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Abstract
In the paper, we introduce noncommutative Banach spaces which generalize the
concept of Banach spaces, and the k-ordered contractive condition; we then discuss
an ordered structure and several properties on noncommutative Banach spaces.
Moreover, some fixed-point theorems for mappings with the k-ordered contractive
condition on noncommutative Banach spaces are presented. In addition, we
investigate the existence and uniqueness of fixed points for an integral equation of
Fredholm type.
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1 Introduction
The well-known fixed-point theorem of Banach [] is a very important tool for solving
existence problems in many branches of mathematics and physics. There are a large num-
ber of generalizations of the Banach contraction principle in the literature (see [–] and
others). The theorem has been generalized in two directions. On the one side, the usual
contractive condition is replaced by weakly contractive conditions. On the other side, the
action spaces are replaced by metric spaces endowed with an ordered or partially ordered
structure. In particular, there is much interest in obtaining the existence and uniqueness
of fixed points for self-maps by altering the action spaces. In this direction, Dhage et al. []
addressed a new category of fixed-point problems for a self-map with the help of ordered
Banach spaces. Further improvements in those spaces were found in []. In recent years,
Ran and Reurings [], O’Regan and Petruşel [] and others started the investigations
concerning a fixed-point theory in ordered metric spaces. Later, many authors followed
this concept by introducing and investigating the different types of contractive mappings,
e.g., in [] Caballero et al. considered contractive-like mappings in ordered metric spaces
and applied their results in ordinary differential equations. Some interesting fixed-point
theorems concerning partially ordered metric spaces can also be found in [, ].
The results obtained byHuang andZhang [] have become of interest formany scholars.

They reconsidered the Banach contraction principle by initiating a new concept of cone
metric spaces. Recently, also, the existence of fixed points for the given contractive type
mappings in partially ordered cone metric spaces was investigated (see [, ]).
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The purpose of this paper is to present some fixed-point theorems for mappings satis-
fying the ordered contractive condition in the context of noncommutative metric spaces
which are noncommutative sense of those in [].
The paper is organized as follows: we firstly introduce a noncommutative Banach space

and the k-ordered contractive condition, and then discuss the ordered structure and sev-
eral properties on noncommutative Banach spaces.Moreover, some fixed-point theorems
on this space are established. Finally, we investigate the existence and uniqueness of fixed
points for integral equation of Fredholm type.
Throughout this paper, the letters R, R+, N will denote the sets of all real numbers,

nonnegative real numbers and natural numbers, respectively.
To begin with, we introduce some definitions and properties which will be used later.

Definition . Let E be a group with a unit e and suppose that there exists a metric d on
E such that (E,d) is a complete metric space. E is said to be a noncommutative Banach
space if the following conditions hold:
() for any x, y, z ∈ E, we have d(xz, yz) = d(x, y);
() there exists a binary continuous operation

F :R× E → E, (α,x) �→ xα

such that F(–,x) = x– is exactly the inverse of x in the group E and F(,x) = x = e
is the unit in the group E, and that

F(mn,x) = F
(
m,F(n,x)

)
, F(m + n,x) = F(m,x)F(n,x)

for m,n ∈R, x ∈ E;
() for any x ∈ E, there exists a constantMx >  such that

d
(
xα , e

) ≤Mx|α|, ∀α ∈R.

In particular, if there exists a constant M >  such that d(xα , e) ≤ M|α| for x ∈ E, α ∈ R,
then E is said to be uniformly bounded.

Let E be a uniformly bounded noncommutative Banach space. Takingα = , we conclude
that d(x, e) ≤ M, which together with the triangular inequality yields d(x, y) ≤ M. This
shows E is bounded.

Example . All Banach spaces are noncommutative Banach spaces. Let (X,‖ · ‖) be a
Banach space, then (X, +) is a group with a unit θ , and there exists a metric d induced by
the norm ‖ · ‖ such that (X,d) is a complete metric space. Firstly, the metric d satisfies
d(x + z, y + z) = d(x, y) for x, y, z ∈ X. Secondly, there exists a binary continuous mapping
F : R × X → X, (k,x) �→ kx satisfying the condition () in Definition .. Finally, for any
x ∈ X, there exists a constant Mx = ‖x‖ +  >  such that d(kx, θ ) = ‖kx‖ = |k|‖x‖ ≤ |k|Mx,
∀k ∈ R. According to the definition, X is a noncommutative Banach space.
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Example . Let Rn be the standard n-dimensional vector space over R. Define

d(x, y) =
n∑
i=


i

|xi – yi|
 + |xi – yi|

for x = (x,x, . . . ,xn), y = (y, y, . . . , yn) ∈ R
n. Clearly, Rn is a complete metric space. In

order to verify that Rn is a noncommutative Banach space. It suffices to show that for any
x = (x,x, . . . ,xn) ∈R

n, there exists a constantMx >  such that d(kx, θ )≤Mx|k|, for k ∈R,
where θ is unit in R

n. Indeed, choose Mx = {, |x|, |x|, . . . , |xn|}, and we get d(kx, θ ) ≤
Mx|k|.

Example . Suppose that H is a Hilbert space and U(H) is the unitary group of H . Put

d(S,T) =
∥∥ST– – I

∥∥ = ‖S – T‖ ∀S,T ∈U(H),

thenU(H) is a complete metric space as a subset of B(H), where B(H) denotes the algebra
of all bounded linear operators on H . Moreover, for any T ∈U(H) and α ∈R, set

Tα =
∫ π


eiαθ dEθ ,

where Eθ means the spectral measure associated with the operator T . Notice that

d
(
Tα , I

)
=

∥∥∥∥
∫ π



(
eiαθ – 

)
dEθ

∥∥∥∥ ≤ sup
θ∈[,π ]

∣∣eiαθ – 
∣∣ ≤ π |α|

for α ∈ R. Then U(H) is a uniformly bounded noncommutative Banach space.

Definition . Let E be a noncommutative Banach space. P is a subset of E satisfying the
following conditions:
() P is nonempty, closed, and P �= {e};
() x, y ∈ P and α,β ∈R

+ implies xαyβ ∈ P;
() P ∩ P– = {e} where P– = {x– : x ∈ P}.

Then P is called a cone in E.

Given a cone P in a noncommutative Banach space E, a relation can be introduced as
follows:

x� y ⇐⇒ yβx–β ∈ P for all β ∈ [, ].

One can show that ‘�’ is a partial ordering in E with respect to P. In fact:
(i) For x ∈ E, xβx–β = xβ–β = x = e ∈ P for all β ∈ [, ]. This implies that x� x.
(ii) If x� y and y� x, then yβx–β ∈ P and (yβx–β )– = xβy–β ∈ P for all β ∈ [, ]. By

P ∩ P– = {e}, we get yβ = xβ , which implies that y = x.
(iii) If x� y and y� z, then yβx–β ∈ P and zβy–β ∈ P for all β ∈ [, ], which together

with the condition () in Definition . can infer zβx–β ∈ P. This shows that x� z.

http://www.fixedpointtheoryandapplications.com/content/2014/1/30


Xin and Jiang Fixed Point Theory and Applications 2014, 2014:30 Page 4 of 12
http://www.fixedpointtheoryandapplications.com/content/2014/1/30

Definition . A cone P ⊆ E is called normal if there is a number N >  such that

e� x� y ⇒ d(x, e) ≤Nd(y, e), ∀x, y ∈ E.

The least positive number N satisfying the above is called the normal constant of P. It is
clear that N ≥ .

Remark . Let x ∈ P, α ∈R, then the following relation holds:

⎧⎨
⎩
x� xα , α ≥ ,

xα � x, α < .

Indeed, for any β ∈ [, ], if α ≥ , then (xα)βx–β = x(α–)β ∈ P since P is a cone, thus we can
get x� xα ; if α < , then xβ (xα)–β = x(–α)β ∈ P, which means xα � x.

Definition . For u, v ∈ E, if either u� v or v� u holds, we say that u and v are compa-
rable, denoted

∨(u, v) =
⎧⎨
⎩
u, v� u,

v, u� v.

From the above definitions, we have the following properties.

Lemma . Suppose that P is a cone in E. For u, v ∈ E, we have:
() Set u� v, then uα � vα holds for any  ≤ α ≤ .
() If u and v are comparable, then uv– and vu– are comparable, and furthermore

e� ∨(uv–, vu–).
() If u and v are comparable, then d(∨(uv–, vu–), e) = d(u, v).
() (compatibility) Let {un}, {vn} ⊂ E, un and vn be comparable for all n ∈N. If un → u,

vn → v, then u and v are comparable.

Proof () Let u� v, we have vβu–β ∈ P for all β ∈ [, ]. Since αβ ∈ [, ] for any α ∈ [, ],
we see vαβu–αβ ∈ P, which implies that uα � vα .
() Without loss of generality, one can suppose that u� v, which means vu– ∈ P. Using

Remark ., one can see uv– � vu–. Furthermore (vu–)βe–β = (vu–)β ∈ P for allβ ∈ [, ],
which implies e� vu–, and therefore e� ∨(uv–, vu–).
() Assume that u � v, then ∨(uv–, vu–) = vu–. It follows immediately from Defini-

tion . that

d
(∨(

uv–, vu–
)
, e

)
= d

(
vu–, e

)
= d(v,u) = d(u, v).

() Since un and vn are comparable for all n, we can suppose that there exist two subse-
quences unk and vnk such that unk � vnk for all k. Note that for all β ∈ [, ]

d
(
vβ
nku

–β
nk , v

β
u

–β


) ≤ d
(
vβ
nku

–β
nk , v

β
u

–β
nk

)
+ d

(
vβ
u

–β
nk , v

β
u

–β


)
= d

(
vβ
nk , v

β

)
+ d

(
u–β
nk ,u

–β


)
.
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It follows directly that

d
(
vβ
nku

–β
nk , v

β
u

–β


) → .

As P is closed, one obtains vβ
u

–β
 ∈ P. This says that u � v. �

2 Fixed-point theorems on noncommutative Banach spaces
From now on, we always suppose that E is a noncommutative Banach space with a partial
ordering � induced by a normal cone P with the normal constant N . And some fixed-
point theorems for mappings on E satisfying the ordered contractive condition will be
presented. Let us begin with the following theorem.

Theorem . Let A : E → E be a continuous mapping and suppose that the following two
assertions hold.
() There exists a constant k ∈ (, ) such that for all u, v ∈ E, if u and v are comparable,

then Au and Av are comparable and furthermore

∨(
Av(Au)–,Au(Av)–

)
� ∨(

vu–,uv–
)k .

In this case, we say A satisfies the k-ordered contractive condition.
() There exists x ∈ E such that x and Ax are comparable.

Then A has a fixed point x∗ which is unique in the comparable sense. Namely, if Ay∗ = y∗

and y∗ and x∗ are comparable, then y∗ = x∗.Moreover,

d
(
x∗,x

) ≤ 
 – k

NM(Ax)x–
.

Proof Define a sequence {xn}n∈N ⊆ E by the formula xn = Anx, n ∈ N. The proof can be
divided into three steps.
Step I. {xn} is a Cauchy sequence.
Now, since x and Ax = x are comparable, and A satisfies the k-ordered contractive

condition, we obtain x and x, x and x, . . . , xn and xn+ are comparable. Notice

∨(
xnx–n+,xn+x

–
n

)
� ∨(

xn–x–n ,xnx–n–
)k .

Inductively the following holds:

∨(
xx– ,xx–

)
� ∨(

xx– ,xx–
)k .

By the above for all n ∈N and Lemma .(), we obtain

e� ∨(
xn+x–n ,xnx–n+

)
� ∨(

xnx–n–,xn–x
–
n

)k � · · · � ∨(
xx– ,xx–

)kn .
From the above it is easy to conclude that

d
(∨(

xn+x–n ,xnx–n+
)
, e

) ≤Nd
(∨(

xx– ,xx–
)kn , e),

http://www.fixedpointtheoryandapplications.com/content/2014/1/30
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which together with Definition . yields

d
(∨(

xn+x–n ,xnx–n+
)
, e

) ≤NMxx–
kn.

Finally, by Lemma .(), this implies

d(xn,xn+) ≤NMxx–
kn → ,

which shows {xn} is a Cauchy sequence. The completeness of E implies that there exists
x∗ ∈ E such that limn→∞ xn = x∗.
Step II. x∗ is a fixed point of A.
Suppose that limn→∞ xn = x∗, which together with A is continuous, we get

Ax∗ = A lim
n→∞xn = lim

n→∞Axn = x∗,

which shows x∗ is a fixed point of A.
Step III. The uniqueness of the fixed point of A in the comparable sense.
Let us consider Ay∗ = y∗, and let x∗ and y∗ be comparable. Without loss of generality, set

y∗ � x∗, which shows x∗y∗– ∈ P. By the condition (),

∨(
Ay∗(Ax∗)–,Ax∗(Ay∗)–)� ∨(

y∗x∗–,x∗y∗–)k .

That is

∨(
y∗x∗–,x∗y∗–)� ∨(

y∗x∗–,x∗y∗–)k .

In addition, we know ∨(y∗x∗–,x∗y∗–) = x∗y∗–. Then x∗y∗– � (x∗y∗–)k , which implies
(x∗y∗–)k– ∈ P. On the other hand, we have (x∗y∗–)–k ∈ P. Now, from the definition of a
cone, we have x∗y∗– = e, and then y∗ = x∗.
Furthermore,

d
(
x∗,x

) ≤
∞∑
n=

d(xn,xn+) ≤
∞∑
n=

NM(Ax)x–
kn =


 – k

NM(Ax)x–
. �

Remark . Assume in addition that E satisfies the condition:
() For u, v ∈ E, if they are not comparable, then there exists w ∈ E such that u and w, v

and w are comparable, respectively.
Then A has a unique fixed point. Note that condition () is always valid if E is a lattice.
It suffices to show the uniqueness of the fixed point of A. Suppose that x∗, y∗ are fixed

points of A. Claim that x∗ and y∗ are comparable. If not, there exists z ∈ E such that x∗ and
z, y∗ and z are comparable, respectively. Since A satisfies the k-ordered contractive condi-
tion, then An+x∗ and An+z, An+y∗ and An+z are comparable for any n ∈ N, respectively.
Also,

e� ∨(
An+x∗(An+z

)–,An+z
(
An+x∗)–) � ∨(

x∗z–, z
(
x∗)–)kn ,
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and

e� ∨(
An+y∗(An+z

)–,An+z
(
An+y∗)–) �∨(

y∗z–, z
(
y∗)–)kn .

Then

d
(
An+x∗,An+z

)
= d

(∨(
An+x∗(An+z

)–,An+z
(
An+x∗)–), e)

≤ Nd
(∨(

x∗z–, z
(
x∗)–)kn , e)

≤ NknMx∗z– ,

and similarly

d
(
An+y∗,An+z

) ≤NknMy∗z– .

The triangular inequality tells us that

d
(
x∗, y∗) = d

(
An+x∗,An+y∗)

≤ d
(
An+x∗,An+z

)
+ d

(
An+y∗,An+z

)
≤ Nkn(Mx∗z– +My∗z– ) → ,

as n→ ∞, which implies x∗ = y∗. This is a contradiction. Therefore, x∗ and y∗ are compa-
rable. By Theorem ., x∗ = y∗.

Corollary . Let E be a uniformly bounded noncommutative Banach space, P a normal
cone with the normal constant N . For c ∈ R

+, x ∈ E, set B(x, c) = {x ∈ E : d(x,x) ≤ c}.
Suppose that a continuous mapping A : E → E satisfies the k-ordered contractive condition
and d(Ax,x) ≤ c – kNM. Also, x and x ∈ B(x, c) are comparable. Then there exists a
unique fixed point in B(x, c) in the comparable sense.

Proof It suffices to show that Ax ∈ B(x, c) for any x ∈ B(x, c).
For any x ∈ B(x, c), the triangular inequality gives

d(x,Ax) ≤ d(x,Ax) + d(Ax,Ax).

By Lemma .(),

d(Ax,Ax) = d
(∨(

Ax(Ax)–,Ax(Ax)–
)
, e

)
.

Since A satisfies the k-ordered contractive condition, we have

∨(
Ax(Ax)–,Ax(Ax)–

)
� ∨(

xx–,xx–
)k ,

and then

d
(∨(

Ax(Ax)–,Ax(Ax)–
)
, e

) ≤Nd
(∨(

xx–,xx–
)k , e) ≤ kNM.

http://www.fixedpointtheoryandapplications.com/content/2014/1/30
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Hence we get

d(x,Ax) ≤ d(x,Ax) + d(Ax,Ax) ≤ c – kNM + kNM = c,

from which one deduces that

Ax ∈ B(x, c). �

Corollary . Let A : E → E be a continuous mapping and suppose that the following two
assertions hold:
() there exist k ∈ (, ) and n ∈N such that for all u, v ∈ E, if u and v are comparable,

then Au and Av are comparable and furthermore

∨(
Anv

(
Anu

)–,Anu
(
Anv

)–) � ∨(
vu–,uv–

)k ;
() there exists x ∈ E such that x and Ax are comparable.

Then A admits a unique fixed point x∗ in the comparable sense.

Proof By Theorem ., we know An has a unique fixed point x∗ in the comparable sense.
Notice that

An
(
Ax∗) = A

(
Anx∗) = Ax∗

whichmeansAx∗ is also a fixed point ofAn . Again, since x andAx are comparable, then
x∗ and Ax∗ are comparable, which implies Ax∗ = x∗. Since the fixed point of A is also the
fixed point of An , the fixed point of A is unique in the comparable sense. �

Theorem . Let A : E → E be a mapping and suppose that the following two assertions
hold:
() there exists a constant k ∈ (,  ) such that for all β ∈ [, ], if u and v are

comparable, then Au and Av, Au and u, Av and v are comparable, and furthermore

∨(
Av(Au)–,Au(Av)–

)β � ∨(
Auu–,u(Au)–

)kβ ∨ (
Avv–, v(Av)–

)kβ ;
() A is continuous.

Then A admits a unique fixed point x∗ in the comparable sense, and for each x ∈ E,
limn→∞ Anx = x∗.Moreover,

d
(
x∗,x

) ≤  – k
 – k

NM(Ax)x–
.

Proof By the reflexivity of the partial ordering ‘�’ in E, x � x. And since A satisfies the
condition (), then x and Ax, Ax and Ax, . . . , Anx and An+x are comparable. Put
xn = Anx. Then for each integer n ≥ , from the condition (), we get

∨(
xnx–n+,xn+x

–
n

)β =∨(
Axn–(Axn)–,Axn(Axn–)–

)β

� ∨(
Axn–x–n–,xn–(Axn–)

–)kβ ∨ (
Axnx–n ,xn(Axn)–

)kβ
=∨(

xnx–n–,xn–x
–
n

)kβ ∨ (
xn+x–n ,xnx–n+

)kβ .
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By the definition of partial ordering in E with respect to P, one has

∨(
xnx–n–,xn–x

–
n

)kβ ∨ (
xn+x–n ,xnx–n+

)–(–k)β ∈ P.

That is

∨(
xn+x–n ,xnx–n+

)–k � ∨(
xnx–n–,xn–x

–
n

)k .
From Lemma .(), one can obtain

∨(
xn+x–n ,xnx–n+

)
� ∨(

xnx–n–,xn–x
–
n

) k
–k .

As in the proof of Theorem ., {xn} is a Cauchy sequence and there exists x∗ ∈ E such
that limn→∞ xn = x∗. Also, x∗ is a fixed point of A.
It remains to be shown that x∗ is a unique fixed point of A.
Suppose that there exists y∗ ∈ E, y∗ � x∗, such that Ay∗ = y∗. Due to the condition (), we

have

∨(
Ay∗(Ax∗)–,Ax∗(Ay∗)–)� ∨(

Ay∗y∗–, y∗(Ay∗)–)k ∨ (
Ax∗x∗–,x∗(Ax∗)–)k .

That is

∨(
y∗x∗–,x∗y∗–)� ∨(

y∗y∗–, y∗y∗–)k ∨ (
x∗x∗–,x∗x∗–)k = e.

Since ∨(y∗x∗–,x∗y∗–) = x∗y∗–. Then x∗y∗– � e, which implies (x∗y∗–)– ∈ P. Now, ap-
plying Definition ., we obtain the desired result.
Similar to the proof of Theorem ., one can verify

d
(
x∗,x

) ≤  – k
 – k

NM(Ax)x–
.

Let u, v ∈ E, and u � v. By [u, v] from now on we denote the order interval {u ∈ E :
u � u� v}. Finally, we consider the fixed-point theorem in the order interval. �

Theorem . Let [u, v] be the order interval in E. If A : [u, v] → [u, v] satisfies the
conditions in Theorem ., then A has a unique fixed point in the comparable sense.

Proof Consider sequences {un} and {vn} defined by un = Anu and vn = Anv, respectively.
Then {un}, {vn} ⊆ [u, v]. Since A satisfies Theorem .(), then for any n ∈ N, un and vn
are comparable, and

e� ∨(
unvn–, vnun–

)
� ∨(

uv–, vu–
)( k

–k )
n
.

Notice that P is a normal cone,

d(un, vn)≤NMuv–

(
k

 – k

)n

.

http://www.fixedpointtheoryandapplications.com/content/2014/1/30
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Again u � u, hence for all n ∈N, un and un+ are comparable. Then

e� ∨(
unun+–,un+un–

)
� ∨(

uu–,uu–
)( k

–k )
n
,

from which one deduces

d(un,un+) ≤NMuu–

(
k

 – k

)n

.

Hence, we conclude that {un} is a Cauchy sequence with a limit point u∗ ∈ [u, v] for any
 < k < 

 .
Similarly, {vn} is a Cauchy sequence with a limit point v∗ ∈ [u, v] for any  < k < 

 .
Now, as

d
(
u∗, v∗) = lim

n→∞d(un, vn) ≤ lim
n→∞NMuv–

(
k

 – k

)n

= ,

then u∗ = v∗.
The rest of the proof is analogue to that in Theorem .. �

If one checks the proof of Theorem ., then one can easily obtain the following result.

Corollary . Let [u, v] be the order interval in E. If the continuous mapping A :
[u, v] → [u, v] satisfies the k-ordered contractive condition, then A admits a unique
fixed point in the comparable sense.

3 Examples
We give some examples to illustrate the main result of this paper in the following.

Example . Consider the space (Rn,d) given in Example .. Let P = {x = (x,x, . . . ,xn) ∈
R

n : xi ≥ , ≤ i≤ n} be a normal cone. The partial ordering in E with respect to P is given
by

x� y ⇐⇒ xi ≤ yi, ≤ i ≤ n,

then E is a lattice. It is known that the operators on R
n are in one-to-one correspondence

with the n× nmatrices. Consider a matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a   · · · 
 a  · · · 
· · · · · · ·
· · · · · · ·
   · · · an

⎞
⎟⎟⎟⎟⎟⎟⎠
,

where  < ai < , i = , , . . . ,n. Choose k ∈R such thatmax≤i≤n{ai} < k < . Clearly,Ax and
Ay are comparable if x and y are comparable. Moreover, if x� y, then Ay – Ax� k(y – x).
By Theorem . and Remark ., we know that A has a unique fixed point.

http://www.fixedpointtheoryandapplications.com/content/2014/1/30
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Example . Consider the integral equation of Fredholm type

x(t) =
∫ 


K

(
t, s,x(s)

)
ds + g(t), t ∈ [, ].

Assume that
() K : [, ]× [, ]×R →R and g : [, ]→R are continuous;
() K (t, s, ·) :R→ R is monotonous for t, s ∈R;
() there exist a continuous function ϕ : [, ]× [, ]→R and k ∈ (, ) such that

∣∣K (t, s,u) –K (t, s, v)
∣∣ ≤ k

∣∣ϕ(t, s)(u – v)
∣∣,

for t, s ∈ [, ], u, v ∈ R.
() supt∈[,]

∫ 
 |ϕ(t, s)|ds≤ ;

() there exists x ∈ C[, ] such that for any t ∈ [, ], x(t)≤
∫ 
 K (t, s,x(s))ds + g(t) or

x(t) ≥
∫ 
 K (t, s,x(s))ds + g(t).

Then the integral equation has a unique solution x∗ in C[, ].
In fact, let E = C[, ] with the metric induced by the supremum norm, i.e.,

d(x, y) = ‖x – y‖ =max
{∣∣x(t) – y(t)

∣∣ : t ∈ [, ]
}

for x, y ∈ C[, ], and P = {x ∈ C[, ] : x(t) ≥  for any t ∈ [, ]} be a normal cone in
C[, ]. The partial ordering in E induced by P is given as follows:

x� y ⇐⇒ x(t)≤ y(t) for any t ∈ [, ].

Define A : C[, ]→ C[, ] by

A
(
x(t)

)
=

∫ 


K

(
t, s,x(s)

)
ds + g(t), t ∈ [, ].

From the condition (), A is monotonous. The monotonicity condition implies that Ax
and Ay are comparable if x and y are comparable. Observe that for x, y ∈ E, if x and y are
comparable, then

∣∣A(
y(t)

)
–A

(
x(t)

)∣∣ ≤
∫ 



∣∣K(
t, s, y(s)

)
–K

(
t, s,x(s)

)∣∣ds

≤ k
∫ 



∣∣ϕ(t, s)(y(s) – x(s)
)∣∣ds

≤ k
∫ 



∣∣ϕ(t, s)∣∣ds‖y – x‖
≤ k‖y – x‖,

for t ∈ [, ], which implies that ‖Ay–Ax‖ ≤ k‖y– x‖. Thus, A is continuous. Again, E is a
lattice, by Theorem . and Remark ., the integral equation has a unique solution x∗ in
C[, ].

http://www.fixedpointtheoryandapplications.com/content/2014/1/30
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Observe that the functions satisfying the conditions in Example . do exist. For exam-
ple,

K (t, s,u) = ktsu, where k ∈ (, ),

g(t) ≥  or g(t) ≤  is continuous,

ϕ(t, s) = ts,

x(t) = ,

for t, s ∈ [, ] and u ∈R.
Notice that the examples given above are in linear spaces. As to the noncommutative

case, it is under consideration now.
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10. Kadelburg, Z, Pavlović, M, Radenović, S: Common fixed point theorems for ordered contractions and

quasicontractions in ordered cone metric spaces. Comput. Math. Appl. 59, 3148-3159 (2010)
11. Klim, D, Wardowski, D: Dynamic processes and fixed points of set-valued nonlinear contractions in cone metric

spaces. Nonlinear Anal. 71, 5170-5175 (2009)
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