + βn‖yn – p‖ + γn‖Snyn – p‖ + δn‖JrnGyn – p‖
≤ αn

(∥∥f (yn) – f (p)
∥∥ + ∥∥f (p) – p

∥∥) + βn‖yn – p‖
+ γn‖yn – p‖ + δn‖yn – p‖

≤ αnρ‖yn – p‖ + αn
∥∥f (p) – p

∥∥ + (βn + γn + δn)‖yn – p‖
=
(
 – αn( – ρ)

)‖yn – p‖ + αn
∥∥f (p) – p

∥∥
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≤ (
 – αn( – ρ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥
=
(
 – αn( – ρ)

)‖xn – p‖ + αn( – ρ) · ‖f (p) – p‖
 – ρ

≤ max

{
‖xn – p‖, ‖f (p) – p‖

 – ρ

}
.

By induction, we get

‖xn – p‖ ≤max

{
‖x – p‖, ‖f (p) – p‖

 – ρ

}
, ∀n≥ ,

which implies that {xn} is bounded and so are the sequences {yn}, {Gxn}, {Gyn}, {f (yn)}.
Let us show that ‖xn+ – xn‖ →  as n → ∞. As a matter of fact, repeating the same

arguments as those in the proof of Theorem ., we obtain⎧⎨⎩‖JrnGxn – Jrn–Gxn–‖ ≤ ‖xn– – xn‖ + |rn– – rn|M,

‖JrnGyn – Jrn–Gyn–‖ ≤ ‖yn– – yn‖ + |rn– – rn|M, ∀n≥ ,
(.)

where

sup
n≥

{

ε

(‖JrnGxn –Gxn–‖ + ‖Jrn–Gxn– –Gxn‖
)}≤M,

and

sup
n≥

{

ε

(‖JrnGyn –Gyn–‖ + ‖Jrn–Gyn– –Gyn‖
)}≤M,

for someM > . By (.) and simple calculations, we have

yn – yn– = σn(Gxn –Gxn–) + (σn – σn–)(Gxn– – Jrn–Gxn–)

+ ( – αn)(JrnGxn – Jrn–Gxn–).

It follows that

‖yn – yn–‖ ≤ σn‖Gxn –Gxn–‖ + |σn – σn–|‖Gxn– – Jrn–Gxn–‖
+ ( – αn)‖JrnGxn – Jrn–Gxn–‖

≤ σn‖xn – xn–‖ + |σn – σn–|‖Gxn– – Jrn–Gxn–‖
+ ( – σn)

(‖xn– – xn‖ + |rn– – rn|M
)

≤ ‖xn – xn–‖ + |σn – σn–|‖Gxn– – Jrn–Gxn–‖ + |rn – rn–|M. (.)

Taking into account condition (v), without loss of generality we may assume that {βn} ⊂
[a,b] for some a,b ∈ (, ). From (.), xn+ can be rewritten as

xn+ = βnyn + ( – βn)zn, (.)
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where zn =
αnf (yn)+γnSnyn+δnJrnGyn

–βn
. Utilizing (.) and (.), we have

‖zn – zn–‖

=
∥∥∥∥αnf (yn) + γnSnyn + δnJrnGyn

 – βn
–

αn–f (yn–) + γn–Sn–yn– + δn–Jrn–Gyn–
 – βn–

∥∥∥∥
=
∥∥∥∥xn+ – βnyn

 – βn
–
xn – βn–yn–

 – βn–

∥∥∥∥
=
∥∥∥∥xn+ – βnyn

 – βn
–
xn – βn–yn–

 – βn
+
xn – βn–yn–

 – βn
–
xn – βn–yn–

 – βn–

∥∥∥∥
≤
∥∥∥∥xn+ – βnyn

 – βn
–
xn – βn–yn–

 – βn

∥∥∥∥ + ∥∥∥∥xn – βn–yn–
 – βn

–
xn – βn–yn–

 – βn–

∥∥∥∥
=


 – βn

∥∥xn+ – βnyn – (xn – βn–yn–)
∥∥ + ∣∣∣∣ 

 – βn
–


 – βn–

∣∣∣∣‖xn – βn–yn–‖

=


 – βn

∥∥xn+ – βnyn – (xn – βn–yn–)
∥∥ + |βn – βn–|

( – βn–)( – βn)
‖xn – βn–yn–‖

=


 – βn

∥∥αnf (yn) + γnSnyn + δnJrnGyn – αn–f (yn–) – γn–Sn–yn– – δn–Jrn–Gyn–
∥∥

+
|βn – βn–|

( – βn–)( – βn)
‖xn – βn–yn–‖

≤ 
 – βn

[
αn
∥∥f (yn) – f (yn–)

∥∥ + γn‖Snyn – Sn–yn–‖ + δn‖JrnGyn – Jrn–Gyn–‖

+ |αn – αn–|
∥∥f (yn–)∥∥ + |γn – γn–|‖Sn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖

]
+

|βn – βn–|
( – βn–)( – βn)

‖xn – βn–yn–‖

≤ 
 – βn

[
αnρ‖yn – yn–‖ + γn‖Snyn – Snyn–‖ + δn

[‖yn– – yn‖ + |rn– – rn|M
]

+ |αn – αn–|
∥∥f (yn–)∥∥ + |γn – γn–|‖Sn–yn–‖ + γn‖Snyn– – Sn–yn–‖

+ |δn – δn–|‖Jrn–Gyn–‖
]
+

|βn – βn–|
( – βn–)( – βn)

‖xn – βn–yn–‖

≤ 
 – βn

[
(αnρ + γn + δn)‖yn– – yn‖ + |rn– – rn|M + |αn – αn–|

∥∥f (yn–)∥∥
+ |γn – γn–|‖Sn–yn–‖ + γn‖Snyn– – Sn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖

]
+

|βn – βn–|
( – βn–)( – βn)

‖xn – βn–yn–‖

≤
(
 –

( – ρ)αn

 – βn

)
‖yn – yn–‖ + 

 – βn

[|rn– – rn|M + |αn – αn–|
∥∥f (yn–)∥∥

+ |γn – γn–|‖Sn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖
]
+ ‖Snyn– – Sn–yn–‖

+
|βn – βn–|

( – βn–)( – βn)
‖xn – βn–yn–‖. (.)

By simple calculations and (.), we get

xn+ – xn = βn(yn – yn–) + (βn – βn–)(yn– – zn–) + ( – βn)(zn – zn–).
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This together with (.) and (.) implies that

‖xn+ – xn‖
≤ βn‖yn – yn–‖ + |βn – βn–|‖yn– – zn–‖ + ( – βn)‖zn – zn–‖

≤ βn‖yn – yn–‖ + |βn – βn–|‖yn– – zn–‖ + ( – βn)
{(

 –
( – ρ)αn

 – βn

)
‖yn – yn–‖

+


 – βn

[|rn– – rn|M + |αn – αn–|
∥∥f (yn–)∥∥ + |γn – γn–|‖Sn–yn–‖

+ |δn – δn–|‖Jrn–Gyn–‖
]
+ ‖Snyn– – Sn–yn–‖

+
|βn – βn–|

( – βn–)( – βn)
‖xn – βn–yn–‖

}
≤ (

 – ( – ρ)αn
)‖yn – yn–‖ + |βn – βn–|‖yn– – zn–‖ + |rn– – rn|M

+ |αn – αn–|
∥∥f (yn–)∥∥ + |γn – γn–|‖Sn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖

+ ‖Snyn– – Sn–yn–‖ + |βn – βn–|
 – βn–

‖xn – βn–yn–‖

≤ (
 – ( – ρ)αn

)[‖xn – xn–‖ + |σn – σn–|‖Gxn– – Jrn–Gxn–‖ + |rn – rn–|M
]

+ |βn – βn–|‖yn– – zn–‖ + |rn– – rn|M + |αn – αn–|
∥∥f (yn–)∥∥

+ |γn – γn–|‖Sn–yn–‖ + |δn – δn–|‖Jrn–Gyn–‖ + ‖Snyn– – Sn–yn–‖

+
|βn – βn–|
 – βn–

∥∥αn–f (yn–) + γn–Sn–yn– + δn–Jrn–Gyn–
∥∥

≤ (
 – ( – ρ)αn

)‖xn – xn–‖ +
(|σn – σn–| + |αn – αn–| + |βn – βn–|

+ |γn – γn–| + |δn – δn–| + |rn– – rn|
)
M + ‖Snyn– – Sn–yn–‖,

where 
–b supn≥{‖f (yn)‖+ ‖Snyn‖+ ‖JrnGyn‖+ ‖Gxn – JrnGxn‖+ ‖yn – zn‖+M} ≤M for

someM > . So, in terms of Lemma . and conditions (i), (iii), and (iv), we conclude that

lim
n→∞‖xn+ – xn‖ = . (.)

Next we show that ‖xn –Gxn‖ →  as n→ ∞.
Indeed, utilizing Lemma . and (.), we get

‖yn – p‖ =
∥∥σn(Gxn – p) + ( – σn)(JrnGxn – p)

∥∥
≤ σn‖Gxn – p‖ + ( – σn)‖JrnGxn – p‖ – σn( – σn)g

(‖Gxn – JrnGxn‖
)

≤ σn‖xn – p‖ + ( – σn)‖xn – p‖ – σn( – σn)g
(‖Gxn – JrnGxn‖

)
= ‖xn – p‖ – σn( – σn)g

(‖Gxn – JrnGxn‖
)
. (.)

According to Lemma ., we have from (.) and (.)

‖xn+ – p‖

=
∥∥αn

(
f (yn) – f (p)

)
+ βn(yn – p) + γn(Snyn – p) + δn(JrnGyn – p) + αn

(
f (p) – p

)∥∥
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≤ ∥∥αn
(
f (yn) – f (p)

)
+ βn(yn – p) + γn(Snyn – p) + δn(JrnGyn – p)

∥∥
+ αn

〈
f (p) – p, J(xn+ – p)

〉
≤ αn

∥∥f (yn) – f (p)
∥∥ + βn‖yn – p‖ + γn‖Snyn – p‖ + δn‖JrnGyn – p‖

+ αn
〈
f (p) – p, J(xn+ – p)

〉
≤ αnρ

‖yn – p‖ + βn‖yn – p‖ + γn‖yn – p‖ + δn‖Gyn – p‖

+ αn
〈
f (p) – p, J(xn+ – p)

〉
≤ αnρ‖yn – p‖ + βn‖yn – p‖ + γn‖yn – p‖ + δn‖yn – p‖

+ αn
∥∥f (p) – p

∥∥‖xn+ – p‖
=
(
 – αn( – ρ)

)‖yn – p‖ + αn
∥∥f (p) – p

∥∥‖xn+ – p‖
≤ ‖yn – p‖ + αn

∥∥f (p) – p
∥∥‖xn+ – p‖

≤ ‖xn – p‖ – σn( – σn)g
(‖Gxn – JrnGxn‖

)
+ αn

∥∥f (p) – p
∥∥‖xn+ – p‖,

which hence yields

σn( – σn)g
(‖Gxn – JrnGxn‖

)
≤ ‖xn – p‖ – ‖xn+ – p‖ + αn

∥∥f (p) – p
∥∥‖xn+ – p‖

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + αn
∥∥f (p) – p

∥∥‖xn+ – p‖.

Since αn →  and ‖xn+ – xn‖ → , from condition (v) and the boundedness of {xn}, it
follows that

lim
n→∞ g

(‖Gxn – JrnGxn‖
)
= .

Utilizing the properties of g , we have

lim
n→∞‖Gxn – JrnGxn‖ = . (.)

On the other hand, xn+ can be rewritten as

xn+ = αnf (yn) + βnyn + γnSnyn + δnJrnGyn

= αnf (yn) + βnyn + (γn + δn)
γnSnyn + δnJrnGyn

γn + δn

= αnf (yn) + βnyn + enẑn, (.)

where en = γn + δn and ẑn =
γnSnyn+δnJrnGyn

γn+δn
. Utilizing Lemma ., from (.) and (.), we

have

‖xn+ – p‖ =
∥∥αn

(
f (yn) – p

)
+ βn(yn – p) + en(ẑn – p)

∥∥
≤ αn

∥∥f (yn) – p
∥∥ + βn‖yn – p‖ + en‖ẑn – p‖ – βneng

(‖ẑn – yn‖
)
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= αn
∥∥f (yn) – p

∥∥ + βn‖yn – p‖ – βneng
(‖ẑn – yn‖

)
+ en

∥∥∥∥γnSnyn + δnJrnGyn
γn + δn

– p
∥∥∥∥

= αn
∥∥f (yn) – p

∥∥ + βn‖yn – p‖ – βneng
(‖ẑn – yn‖

)
+ en

∥∥∥∥ γn

γn + δn
(Snyn – p) +

δn

γn + δn
(JrnGyn – p)

∥∥∥∥
≤ αn

∥∥f (yn) – p
∥∥ + βn‖yn – p‖ – βneng

(‖ẑn – yn‖
)

+ en
[

γn

γn + δn
‖Snyn – p‖ + δn

γn + δn
‖JrnGyn – p‖

]
≤ αn

∥∥f (yn) – p
∥∥ + βn‖yn – p‖ – βneng

(‖ẑn – yn‖
)

+ en
[

γn

γn + δn
‖yn – p‖ + δn

γn + δn
‖yn – p‖

]
= αn

∥∥f (yn) – p
∥∥ + ( – αn)‖yn – p‖ – βneng

(‖ẑn – yn‖
)

≤ αn
∥∥f (yn) – p

∥∥ + ‖yn – p‖ – βneng
(‖ẑn – yn‖

)
≤ αn

∥∥f (yn) – p
∥∥ + ‖xn – p‖ – βneng

(‖ẑn – yn‖
)
,

which hence implies that

βneng
(‖ẑn – yn‖

) ≤ αn
∥∥f (yn) – p

∥∥ + ‖xn – p‖ – ‖xn+ – p‖

≤ αn
∥∥f (yn) – p

∥∥ + (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖.

Utilizing (.), conditions (i), (ii), (v), and the boundedness of {xn} and {f (yn)}, we get

lim
n→∞ g

(‖ẑn – yn‖
)
= .

From the properties of g, we have

lim
n→∞‖ẑn – yn‖ = . (.)

Utilizing Lemma . and the definition of ẑn, we have

‖ẑn – p‖ =
∥∥∥∥γnSnyn + δnJrnGyn

γn + δn
– p
∥∥∥∥

=
∥∥∥∥ γn

γn + δn
(Snyn – p) +

δn

γn + δn
(JrnGyn – p)

∥∥∥∥
≤ γn

γn + δn
‖Snyn – p‖ + δn

γn + δn
‖JrnGyn – p‖

–
γnδn

(γn + δn)
g
(‖JrnGyn – Snyn‖

)
≤ ‖yn – p‖ – γnδn

(γn + δn)
g
(‖JrnGyn – Snyn‖

)
,
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which leads to

γnδn

(γn + δn)
g
(‖JrnGyn – Snyn‖

) ≤ ‖yn – p‖ – ‖ẑn – p‖

≤ (‖yn – p‖ + ‖ẑn – p‖)‖yn – ẑn‖.

Since {yn} and {ẑn} are bounded, we deduce from (.) and condition (ii) that

lim
n→∞ g

(‖Snyn – JrnGyn‖
)
= .

From the properties of g, we have

lim
n→∞‖Snyn – JrnGyn‖ = . (.)

Furthermore, xn+ can also be rewritten as

xn+ = αnf (yn) + βnyn + γnSnyn + δnJrnGyn

= βnyn + γnSnyn + (αn + δn)
αnf (yn) + δnJrnGyn

αn + δn

= βnyn + γnSnyn + dnz̃n,

where dn = αn + δn and z̃n =
αnf (yn)+δnJrnGyn

αn+δn
. Utilizing Lemma . and the convexity of ‖ · ‖,

we have from (.)

‖xn+ – p‖

=
∥∥βn(yn – p) + γn(Snyn – p) + dn(z̃n – p)

∥∥
≤ βn‖yn – p‖ + γn‖Snyn – p‖ + dn‖z̃n – p‖ – βnγng

(‖yn – Snyn‖
)

= βn‖yn – p‖ + γn‖Snyn – p‖ + dn
∥∥∥∥αnf (yn) + δnJrnGyn

αn + δn
– p
∥∥∥∥

– βnγng
(‖yn – Snyn‖

)
= βn‖yn – p‖ + γn‖Snyn – p‖ + dn

∥∥∥∥ αn

αn + δn

(
f (yn) – p

)
+

δn

αn + δn
(JrnGyn – p)

∥∥∥∥
– βnγng

(‖yn – Snyn‖
)

≤ βn‖yn – p‖ + γn‖yn – p‖ + dn
[

αn

αn + δn

∥∥f (yn) – p
∥∥ + δn

αn + δn
‖JrnGyn – p‖

]
– βnγng

(‖yn – Snyn‖
)

≤ αn
∥∥f (yn) – p

∥∥ + (βn + γn)‖yn – p‖ + δn‖yn – p‖ – βnγng
(‖yn – Snyn‖

)
= αn

∥∥f (yn) – p
∥∥ + ( – αn)‖yn – p‖ – βnγng

(‖yn – Snyn‖
)

≤ αn
∥∥f (yn) – p

∥∥ + ‖yn – p‖ – βnγng
(‖yn – Snyn‖

)
≤ αn

∥∥f (yn) – p
∥∥ + ‖xn – p‖ – βnγng

(‖yn – Snyn‖
)
,
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which implies that

βnγng
(‖yn – Snyn‖

) ≤ αn
∥∥f (yn) – p

∥∥ + ‖xn – p‖ – ‖xn+ – p‖

≤ αn
∥∥f (yn) – p

∥∥ + (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖.

From (.), conditions (i), (ii), (v), and the boundedness of {xn} and {f (yn)}, we have

lim
n→∞ g

(‖yn – Snyn‖
)
= .

Utilizing the properties of g, we have

lim
n→∞‖yn – Snyn‖ = . (.)

Thus, from (.) and (.), we get

‖yn – JrnGyn‖ ≤ ‖yn – Snyn‖ + ‖Snyn – JrnGyn‖ →  as n→ ∞,

that is,

lim
n→∞‖yn – JrnGyn‖ = . (.)

Therefore, from (.), (.), (.), (.), and αn → , it follows that

‖xn – yn‖
≤ ‖xn – xn+‖ + ‖xn+ – yn‖
≤ ‖xn – xn+‖ + αn

∥∥f (yn) – yn
∥∥ + γn‖Snyn – yn‖ + δn‖JrnGyn – yn‖

≤ ‖xn – xn+‖ + αn
∥∥f (yn) – yn

∥∥ + ‖Snyn – yn‖ + ‖JrnGyn – yn‖ →  as n→ ∞,

that is,

lim
n→∞‖xn – yn‖ = . (.)

Utilizing (.), (.), and (.), we obtain

‖xn –Gxn‖ ≤ ‖xn – yn‖ + ‖yn –Gxn‖ = ‖xn – yn‖ + ( – σn)‖JrnGxn –Gxn‖
≤ ‖xn – yn‖ + ‖JrnGxn –Gxn‖ →  as n→ ∞,

that is,

lim
n→∞‖xn –Gxn‖ = . (.)

In addition, from (.) and (.), we have

‖xn – Snxn‖ ≤ ‖xn – yn‖ + ‖yn – Snyn‖ + ‖Snyn – Snxn‖
≤ ‖xn – yn‖ + ‖yn – Snyn‖ →  as n→ ∞,
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that is,

lim
n→∞‖xn – Snxn‖ = . (.)

In terms of (.) and Lemma ., we have

‖xn – Sxn‖ ≤ ‖xn – Snxn‖ + ‖Snxn – Sxn‖ →  as n→ ∞,

that is,

lim
n→∞‖xn – Sxn‖ = . (.)

We note that

‖xn – Jrnxn‖ ≤ ‖xn – yn‖ + ‖yn – JrnGyn‖ + ‖JrnGyn – JrnGxn‖ + ‖JrnGxn – Jrnxn‖
≤ ‖xn – yn‖ + ‖yn – JrnGyn‖ + ‖Gxn – xn‖.

So, from (.), (.), and (.), we obtain

lim
n→∞‖xn – Jrnxn‖ = . (.)

Furthermore, repeating the same arguments as those of (.) in the proof of Theo-
rem ., we can derive

lim
n→∞‖xn – Jrxn‖ = , (.)

for a fixed number r ∈ (, ε). Define a mapping Wx = ( – θ – θ)Jrx + θSx + θGx, where
θ, θ ∈ (, ) are two constants with θ + θ < . Then by Lemma ., we have Fix(W ) =
Fix(Jr)∩ Fix(S)∩ Fix(G) = F . We observe that

‖xn –Wxn‖ =
∥∥( – θ – θ)(xn – Jrxn) + θ(xn – Sxn) + θ(xn –Gxn)

∥∥
≤ ( – θ – θ)‖xn – Jrxn‖ + θ‖xn – Sxn‖ + θ‖xn –Gxn‖.

From (.), (.), and (.), we obtain

lim
n→∞‖xn –Wxn‖ = . (.)

Now, we claim that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉≤ , (.)

where q = s – limt→ xt with xt being the fixed point of the contraction

x �→ tf (x) + ( – t)Wx.
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Then xt solves the fixed point equation xt = tf (xt) + ( – t)Wxt . Repeating the same argu-
ments as those of (.) in the proof of Theorem ., we derive

lim sup
t→

lim sup
n→∞

〈
xt – f (xt), J(xt – xn)

〉≤ . (.)

Repeating the same arguments as those of (.) in the proof of Theorem ., we obtain

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
= lim sup

t→
lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
≤ lim sup

t→
lim sup
n→∞

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
. (.)

Since X has a uniformly Gâteaux differentiable norm, the duality mapping J is norm-to-
weak∗ uniformly continuous on bounded subsets of X. Consequently, the two limits are
interchangeable, and hence (.) holds. From (.), we get (xn+ – q) – (xn – q) → .
Noticing the norm-to-weak∗ uniform continuity of J on bounded subsets of X, we deduce
from (.) that

lim sup
n→∞

〈
f (q) – q, J(xn+ – q)

〉
= lim sup

n→∞
(〈
f (q) – q, J(xn+ – q) – J(xn – q)

〉
+
〈
f (q) – q, J(xn – q)

〉)
= lim sup

n→∞
〈
f (q) – q, J(xn – q)

〉≤ .

Finally, let us show that xn → q as n→ ∞. We observe that

‖yn – q‖ =
∥∥αn

(
G(xn) – q

)
+ ( – αn)

(
JrnG(xn) – q

)∥∥
≤ αn‖xn – q‖ + ( – αn)‖xn – q‖ = ‖xn – q‖,

and hence

‖xn+ – q‖ = αn
〈
f (yn) – f (q) + f (q) – q, J(xn+ – q)

〉
+
〈
βn(yn – q) + γn(Snyn – q) + δn

(
JrnG(yn) – q

)
, J(xn+ – q)

〉
≤ αn

∥∥f (yn) – f (q)
∥∥‖xn+ – q‖ + αn

〈
f (q) – q, J(xn+ – q)

〉
+
∥∥βn(yn – q) + γn(Snyn – q) + δn

(
JrnG(yn) – q

)∥∥‖xn+ – q‖
≤ αnρ‖yn – q‖‖xn+ – q‖ + αn

〈
f (q) – q, J(xn+ – q)

〉
+
(
βn‖yn – q‖ + γn‖yn – q‖ + δn‖yn – q‖)‖xn+ – q‖

= αnρ‖yn – q‖‖xn+ – q‖ + αn
〈
f (q) – q, J(xn+ – q)

〉
+ ( – αn)‖yn – q‖‖xn+ – q‖

≤ (
 – αn( – ρ)

)‖yn – q‖‖xn+ – q‖ + αn
〈
f (q) – q, J(xn+ – q)

〉
≤ (

 – αn( – ρ)
)‖xn – q‖‖xn+ – q‖ + αn

〈
f (q) – q, J(xn+ – q)

〉
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=
 – αn( – ρ)


(‖xn – q‖ + ‖xn+ – q‖) + αn

〈
f (q) – q, J(xn+ – q)

〉
≤  – αn( – ρ)


‖xn – q‖ + 


‖xn+ – q‖ + αn

〈
f (q) – q, J(xn+ – q)

〉
.

Thus, we have

‖xn+ – q‖ ≤ (
 – αn( – ρ)

)‖xn – q‖ + αn
〈
f (q) – q, J(xn+ – q)

〉
=
(
 – αn( – ρ)

)‖xn – q‖ + αn( – ρ)
〈f (q) – q, J(xn+ – q)〉

 – ρ
. (.)

Since
∑∞

n= αn =∞ and lim supn→∞〈f (q) – q, J(xn+ – q)〉 ≤ , by Lemma ., we conclude
from (.) that xn → q as n→ ∞. This completes the proof. �

Corollary . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gâteaux differentiable norm. Let ΠC be a sunny nonex-
pansive retraction from X onto C and A ⊂ X × X be an accretive operator on X such
that D(A) ⊂ C ⊂ ⋂

r> R(I + rA). Let the mapping Bi : C → X be λi-strictly pseudocon-
tractive and αi-strongly accretive with αi + λi ≥  for i = , . Let f : C → C be a con-
traction with coefficient ρ ∈ (, ) and S : C → C be a nonexpansive mapping such that
F = Fix(S) ∩ Ω ∩ A– �= ∅ with  – λi

+λi
( –

√
–αi
λi

) ≤ μi ≤  for i = , . Suppose that As-
sumption . holds. For arbitrarily given x ∈ C, let {xn} be the sequence generated by⎧⎨⎩yn = σnGxn + ( – σn)JrnGxn,

xn+ = αnf (yn) + βnyn + γnSyn + δnJrnGyn, ∀n≥ .

Then the sequence {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉≤ , ∀p ∈ F .

Remark . Our Theorems . and . improve and extend [, Theorem .], [, The-
orem .] and [, Theorem .] in the following aspects.
(a) The problem of finding a point q ∈⋂n Fix(Sn)∩ Ω ∩A– in Theorems . and .

is more general and more subtle than the problem of finding q ∈⋂n Fix(Tn) in [,
Theorem .], the problem of finding q ∈⋂n Fix(Tn)∩ Ω in [, Theorem .] and
the problem of finding q ∈ A– in [, Theorem .].

(b) Theorems . and . are proved without the asymptotical regularity assumption of
{xn} in [, Theorem .] (that is, limn→∞ ‖xn – xn+‖ = ).

(c) The iterative scheme in [, Theorem .] is extended to develop the iterative
schemes (.) and (.) in Theorems . and . by virtue of the iterative schemes
of [, Theorem .] and [, Theorem .]. The iterative schemes (.) and (.)
in Theorems . and . are more advantageous and more flexible than the iterative
scheme in [, Theorem .] because they involves several parameter sequences.

(d) The iterative schemes (.) and (.) in Theorems . and . are different from the
one given in [, Theorem .], [, Theorem .] and [, Theorem .] because
the first iteration step in (.) is implicit and because the mapping G in [,
Theorem .] and the mapping Jrn in [, Theorem .] are replaced by the same
composite mapping JrnG in Theorems . and ..
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(e) The proof of [, Theorem .] depends on the argument techniques in [], the
inequality in -uniformly smooth Banach spaces and the inequality in smooth and
uniform convex Banach spaces. Because the composite mapping JrnG appears in the
iterative scheme (.) in Theorem ., the proof of Theorem . depends on the
argument techniques in [], the inequality in -uniformly smooth Banach spaces,
the inequality in smooth and uniform convex Banach spaces, and the inequalities in
uniform convex Banach spaces. However, the proof of our Theorem . does not
depend on the argument techniques in [], the inequality in -uniformly smooth
Banach spaces, and the inequality in smooth and uniform convex Banach spaces. It
depends on only the inequalities in uniform convex Banach spaces.

(f ) The assumption of the uniformly convex and -uniformly smooth Banach space X
in [, Theorem .] is weakened to the one of the uniformly convex Banach space
X having a uniformly Gâteaux differentiable norm in Theorem ..
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