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Abstract
In this paper, we introduce the new notion of almost ψ -Geraghty contractive
mappings and investigate the existence of a best proximity point for such mappings
in complete metric spaces via the weak P-property. We provide an example to
validate our best proximity point theorem. The obtained results extend, generalize,
and complement some known fixed and best proximity point results from the
literature.
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1 Introduction and preliminaries
Non-self-mappings are among the intriguing research directions in fixed point theory.
This is evident from the increase of the number of publications related with such maps.
A great deal of articles on the subject investigate the non-self-contraction mappings on
metric spaces. Let (X,d) be a metric space and A and B be nonempty subsets of X.
A mapping T : A → B is said to be a k-contraction if there exists k ∈ [, ) such that
d(Tx,Ty) ≤ kd(x, y) for any x, y ∈ A. It is clear that a k-contraction coincides with the cel-
ebrated Banach fixed point theorem (Banach contraction principle) [] if one takes A = B
where the induced metric space (A,d|A) is complete.
In nonlinear analysis, the theory of fixed points is an essential instrument to solve the

equation Tx = x for a self-mapping T defined on a subset of an abstract space such as a
metric space, a normed linear space or a topological vector space. Following the Banach
contraction principle, most of the fixed point results have been proved for a self-mapping
defined on an abstract space. It is quite natural to investigate the existence and unique-
ness of a non-self-mapping T : A → B which does not possess a fixed point. If a non-self-
mapping T : A → B has no fixed point, then the answer of the following question makes
sense: Is there a point x ∈ X such that the distance between x and Tx is closest in some
sense? Roughly speaking, best proximity theory investigates the existence and uniqueness
of such a closest point x. We refer the reader to [–] and [–] for further discussion
of best proximity.
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Definition . Let (X,d) be a metric space and A,B ⊂ X. We say that x∗ ∈ A is a best
proximity point of the non-self-mapping T : A→ B if the following equality holds:

d
(
x∗,Tx∗) = d(A,B), ()

where d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

It is clear that the notion of a fixed point coincided with the notion of a best proximity
point when the underlying mapping is a self-mapping.
Let (X,d) be a metric space. Suppose that A and B are nonempty subsets of a metric

space (X,d). We define the following sets:

A =
{
x ∈ A : d(x, y) = d(A,B) for some y ∈ B

}
,

B =
{
y ∈ B : d(x, y) = d(A,B) for some x ∈ A

}
.

()

In [], the authors presented sufficient conditions for the setsA andB to be nonempty.
In  Geraghty [] introduced the class S of functions β : [,∞) → [, ) satisfying

the following condition:

β(tn)→  implies tn → . ()

The author defined contraction mappings via functions from this class and proved the
following result.

Theorem . (Geraghty []) Let (X,d) be a complete metric space and T : X → X be an
operator. If T satisfies the following inequality:

d(Tx,Ty) ≤ β
(
d(x, y)

)
d(x, y) for any x, y ∈ X, ()

where β ∈ S, then T has a unique fixed point.

Recently, Caballero et al. [] introduced the following contraction.

Definition . ([]) LetA, B be two nonempty subsets of ametric space (X,d). Amapping
T : A→ B is said to be a Geraghty-contraction if there exists β ∈ S such that

d(Tx,Ty) ≤ β
(
d(x, y)

)
d(x, y) for any x, y ∈ A. ()

Based on Definition ., the authors [] obtained the following result.

Theorem . (See []) Let (A,B) be a pair of nonempty closet subsets of a complete metric
space (X,d) such that A is nonempty. Let T : A → B be a continuous,Geraghty-contraction
satisfying T(A) ⊆ B. Suppose that the pair (A,B) has the P-property, then there exists a
unique x∗ in A such that d(x∗,Tx∗) = d(A,B).

The P-property mentioned in the theorem above has been introduced in [].
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Definition . Let (A,B) be a pair of nonempty subsets of a metric space (X,d) with
A 	= ∅. Then the pair (A,B) is said to have the P-property if and only if for any x,x ∈ A

and y, y ∈ B,

d(x, y) = d(A,B) and d(x, y) = d(A,B) ⇒ d(x,x) = d(y, y). ()

It is easily seen that for any nonempty subset A of (X,d), the pair (A,A) has the
P-property. In [], the author proved that any pair (A,B) of nonempty closed convex
subsets of a real Hilbert space H satisfies the P-property.
Recently, Zhang et al. [] defined the following notion, which is weaker than the

P-property.

Definition . Let (A,B) be a pair of nonempty subsets of a metric space (X,d) with
A 	= ∅. Then the pair (A,B) is said to have the weak P-property if and only if for any
x,x ∈ A and y, y ∈ B,

d(x, y) = d(A,B) and d(x, y) = d(A,B) ⇒ d(x,x) ≤ d(y, y). ()

Let � denote the class of functions ψ : [,∞) → [,∞) satisfying the following condi-
tions:
(a) ψ is nondecreasing;
(b) ψ is subadditive, that is, ψ(s + t) ≤ ψ(s) +ψ(t);
(c) ψ is continuous;
(d) ψ(t) =  ⇔ t = .
The notion of ψ-Geraghty contraction has been introduced very recently in [], as an

extension of Definition ..

Definition . Let A, B be two nonempty subsets of a metric space (X,d). A mapping
T : A→ B is said to be a ψ-Geraghty contraction if there exist β ∈ S and ψ ∈ � such that

ψ
(
d(Tx,Ty)

) ≤ β
(
ψ

(
d(x, y)

))
ψ

(
d(x, y)

)
for any x, y ∈ A. ()

Remark . Notice that since β : [,∞)→ [, ), we have

ψ
(
d(Tx,Ty)

) ≤ β
(
ψ

(
d(x, y)

))
ψ

(
d(x, y)

)
< ψ

(
d(x, y)

)
for any x, y ∈ A with x 	= y. ()

In [], the author also proved the following best proximity point theorem.

Theorem . (See []) Let (A,B) be a pair of nonempty closed subsets of a completemetric
space (X,d) such that A is nonempty.Let T : A → B be aψ-Geraghty contraction satisfying
T(A) ⊆ B. Suppose that the pair (A,B) has the P-property. Then there exists a unique x∗

in A such that d(x∗,Tx∗) = d(A,B).

2 Main results
Our main results are based on the following definition which is a generalization of Defi-
nition ..
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Definition . Let A, B be two nonempty subsets of a metric space (X,d). A mapping
T : A → B is said to be a generalized almost ψ-Geraghty contraction if there exist β ∈ S
and ψ ∈ � such that

ψ
(
d(Tx,Ty)

) ≤ β
(
ψ

(
M(x, y)

))
ψ

(
M(x, y) – d(A,B)

)
+ Lψ

(
N(x, y) – d(A,B)

)
()

for all x, y ∈ A where L≥ ,

M(x, y) =max
{
d(x, y),d(x,Tx),d(y,Ty)

}
,

N(x, y) =min
{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

Now, we state and prove our main theorem about existence and uniqueness of a best
proximity point for a non-self-mapping satisfying a generalized almost ψ-Geraghty con-
traction.

Theorem . Let (A,B) be a pair of nonempty closed subsets of a complete metric space
(X,d) such that A is nonempty. Let T : A → B be a generalized almost ψ-Geraghty con-
traction satisfying T(A) ⊆ B. Assume that the pair (A,B) has the weak P-property. Then
T has a unique best proximity point in A.

Proof Since the subset A is not empty, we can take x in A. Taking into account that
Tx ∈ T(A) ⊆ B, we can find x ∈ A such that d(x,Tx) = d(A,B). Further, since
Tx ∈ T(A)⊆ B, it follows that there is an element x in A such that d(x,Tx) = d(A,B).
Recursively, we obtain a sequence {xn} in A satisfying

d(xn+,Txn) = d(A,B) for any n ∈N. ()

Since the pair (A,B) has the weak P-property, we deduce

d(xn,xn+) ≤ d(Txn–,Txn) for any n ∈N. ()

Due to the triangle inequality together with the equality () we have

d(xn–,Txn–)≤ d(xn–,xn) + d(xn,Txn–) = d(xn–,xn) + d(A,B).

Analogously, combining the equalities () and () with the triangle inequality we obtain

d(xn,Txn) ≤ d(xn,xn+) + d(xn+,Txn) = d(xn,xn+) + d(A,B). ()

Consequently, we have

M(xn–,xn) = max
{
d(xn–,xn),d(xn–,Txn–),d(xn,Txn)

}
≤ max

{
d(xn–,xn),d(xn,xn+)

}
+ d(A,B). ()
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Also note that

N(xn–,xn) – d(A,B)

=min
{
d(xn–,Txn–),d(xn,Txn),d(xn–,Txn),d(xn,Txn–)

}
– d(A,B)

≤min
{
d(xn–,Txn–),d(xn,Txn),d(xn–,Txn),d(A,B)

}
– d(A,B)

= d(A,B) – d(A,B) = . ()

If there exists n ∈N such that d(xn ,xn+) = , then the proof is completed. Indeed,

 = d(xn ,xn+) = d(Txn–,Txn ), ()

and consequently, Txn– = Txn . Therefore, we conclude that

d(A,B) = d(xn ,Txn–) = d(xn ,Txn ). ()

For the rest of the proof, we suppose that d(xn,xn+) >  for all n ∈N. In view of the fact
that T is a generalized almost ψ-Geraghty contraction, we have

ψ
(
d(xn,xn+)

) ≤ ψ
(
d(Txn–,Txn)

)
≤ β

(
ψ

(
M(xn–,xn)

))
ψ

(
M(xn–,xn) – d(A,B)

)
+ Lψ

(
N(xn–,xn) – d(A,B)

)
= β

(
ψ

(
M(xn–,xn)

))
ψ

(
M(xn–,xn) – d(A,B)

)
+ Lψ()

= β
(
ψ

(
M(xn–,xn)

))
ψ

(
M(xn–,xn) – d(A,B)

)
<ψ

(
M(xn–,xn) – d(A,B)

)
. ()

Taking into account the inequalities () and (), we deduce that

ψ
(
d(xn,xn+)

)
<ψ

(
M(xn–,xn) – d(A,B)

) ≤ ψ
(
max

{
d(xn–,xn),d(xn,xn+)

})
.

If for some n, max{d(xn–,xn),d(xn,xn+)} = d(xn,xn+), then we get

ψ
(
d(xn,xn+)

)
<ψ

(
d(xn,xn+)

)
,

which is a contradiction. Therefore, we must have

M(xn–,xn) ≤max
{
d(xn–,xn),d(xn,xn+)

}
+ d(A,B) = d(xn–,xn) + d(A,B) ()

for all n ∈N. Regarding the inequality (), we see that

ψ
(
d(xn,xn+)

)
=ψ

(
d(Txn–,Txn)

)
≤ β

(
ψ

(
M(xn–,xn)

))
ψ

(
d(xn–,xn)

)
<ψ

(
d(xn–,xn)

)
()
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holds for all n ∈ N. Since ψ is nondecreasing, then d(xn,xn+) < d(xn–,xn) for all n.
Consequently, the sequence {d(xn,xn+)} is decreasing and is bounded below and hence
limn→∞ d(xn,xn+) = s≥  exists. Assume that s > . Rewrite () as

ψ(d(xn+,xn+))
ψ(d(xn,xn+))

≤ β
(
ψ

(
M(xn,xn+)

)) ≤ 

for each n≥ . Taking the limit of both sides as n→ ∞, we find

lim
n→∞β

(
ψ

(
M(xn,xn+)

))
= .

On the other hand, since β ∈ S, we conclude limn→∞ ψ(M(xn,xn+)) = , that is,

s = lim
n→∞d(xn,xn+) = . ()

Since d(xn,Txn–) = d(A,B) holds for all n ∈ N and (A,B) satisfies the weak P-property,
then for allm,n ∈N, we can write

d(xm,xn)≤ d(Txm–,Txn–). ()

From (), we deduce

M(xm,xn) =max
{
d(xm,xn),d(xm,Txm),d(xn,Txn)

}
≤max

{
d(xm,xn),d(xm,xm+),d(xn,xn+)

}
+ d(A,B).

By using limn→∞ d(xn,xn+) = , we get

lim
m,n→∞

(
M(xm,xn) – d(A,B)

) ≤ lim
m,n→∞d(xm,xn). ()

On the other hand,

 ≤N(xm,xn) – d(A,B)

=min
{
d(xm,Txm),d(xn,Txn),d(xm,Txn),d(xn,Txm)

}
– d(A,B)

≤min
{
d(xm,xm+) + d(A,B),d(xn,Txn),d(xm,Txn),d(xn,Txm)

}
– d(A,B). ()

Due to the fact that limn→∞ d(xn,xn+) = , we obtain

lim
m,n→∞

[
N(xm,xn) – d(A,B)

]
= . ()

We shall show next that {xn} is a Cauchy sequence. Assume on the contrary that

ε = lim sup
m,n→∞

d(xn,xm) > . ()

Employing the triangular inequality and (), we get

d(xn,xm) ≤ d(xn,xn+) + d(xn+,xm+) + d(xm+,xm)

≤ d(xn,xn+) + d(Txn,Txm) + d(xm+,xm). ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/32
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Combining () and (), and regarding the properties of ψ , we obtain

ψ
(
d(xn,xm)

) ≤ ψ
(
d(xn,xn+) + d(Txn,Txm) + d(xm+,xm)

)
≤ ψ

(
d(xn,xn+)

)
+ψ

(
d(Txn,Txm)

)
+ψ

(
d(xm+,xm)

)
≤ ψ

(
d(xn,xn+)

)
+ β

(
ψ

(
M(xn,xm)

))
ψ

(
M(xn,xm) – d(A,B)

)
+ Lψ

(
N(xn,xm) – d(A,B)

)
+ψ

(
d(xm+,xm)

)
. ()

From (), (), (), and by using limn→∞ d(xn,xn+) = , we have

lim
m,n→∞ψ

(
d(xn,xm)

) ≤ lim
m,n→∞β

(
ψ

(
M(xn,xm)

))
lim

m,n→∞ψ
(
M(xm,xn) – d(A,B)

)
≤ lim

m,n→∞β
(
ψ

(
M(xn,xm)

))
lim

m,n→∞ψ
(
d(xm,xn)

)
.

So by (), we get

≤ lim
m,n→∞β

(
ψ

(
M(xn,xm)

))
,

that is, limm,n→∞ β(ψ(M(xn,xm))) = . Therefore, limm,n→∞ M(xn,xm) = . This implies
that limm,n→∞ d(xn,xm) = ,which is a contradiction. Therefore, {xn} is aCauchy sequence.
Since {xn} ⊂ A and A is a closed subset of the complete metric space (X,d), we can find

x∗ ∈ A such that xn → x∗ as n → ∞. We shall show that d(x∗,Tx∗) = d(A,B). If x∗ = Tx∗,
thenA∩B 	= ∅, and d(x∗,Tx∗) = d(A,B) = , i.e., x∗ is a best proximity point ofT . Hence, we
assume that d(x∗,Tx∗) > . Suppose on the contrary that x∗ is not a best proximity point
of T , that is, d(x∗,Tx∗) > d(A,B). First note that

d
(
x∗,Tx∗) ≤ d

(
x∗,Txn

)
+ d

(
Txn,Tx∗)

≤ d
(
x∗,xn+

)
+ d(xn+,Txn) + d

(
Txn,Tx∗)

≤ d
(
x∗,xn+

)
+ d(A,B) + d

(
Txn,Tx∗).

Taking the limit as n→ ∞ in the above inequality, we obtain

d
(
x∗,Tx∗) – d(A,B)≤ lim

n→∞d
(
Txn,Tx∗).

Since ψ is nondecreasing and continuous, then

ψ
(
d
(
x∗,Tx∗) – d(A,B)

) ≤ ψ
(
lim
n→∞d

(
Txn,Tx∗)) = lim

n→∞ψ
(
d
(
Txn,Tx∗)). ()

Also, letting n → ∞ in () results in

lim
n→∞d(xn,Txn) ≤ d(A,B),

that is, limn→∞ d(xn,Txn) = d(A,B). Then we get

lim
n→∞M

(
xn,x∗) =max

{
lim
n→∞d

(
x∗,xn

)
, lim
n→∞d(xn,Txn),d

(
x∗,Tx∗)} = d

(
x∗,Tx∗),

http://www.fixedpointtheoryandapplications.com/content/2014/1/32
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and therefore

lim
n→∞ψ

(
M

(
xn,x∗) – d(A,B)

)
=ψ

(
d
(
x∗,Tx∗) – d(A,B)

)
. ()

Further,

lim
n→∞N

(
xn,x∗) – d(A,B)

=min
{
lim
n→∞d(xn,Txn),d

(
x∗,Tx∗), lim

n→∞d
(
xn,Tx∗), lim

n→∞d
(
x∗,Txn

)}
– d(A,B),

which implies

lim
n→∞N

(
xn,x∗) – d(A,B) = . ()

Therefore, combining (), (), (), and () we deduce

ψ
(
d
(
x∗,Tx∗) – d(A,B)

) ≤ lim
n→∞ψ

(
d
(
Txn,Tx∗))

≤ lim
n→∞β

(
ψ

(
M

(
xn,x∗))) lim

n→∞ψ
(
M

(
xn,x∗) – d(A,B)

)
+ L lim

n→∞ψ
(
N

(
xn,x∗) – d(A,B)

)
= lim

n→∞β
(
ψ

(
M

(
xn,x∗)))ψ(

d
(
x∗,Tx∗) – d(A,B)

)
. ()

Now, since ψ(d(x∗,Tx∗) – d(A,B)) > , and making use of (), we get

≤ lim
n→∞β

(
ψ

(
M

(
xn,x∗))),

that is,

lim
n→∞β

(
ψ

(
M

(
xn,x∗))) = ,

which implies

lim
n→∞M

(
xn,x∗) = d

(
x∗,Tx∗) = ,

and so d(x∗,Tx∗) =  > d(A,B), which is a contradiction. Therefore, d(x∗,Tx∗) ≤ d(A,B),
that is, d(x∗,Tx∗) = d(A,B). In other words, x∗ is a best proximity point of T . This com-
pletes the proof of the existence of a best proximity point.
We shall show next the uniqueness of the best proximity point of T . Suppose that x∗ and

y∗ are two best proximity points of T , such that x∗ 	= y∗. This implies that

d
(
x∗,Tx∗) = d(A,B) = d

(
y∗,Ty∗), ()

where d(x∗, y∗) > . Due to the weak P-property of the pair (A,B), we have

d
(
x∗, y∗) ≤ d

(
Tx∗,Ty∗). ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/32
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Observe that in this case

M
(
x∗, y∗) = max

{
d
(
x∗, y∗),d(

x∗,Tx∗),d(
y∗,Ty∗)}

= max
{
d
(
x∗, y∗),d(A,B),d(A,B)}.

Also, note that

N
(
x∗, y∗) – d(A,B) = min

{
d
(
x∗,Tx∗),d(

y∗,Ty∗),d(
x∗,Ty∗),d(

y∗,Tx∗)} – d(A,B)

= min
{
d(A,B),d(A,B),d

(
x∗,Ty∗),d(

y∗,Tx∗)} – d(A,B)

= d(A,B) – d(A,B) = .

Using the fact that T is a generalized almost ψ-Geraghty contraction, we derive

ψ
(
d
(
x∗, y∗)) ≤ ψ

(
d
(
Tx∗,Ty∗))

≤ β
(
ψ

(
M

(
x∗, y∗)))ψ(

M
(
x∗, y∗) – d(A,B)

)
+ Lψ

(
N

(
x∗, y∗) – d(A,B)

)
= β

(
ψ

(
M

(
x∗, y∗)))ψ(

M
(
x∗, y∗) – d(A,B)

)
< ψ

(
M

(
x∗, y∗) – d(A,B)

)
.

IfM(x∗, y∗) = d(A,B), due to the fact that d(x∗, y∗) > , the inequality above becomes

 < ψ
(
d
(
x∗, y∗)) <ψ(), ()

which implies d(x∗, y∗) =  and contradicts the assumption d(x∗, y∗) > . Else, ifM(x∗, y∗) =
d(x∗, y∗), we deduce

 < ψ
(
d
(
x∗, y∗)) <ψ

(
d
(
x∗, y∗) – d(A,B)

)
, ()

which is not possible, since ψ is nondecreasing. Therefore, we must have d(x∗, y∗) = .
This completes the proof. �

To illustrate our result given in Theorem ., we present the following example, which
shows that Theorem . is a proper generalization of Theorem ..

Example . Consider the space X =R with Euclidean metric. Take the sets

A = (–∞, –] and B = [, +∞).

Obviously, d(A,B) = . LetT : A→ B be defined byTx = –x. Notice thatA = {–}, B = {}
and T(A) ⊆ B. Also, it is clear that the pair (A,B) has the weak P-property.
Consider

β(t) =

{

+t , if  ≤ t < ,
t

+t , if t ≥ ,

http://www.fixedpointtheoryandapplications.com/content/2014/1/32
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and ψ(t) = αt (with α ≥ 
 ) for all t ≥ . Note that β ∈ S and ψ ∈ � . For all x, y ∈ A, we

have

d(Tx,Ty) = |x – y| and M(x, y) =max
{|x – y|, –x, –y}.

We shall show that T is a generalized almost ψ-Geraghty contraction. Without loss of
generality, consider the case where x ≥ y. Thenwe haveM(x, y) = –y and d(Tx,Ty) = x–y.
In this case, we see that

ψ
(
d(Tx,Ty)

)
= α(x – y) ≤ α(–x – y – )

≤ α(–x – y – ) ≤ [–αy]
[
α(–x – y – )

]
= [–αy]

[
α(–y – ) – α(x – y)

]
=ψ

(
M(x, y)

)[
ψ

(
M(x, y) – d(A,B)

)
–ψ

(
d(Tx,Ty)

)]
.

Therefore

ψ
(
d(Tx,Ty)

) ≤ ψ(M(x, y))
 +ψ(M(x, y))

ψ
(
M(x, y) – d(A,B)

)
. ()

On the other hand, we know that ψ(M(x, y)) = –αy≥  for all x, y ∈ A with x ≥ y. Hence,

β
(
ψ

(
M(x, y)

))
=

ψ(M(x, y))
 +ψ(M(x, y))

,

and from () we deduce

ψ
(
d(Tx,Ty)

) ≤ β
(
ψ

(
M(x, y)

))
ψ

(
M(x, y) – d(A,B)

)
.

Thus, all hypotheses of Theorem . are satisfied, and x∗ = – is the unique best proximity
point of the map T .
On the other hand, T is not a Geraghty contraction. Indeed, taking x = – and y = –,

we get

d(Tx,Ty) =  >


= β

(
d(x, y)

)
d(x, y).

Then Theorem . (the main result of Caballero et al. []) is not applicable.
Similarly, we cannot apply Theorem . because T is not a ψ-Geraghty contraction. Let

x = –, y = – and ψ(t) = αt with α < . Then T does not satisfy ().

If in Theorem . we take ψ(t) = t for all t ≥ , then we deduce the following corollary.

Corollary . Let (A,B) be a pair of nonempty closed subsets of a complete metric space
(X,d) such that A is nonempty. Let T : A→ B be a non-self-mapping satisfying T(A) ⊆ B

and

d(Tx,Ty) ≤ β
(
M(x, y)

)[
M(x, y) – d(A,B)

]
+ L

[
N(x, y) – d(A,B)

]

http://www.fixedpointtheoryandapplications.com/content/2014/1/32
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for all x, y ∈ A where β ∈ S, L ≥ ,

M(x, y) =max
{
d(x, y),d(x,Tx),d(y,Ty)

}
,

N(x, y) =min
{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

Assume that the pair (A,B) has the weak P-property. Then T has a unique best proximity
point in A.

If further in the above corollary we take β(t) = r where  ≤ r < , thenwe deduce another
particular result.

Corollary . Let (A,B) be a pair of nonempty closed subsets of a complete metric space
(X,d) such that A is nonempty. Let T : A→ B be a non-self-mapping satisfying T(A) ⊆ B

and

d(Tx,Ty) ≤ r
[
M(x, y) – d(A,B)

]
+ L

[
N(x, y) – d(A,B)

]

for all x, y ∈ A where  ≤ r < , L ≥ ,

M(x, y) =max
{
d(x, y),d(x,Tx),d(y,Ty)

}
,

N(x, y) =min
{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

Assume that the pair (A,B) has the weak P-property. Then T has a unique best proximity
point in A.

3 Application to fixed point theory
The case A = B in Theorem . corresponds to a self-mapping and results in an existence
and uniqueness theorem for a fixed point of the map T . We state this case in the next
theorem.

Theorem . Let (X,d) be a complete metric space. Suppose that A is a nonempty closed
subset of X. Let T : A → A be a mapping such that

ψ
(
d(Tx,Ty)

) ≤ β
(
ψ

(
M(x, y)

))
ψ

(
M(x, y)

)
+ Lψ

(
N(x, y)

)
for any x, y ∈ A, ()

where ψ ∈ � , β ∈ S, L ≥ ,

M(x, y) =max
{
d(x, y),d(x,Tx),d(y,Ty)

}
and

N(x, y) =min
{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

Then T has a unique fixed point.

Finally, taking ψ(t) = t in Theorem ., we get another fixed point result.

http://www.fixedpointtheoryandapplications.com/content/2014/1/32
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Corollary . Let (X,d) be a complete metric space. Suppose that A is a nonempty closed
subset of X. Let T : A → A be a mapping such that

d(Tx,Ty) ≤ β
(
M(x, y)

)
M(x, y) + LN(x, y) for any x, y ∈ A, ()

where β ∈ S, L ≥ ,

M(x, y) =max
{
d(x, y),d(x,Tx),d(y,Ty)

}
and

N(x, y) =min
{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

Then T has a unique fixed point.

Remark . The best proximity theorem given in this work, more precisely Theorem .,
is a quite general result. It is a generalization of Theorem . in [], Theorem  in [], and
also Theorem . given in Section . In addition, Corollary . improves Theorem ..

Remark . Very recently, Karapınar and Samet [] proved that the function dϕ = ϕ ◦ d
on the set X, where ϕ ∈ � is also a metric on X. Therefore, some of the fixed theorems
regarding contraction mappings defined via auxiliary functions from the set � can be
in fact deduced from the existing ones in the literature. However, our main result given
in Theorem . is not a consequence of any existing theorems due to the fact that the
contraction condition contains the term d(A,B).
On the other hand, the definition of dϕ = ϕ ◦ d can be used to show that Theorem .

follows from Corollary .. Nevertheless, Corollary . and hence Theorem . are still
new results.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the manuscript.

Author details
1 Department of Mathematics, Jubail College of Education, Dammam University, P.O. Box 12020, Industrial Jubail, 31961,
Saudi Arabia. 2 Department of Mathematics, Atilim University, İncek, Ankara 06836, Turkey. 3 Nonlinear Analysis and
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