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Abstract
In this paper, we propose an algorithms for finding a common fixed point of an
infinite family ofmulti-valued generalized nonexpansive mappings in uniformly convex
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2008), Eslamian and Abkar (Math. Comput. Model. 54:105-111, 2011), Abbas et al.
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1 Introduction
The study of fixed points for multi-valued contractions and nonexpansive mappings us-
ing the Hausdorff metric was initiated byMarkin [] and Nadler []. Since then the metric
fixed point theory of multi-valued mappings has been rapidly developed. The theory of
multi-valued mappings has been applied to control theory, convex optimization, differ-
ential equations, and economics. Different iterative processes have been used to approx-
imate fixed points of multi-valued nonexpansive mappings [–]. Recently Abbas et al.
[] introduced an one-step iterative process to approximate a common fixed point of two
multi-valued nonexpansive mappings in uniformly convex Banach spaces.
On the other hand, in  Suzuki [] introduced a class ofmappings satisfying the con-

dition (C) which is weaker than nonexpansive mappings (sometimes, such a mapping is
called a generalized nonexpansivemapping). He then proved some fixed point and conver-
gence theorems for suchmappings. Very recently, Eslamian and Abkar [, ] generalized
it to multi-valued case, and they proved some fixed point results in uniformly convex Ba-
nach spaces.
The aim of this paper is to introduce an iterative process for approximating a common

fixed point of an infinite family of multi-valued mappings satisfying the condition (C).
Under suitable conditions some weak and strong convergence theorems for such iterative
process are proved in uniformly convex Banach spaces.
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2 Preliminaries
Throughout this paper, we assume that X is a real Banach space, K is a nonempty subset
of X. We denote by N the set of all positive integers. We denote by ‘xn → x’ and ‘xn ⇀ x’
the strong and weak convergence of {xn}, respectively.
Recall that a subset K of X is called proximinal if, for each x ∈ X, there exists an element

k∗ ∈ K such that

d(x,K ) = inf
{‖x – y‖ : y ∈ K

}
= d

(
x,k∗).

Remark . It is well-known that weakly compact convex subsets of a Banach space and
closed convex subsets of a uniformly convex Banach space are proximinal.

We shall denote the family of nonempty bounded proximinal subsets of X by P(X), the
family of nonempty compact subsets of X by C(X) and the family of nonempty bounded
and closed subsets of X by CB(X). Let H be the Hausdorff metric induced by the metric d
of X defined by

H(A,B) :=max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
.

A point x ∈ K is called a fixed point of a multi-valued mapping T , if x ∈ Tx. We denote
the set of fixed point of T by F(T). A multi-valued mapping T : K → CB(X) is said to be

(i) contraction, if there exists a constant α ∈ [, ) such that for any x, y ∈ K

H(Tx,Ty) ≤ α‖x – y‖;

(ii) nonexpansive, if for all x, y ∈ K

H(Tx,Ty) ≤ ‖x – y‖;

(iii) quasi-nonexpansive, if F(T) �= ∅ and

H(Tx,Tp) ≤ ‖x – p‖, ∀p ∈ F(T),x ∈ K .

Definition . Amulti-valuedmapping T : X → CB(X) is said to satisfy the condition (C)
provided that



d(x,Tx)≤ ‖x – y‖ ⇒ H(Tx,Ty) ≤ ‖x – y‖, x, y ∈ X.

Lemma . Let T : X → CB(X) be a multi-valued mapping.
() If T is nonexpansive, then T satisfies the condition (C).
() If T satisfies the condition (C) and F(T) �= ∅, then T is a quasi-nonexpansive

mapping.

Proof The conclusion () is obvious. Now we prove the conclusion ().
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In fact, for any p ∈ F(T), we have 
d(p,Tp) =  ≤ ‖x – p‖, ∀x ∈ X. Since T satisfies the

condition (C), we have

H(Tx,Tp) ≤ ‖x – p‖, x ∈ X,p ∈ F(T). �

We mention that there exist single-valued and multi-valued mappings satisfying the
condition (C) which are not nonexpansive, for example:

Example  [] Define a mapping T on [, ] by

Tx =

{
, if x �= ;
, if x = .

Then T is a single-valued mapping satisfying condition (C), but T is not nonexpansive.

Example  [] Define a mapping T : [, ] → [, ] by

T(x) =

{
[, x ], x �= ,
{}, x = ,

then it is easy to prove that T is a multi-valued mapping satisfying condition (C), but T is
not nonexpansive.

Definition . A Banach space X is said to satisfy Opial condition, if xn ⇀ z (as n→ ∞)
and z �= y imply that

lim sup
n→∞

‖xn – z‖ < lim sup
n→∞

‖xn – y‖.

Lemma . Let K be a nonempty subset of a uniformly convex Banach space X and
T : K → CB(K ) be a multi-valued mapping with convex-valued and satisfying the con-
dition (C), then

H(Tx,Ty) ≤ d(x,Tx) + ‖x – y‖, ∀x, y ∈ K .

Proof Let x ∈ K , since Tx is a nonempty closed and convex subset of K . By Remark ., it
is proximal, hence there exists z ∈ Tx such that ‖z–x‖ = d(x,Tx). Since 

d(x,Tx)≤ ‖z–x‖
and T satisfies the condition (C), we have

H(Tx,Tz) ≤ ‖z – x‖. (.)

Also since Tz is proximal, there exists u ∈ Tz such that ‖z – u‖ = d(z,Tz). This together
with (.) shows that

‖z – u‖ = d(z,Tz) ≤H(Tx,Tz) ≤ ‖z – x‖. (.)

Now we show that either 
d(x,Tx) ≤ ‖x – y‖ or 

d(z,Tz) ≤ ‖z – y‖ holds. Suppose to the
contrary, we may assume that



d(x,Tx) > ‖x – y‖ and



d(z,Tz) > ‖z – y‖.
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From (.) we have

‖z – x‖ ≤ ‖x – y‖ + ‖y – z‖ < 

d(x,Tx) +



d(z,Tz)

≤ 

‖z – x‖ + 


‖z – x‖ = ‖z – x‖,

which is a contradiction. If 
d(x,Tx)≤ ‖x – y‖, then by the fact that T satisfies the condi-

tion (C), we have H(Tx,Ty) ≤ ‖x– y‖. In the other case, if 
d(z,Tz) ≤ ‖z– y‖, again by the

assumption that T satisfies the condition (C) we obtainH(Tz,Ty) ≤ ‖z– y‖. Hence, we get

H(Tx,Ty) ≤H(Tx,Tz) +H(Tz,Ty) ≤ ‖z – x‖ + ‖z – y‖
≤ ‖z – x‖ + ‖z – x‖ + ‖x – y‖
= d(x,Tx) + ‖x – y‖, x, y ∈ K .

This completes the proof of Lemma .. �

Lemma . [] Let X be a uniformly convex Banach space, Br() := {x ∈ X : ‖x‖ ≤ r} be a
closed ball with center  and radius r > . For any given sequence {x,x, . . . ,xn, . . .} ⊂ Br()
and any given number sequence {λ,λ, . . . ,λn, . . .} with λi ≥ ,

∑∞
i= λi = , then there exists

a continuous strictly increasing and convex function g : [, r)→ [,∞) with g() =  such
that for any i, j ∈ N , i < j the following holds:

∥∥∥∥∥
∞∑
n=

λnxn

∥∥∥∥∥


≤
∞∑
n=

λn‖xn‖ – λiλjg
(‖xi – xj‖

)
. (.)

Lemma . Let X be a strictly convex Banach space, K be a nonempty closed and convex
subset of X and T : K → CB(K ) be a multi-valued mapping satisfying the condition (C). If
F(T) is nonempty, then it is a closed and convex subset of K .

Proof Let {xn} be a sequence in F(T) converging to some point p ∈ K , i.e., xn ∈ T(xn),
∀n≥  and xn → p ∈ K . Since T satisfies the condition (C) and



d(xn,Txn) = ≤ ‖xn – p‖, ∀n≥ ,

we have

d(p,Tp) = lim sup
n→∞

d(xn,Tp) ≤ lim sup
n→∞

H(Txn,Tp) ≤ lim sup
n→∞

‖xn – p‖ = .

This implies that d(p,Tp) = . Since Tp is closed, we have p ∈ Tp, i.e., p ∈ F(T) and so F(T)
is closed.
Next we prove that F(T) is a convex subset in K . In fact, for any given λ ∈ (, ), x, y ∈

F(T) with x �= y and put w = λx + ( – λ)y. Since T satisfies the condition (C), we have

‖x – y‖ ≤ d(x,Tw) + d(y,Tw) ≤H(Tx,Tw) +H(Ty,Tw)

≤ ‖x –w‖ + ‖y –w‖ = ( – λ)‖x – y‖ + λ‖x – y‖ = ‖x – y‖.

http://www.fixedpointtheoryandapplications.com/content/2014/1/33
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This implies that

‖x – y‖ = d(x,Tw) + d(y,Tw) = ‖x –w‖ + ‖y –w‖ = ‖x – y‖.

Since X is strictly convex, this implies that there exist μ ∈ (, ) and a point u ∈ Tw such
that u = μx + ( –μ)y. Since

( –μ)‖x – y‖ = ‖x – u‖ ≤ d(x,Tx) +H(Tx,Tw) + d(Tw,u)

≤ ‖x –w‖ = ( – λ)‖x – y‖ (.)

and

μ‖x – y‖ = ‖y – u‖ ≤ d(y,Ty) +H(Ty,Tw) + d(Tw,u)

≤ ‖y –w‖ = λ‖x – y‖, (.)

from (.), we have –μ ≤ (–λ) and from (.), we haveμ ≤ λ. These implies thatμ = λ.
Therefore u = w and w ∈ Tw, i.e., w ∈ F(T). This completes the proof of Lemma .. �

Lemma . (Demi-closed principle) Let X be a uniformly convex Banach space satisfying
the Opial condition, K be a nonempty closed and convex subset of X. Let T : K → CB(K ) be
a multi-valued mapping with convex-values and satisfying the condition (C). Let {xn} be a
sequence in K such that xn ⇀ p ∈ K , and let limn→∞ d(xn,Txn) = , then p ∈ Tp, i.e., I – T
is demi-closed at zero.

Proof By the assumption that T : K → CB(K ) is a multi-valued mapping with convex-
values, hence Tp is a nonempty closed and convex subset of K . By Remark ., it is proxi-
mal. Therefore for each xn, n≥ , there exists a point un ∈ Tp such that

‖xn – un‖ = d(xn,Tp), n≥ . (.)

On the other hand, it follows from Lemma . that

‖xn – un‖ = d(xn,Tp) ≤ d(xn,Txn) +H(Txn,Tp)

≤ d(xn,Txn) + d(xn,Txn) + ‖xn – p‖, ∀n≥ . (.)

Taking the superior limit on the both sides of the above inequality, we have

lim sup
n→∞

‖xn – un‖ ≤ lim sup
n→∞

‖xn – p‖.

By virtue of the Opial condition, we have un = p, ∀n≥ . And so p ∈ Tp.
This completes the proof of Lemma .. �

3 Weak convergence theorems
We are now in a position to give the following theorem.
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Theorem . Let X be a real uniformly convex Banach space with Opial condition and
K be a nonempty closed and convex subset of X . Let Ti : K → CB(K ), i = , , . . . be an
infinite family of multi-valued mappings with nonempty convex-values and satisfying the
condition (C). For given x ∈ K , let {xn} be the sequence in K defined by

xn+ = α,nxn +
∞∑
i=

αi,nwi,n, wi,n ∈ Tixn,n≥ , (.)

where {αi,n} ⊂ (, ). If the following conditions are satisfied:
(i)

∑∞
i= αi,n = , for each n≥ ;

(ii) for each i ≥ , lim infn→∞ α,nαi,n > ;
(iii) F :=

⋂∞
i= F(Ti) �= ∅ and Tip = {p}, ∀i≥  and p ∈ F ,

then the sequence {xn} converges weakly to some point p∗ ∈ F .

Proof (I) First we claim that

lim
n→∞‖xn – p‖ exists for each p ∈ F . (.)

In fact, since
⋂∞

i= F(Ti) �= ∅, it follows from Lemma .() that for each i ≥ , Ti is a
multi-valued quasi-nonexpansive mapping. Hence for each p ∈ F , by condition (iii) we
have

‖wi,n – p‖ = d(wi,n,Tip) ≤H(Tixn),Tip) ≤ ‖xn – p‖, ∀n≥  (.)

and

‖xn+ – p‖ =
∥∥∥∥∥α,nxn +

∞∑
i=

αi,nwi,n – p

∥∥∥∥∥ ≤ α,n‖xn – p‖ +
∞∑
i=

αi,n‖wi,n – p‖

≤ α,n‖xn – p‖ +
∞∑
i=

αi,n‖xn – p‖

= ‖xn – p‖, ∀n≥ . (.)

This shows that {‖xn–p‖} is decreasing and bounded below. Hence the limit limn→∞ ‖xn–
p‖ exists for each p ∈ F . And so {‖xn – p‖} and {‖wi,n – p‖} both are bounded.
(II) Next we prove that

lim
n→∞d(xn,Tlxn) =  for each l ≥ . (.)

Since {‖xn – p‖} and {‖wi,n – p‖} both are bounded, from Lemma . and (.), for each
l ≥  we have

‖xn+ – p‖ =
∥∥∥∥∥α,n(xn – p) +

∞∑
i=

αi,n(wi,n – p)

∥∥∥∥∥


≤ α,n‖xn – p‖ +
∞∑
i=

αi,n‖wi,n – p‖ – α,nαl,ng
(‖xn –wl,n‖

)
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≤ α,n‖xn – p‖ +
∞∑
i=

αi,n‖xn – p‖ – α,nαl,ng
(‖xn –wl,n‖

)

= ‖xn – p‖ – α,nαl,ng
(‖xn –wl,n‖

)
, ∀n≥ . (.)

And so

α,nαl,ng
(‖xn –wl,n‖

) ≤ ‖xn – p‖ – ‖xn+ – p‖ →  (as n→ ∞).

By condition (ii) we have

lim
n→∞ g

(‖xn –wl,n‖
)
= .

Since g is continuous and strictly increasing with g() = , this implies that

lim
n→∞‖xn –wl,n‖ = , ∀l ≥ . (.)

Thus, we have

lim
n→∞d(xn,Tlxn)≤ lim

n→∞‖xn –wl,n‖ = , ∀l ≥ . (.)

(III) Finally we prove that xn ⇀ p∗ (some point in F ).
In fact, since {xn} is bounded, there exists a subsequence xni ⊂ {xn} such that xni ⇀

p∗ ∈ K . By Lemma ., I – Tl is demi-closed at zero. Hence from (.), p∗ ∈ F(Tl). By the
arbitrariness of l ≥ , we have p∗ ∈ F .
If there exists another subsequence {xnj} ⊂ {xn} such that xnj ⇀ q∗ ∈ K and p∗ �= q∗. By

the same method as given above we can also prove that q∗ ∈ F . Since X has the Opial
property, we have

lim sup
ni→∞

∥∥xni – p∗∥∥ < lim sup
ni→∞

∥∥xni – q∗∥∥ = lim
n→∞

∥∥xn – q∗∥∥
= lim sup

nj→∞

∥∥xnj – q∗∥∥ < lim sup
nj→∞

∥∥xnj – p∗∥∥
= lim

n→∞
∥∥xn – p∗∥∥ = lim sup

ni→∞

∥∥xni – p∗∥∥.
This is a contradiction. Therefore p∗ = q∗ and xn ⇀ p∗ ∈ F .
This completes the proof of Theorem .. �

The following theorem can be obtained from Theorem . immediately.

Theorem . Let X be a real uniformly convex Banach space with Opial condition and
K be a nonempty closed and convex subset of X . Let Ti : K → K , i = , , . . . be an infinite
family of single-valued mappings satisfying the condition (C). For given x ∈ K , let {xn} be
the sequence in K defined by

xn+ = α,nxn +
∞∑
i=

αi,nTixn, n≥ , (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/33
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where {αi,n} ⊂ (, ) is the sequence as given in Theorem .. If F :=
⋂∞

i= F(Ti) �= ∅, then the
sequence {xn} converges weakly to some point p∗ ∈ F .

Remark . Theorem . improves and extends the corresponding results in Eslamian
and Abkar [, Theorem .], Suzuki [, Theorem ] and Abbas et al. [, Theorem ].

4 Some strong convergence theorems
Theorem . Let X be a real uniformly convex Banach space and K be a nonempty closed
and convex subset of X. Let Ti : K → CB(K ), i = , , . . . be an infinite family of multi-valued
mappings satisfying the condition (C). For given x ∈ K , let {xn} be the sequence defined by
(.). If the conditions (i), (ii), and (iii) in Theorem . are satisfied, then {xn} converges
strongly to some point p∗ ∈ F , if and only if the following condition is satisfied:

lim inf
n→∞ d(xn,F ) = . (.)

Proof The necessity of condition (.) is obvious.
Next we prove the sufficiency of condition (.).
In fact, as in the proof of Theorem ., for each i ≥ , we have limd(xn,Tixn) =  (see

(.)), and for each p ∈ F the limit limn→∞ ‖xn – p‖ exists. Hence by condition (.) we
have

lim
n→∞d(xn,F ) = . (.)

Therefore we can choose a subsequence {xnk } ⊂ {xn} and a subsequence {pk} ⊂ F such
that for all positive integer k ≥ 

‖xnk – pk‖ < 
k

.

Since the sequence {‖xn – p‖}, p ∈ F is decreasing, we obtain

‖xnk+ – pk‖ ≤ ‖xnk – pk‖ < 
k

.

Hence

‖pnk+ – pk‖ ≤ ‖xnk+ – pk+‖ + ‖xnk+ – pk‖ < 
k+

+

k

<


k–
.

This implies that {pk} is a Cauchy sequence inK .Without loss of generality, we can assume
that pk → p∗ ∈ K . Since for each i≥ 

d
(
p∗,Ti

(
p∗)) = lim

k→∞
d
(
pk ,Ti

(
p∗)) ≤ lim

k→∞
H

(
Ti(pk),Ti

(
p∗)) ≤ lim

k→∞
∥∥pk – p∗∥∥ = .

This implies that p∗ ∈ Tip∗, for all i≥ . Therefore p∗ ∈ F and xn → p∗.
This completes the proof of Theorem .. �

The following theorem can be obtained from Theorem . immediately.

http://www.fixedpointtheoryandapplications.com/content/2014/1/33
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Theorem . Let X be a real uniformly convex Banach space and K be a nonempty closed
and convex subset of X. Let Ti : K → CB(K ), i = , , . . . be an infinite family of multi-valued
mappings satisfying the condition (C). For given x ∈ K , let {xn} be the sequence defined by
(.). If the conditions (i), (ii), and (iii) in Theorem . and the following condition (iv) are
satisfied:
(iv) there exists an increasing function f : [,∞) → [,∞) with f (r) > , ∀r >  such that

for some m≥ 

d
(
xn,Tm(xn)

) ≥ f
(
d(xn,F )

)
, (.)

then the sequence {xn} converges strongly to some point p∗ ∈ F .

Proof As in the proof of Theorem ., for each i ≥ , limn→∞ d(xn,Tixn) = . Especially
we have limn→∞ d(xn,Tmxn) = . Hence from (.) we obtain limn→∞ d(xn,F ) = . The
conclusion of Theorem . can be obtained from Theorem . immediately.
We now intend to remove the condition that Ti(p) = {p} for each p ∈ F and each i≥ .
Let X be a real uniformly convex Banach space and K be a nonempty closed and convex

subset of X. Let Ti : K → CB(K ), i = , , . . . be an infinite family of multi-valued mappings
with convex-values. Then for each i ≥  and for each x ∈ K , Tix is a nonempty closed and
convex subset in K . Hence by Remark ., it is proximinal. Now we define a multi-valued
mapping PTi : K → CB(K ) by

PTi (x) =
{
y ∈ Ti(x) : ‖x – y‖ = d

(
x,Ti(x)

)}
. (.)

For any given x ∈ K define a sequence {xn} by

xn+ = α,nxn +
∞∑
i=

αi,nwi,n, wi,n ∈ PTi (xn),n≥ , (.)

where {αi,n} ⊂ (, ). �

We have the following.

Theorem. Let X,K , {Ti}, {PTi} and {xn} be the same as above. If the following conditions
are satisfied:

(i)
∑∞

i= αi,n = , for each n≥ ;
(ii) for each i ≥ , lim infn→∞ α,nαi,n > ;
(iii) F :=

⋂∞
i= F(Ti) �= ∅, and, for each i≥ , the mapping PTi : K → CB(K ) satisfies the

condition (C);
(iv) there exists an increasing function f : [,∞)→ [,∞) with f (r) >  for all r >  such

that for somem ≥ 

d
(
xn,Tm(xn)

) ≥ f
(
d(xn,F )

)
,

then the sequence {xn} converges strongly to some point p∗ ∈ F .

http://www.fixedpointtheoryandapplications.com/content/2014/1/33
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Proof Let p ∈ F , then we have

PTi (p) =
{
y ∈ Ti(p) : ‖p – y‖ = d

(
p,Ti(p)

)
= 

}
= {p} for each i≥ . (.)

Moreover, by the same method as give in the proof of Theorem . we can also prove that
the limit limn→∞ ‖xn – p‖ exists for each p ∈ F and

lim
n→∞d(xn,F ) = .

Therefore, we can choose a subsequence {xnk } of {xn} and a sequence {pk} in F such
that for any positive integer k

‖xnk – pk‖ < 
k

.

As in the proof of Theorem ., {pk} is a Cauchy sequence in K and hence it converges to
some point q ∈ K . By virtue of the definition of mapping PTi , we have PTi (q) ⊂ Ti(q), i ≥ .
Hence from (.) we have

d
(
pk ,Ti(q)

) ≤ d
(
pk ,PTi (q)

) ≤H
(
PTi (pk),PTi (q)

) ≤ ‖q – pk‖.

Since pk → q (as k → ∞), it follows that d(q,Ti(q)) =  for i ≥ . Hence q ∈ F and {xnk }
converges strongly to q. Since limn→∞ ‖xn – q‖ exists, we conclude that {xn} converges
strongly to q.
This completes the proof of Theorem .. �

Remark . Theorems ., . and . improve and extend the corresponding results in
Eslamian et al. [, Theorems ., ., .], Suzuki [, Theorem ] and Abbas et al. [,
Theorems , , ].

5 Applications
The convex feasibility problem (CFP) was first introduced by Censor and Elfving [] for
modeling inverse problems which arise from phase retrievals and in medical image re-
construction []. Recently, it has been found that the CFP can also be used in various
disciplines such as image restoration, computer tomograph and radiation therapy treat-
ment planning.
LetX be a real Banach space,K be a nonempty closed and convex subset ofX and {Ki} be

a countable family of subset of K . The ‘so called’ convex feasibility problem for the family
of subsets {Ki} is to find a point x∗ ∈ ⋂∞

i=Ki.
In this section, we shall utilize Theorem . to study the convex feasibility problem for

an infinite family of single-valued mappings satisfying the condition (C). We have the fol-
lowing result.

Theorem . Let X be a real uniformly convex Banach space with Opial condition and K
be a nonempty closed and convex subset of X . Let Ti : K → K , i = , , . . . be an infinite family
of mappings satisfying the condition (C). Let {Ki = F(Ti), i = , , . . .}. For given x ∈ K , let

http://www.fixedpointtheoryandapplications.com/content/2014/1/33
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{xn} be the sequence in K defined by

xn+ = α,nxn +
∞∑
i=

αi,nTixn, n≥ , (.)

where {αi,n} ⊂ (, ) is the sequence as given in Theorem .. If F :=
⋂∞

i= F(Ti) �= ∅, then
there exists a point x∗ ∈ F which is a solution of the convex feasibility problem for the
family of subsets {Ki}, and the sequence {xn} defined by (.) converges weakly to x∗.
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