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Abstract
The existence of fixed points of single-valued mappings in modular function spaces
has been studied by many authors. The approximation of fixed points in such spaces
via convergence of an iterative process for single-valued mappings has also been
attempted very recently by Dehaish and Kozlowski (Fixed Point Theory Appl.
2012:118, 2012). In this paper, we initiate the study of approximating fixed points by
the convergence of a Mann iterative process applied on multivalued ρ-nonexpansive
mappings in modular function spaces. Our results also generalize the corresponding
results of (Dehaish and Kozlowski in Fixed Point Theory Appl. 2012:118, 2012) to the
case of multivalued mappings.
MSC: 47H09; 47H10; 54C60
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1 Introduction and preliminaries
The theory of modular spaces was initiated by Nakano [] in connection with the theory
of ordered spaces, which was further generalized by Musielak and Orlicz []. The fixed
point theory for nonlinear mappings is an important subject of nonlinear functional anal-
ysis and is widely applied to nonlinear integral equations and differential equations. The
study of this theory in the context of modular function spaces was initiated by Khamsi et
al. [] (see also [–]). Kumam [] obtained some fixed point theorems for nonexpansive
mappings in arbitrary modular spaces. Kozlowski [] has contributed a lot towards the
study of modular function spaces both on his own and with his collaborators. Of course,
most of the work done on fixed points in these spaces was of existential nature. No results
were obtained for the approximation of fixed points in modular function spaces until re-
cently Dehaish and Kozlowski [] tried to fill this gap using a Mann iterative process for
asymptotically pointwise nonexpansive mappings.
All above work has been done for single-valued mappings. On the other hand, the

study of fixed points for multivalued contractions and nonexpansive mappings using the
Hausdorffmetric was initiated byMarkin [] (see also []). Later, an interesting and rich
fixed point theory for such maps was developed which has applications in control theory,
convex optimization, differential inclusion, and economics (see [] and references cited
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therein). Moreover, the existence of fixed points for multivalued nonexpansive mappings
in uniformly convex Banach spaces was proved by Lim []. The theory of multivalued
nonexpansive mappings is harder than the corresponding theory of single-valued nonex-
pansive mappings. Different iterative processes have been used to approximate the fixed
points of multivalued nonexpansive mappings in Banach spaces.
Dhompongsa et al. [] have proved that every ρ-contraction T : C → Fρ(C) has a fixed

point where ρ is a convex function modular satisfying the so-called �-type condition,
C is a nonempty ρ-bounded ρ-closed subset of Lρ and Fρ(C) a family of ρ-closed sub-
sets of C. By using this result, they asserted the existence of fixed points for multivalued
ρ-nonexpansive mappings. Again their results are existential in nature. See also Kutbi and
Latif [].
In this paper, we approximate fixed points of ρ-nonexpansive multivalued mappings in

modular function spaces using a Mann iterative process. We make the first ever effort to
fill the gap between the existence and the approximation of fixed points of ρ-nonexpansive
multivalued mappings in modular function spaces. In a way, the corresponding results of
Dehaish and Kozlowski [] are also generalized to the case of multivalued mappings.
Some basic facts and notation needed in this paper are recalled as follows.
Let� be a nonempty set and� a nontrivial σ -algebra of subsets of�. LetP be a δ-ring of

subsets of �, such that E∩A ∈P for any E ∈P and A ∈ �. Let us assume that there exists
an increasing sequence of sets Kn ∈P such that � =

⋃
Kn (for instance,P can be the class

of sets of finite measure in a σ -finite measure space). By A, we denote the characteristic
function of the set A in �. By E we denote the linear space of all simple functions with
supports from P . ByM∞ we will denote the space of all extended measurable functions,
i.e., all functions f : � → [–∞,∞] such that there exists a sequence {gn} ⊂ E , |gn| ≤ |f |
and gn(ω)→ f (ω) for all ω ∈ �.

Definition  Let ρ :M∞ → [,∞] be a nontrivial, convex and even function.We say that
ρ is a regular convex function pseudomodular if
() ρ() = ;
() ρ is monotone, i.e., |f (ω)| ≤ |g(ω)| for any ω ∈ � implies ρ(f ) ≤ ρ(g), where

f , g ∈M∞;
() ρ is orthogonally subadditive, i.e., ρ(f A∪B) ≤ ρ(f A) + ρ(f B) for any A,B ∈ � such

that A∩ B 	= φ, f ∈M∞;
() ρ has Fatou property, i.e., |fn(ω)| ↑ |f (ω)| for all ω ∈ � implies ρ(fn) ↑ ρ(f ), where

f ∈M∞;
() ρ is order continuous in E , i.e., gn ∈ E , and |gn(ω)| ↓  implies ρ(gn) ↓ .

A set A ∈ � is said to be ρ-null if ρ(gA) =  for every g ∈ E . A property p(ω) is said
to hold ρ-almost everywhere (ρ-a.e.) if the set {ω ∈ � : p(ω) does not hold} is ρ-null. As
usual, we identify any pair of measurable sets whose symmetric difference is ρ-null as well
as any pair of measurable functions differing only on a ρ-null set. With this in mind we
define

M(�,�,P ,ρ) =
{
f ∈M∞ :

∣∣f (ω)∣∣ <∞ ρ-a.e.
}
,

where f ∈ M(�,�,P ,ρ) is actually an equivalence class of functions equal ρ-a.e. rather
than an individual function. Where no confusion exists we will write M instead of
M(�,�,P ,ρ).
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Definition  Let ρ be a regular function pseudomodular.We say that ρ is a regular convex
function modular if ρ(f ) =  implies f =  ρ-a.e.

It is known (see []) that ρ satisfies the following properties:

() ρ() =  iff f =  ρ-a.e.
() ρ(αf ) = ρ(f ) for every scalar α with |α| =  and f ∈M.
() ρ(αf + βg) ≤ ρ(f ) + ρ(g) if α + β = , α,β ≥  and f , g ∈ M.

ρ is called a convex modular if, in addition, the following property is satisfied:

(′) ρ(αf + βg) ≤ αρ(f ) + βρ(g) if α + β = , α,β ≥  and f , g ∈ M.

Definition  The convex function modular ρ defines the modular function space Lρ as

Lρ =
{
f ∈M;ρ(λf ) →  as λ → 

}
.

Generally, the modular ρ is not subadditive and therefore does not behave as a norm or
a distance. However, the modular space Lρ can be equipped with an F-norm defined by

‖f ‖ρ = inf

{
α >  : ρ

(
f
α

)
≤ α

}
.

In the case ρ is convex modular,

‖f ‖ρ = inf

{
α >  : ρ

(
f
α

)
≤ 

}

defines a norm on the modular space Lρ , and it is called the Luxemburg norm.
The following uniform convexity type properties of ρ can be found in [].

Definition  Let ρ be a nonzero regular convex function modular defined on �. Let t ∈
(, ), r > , ε > . Define

D(r, ε) =
{
(f , g) : f , g ∈ Lρ ,ρ(f ) ≤ r,ρ(g)≤ r,ρ(f – g) ≥ εr

}
.

Let

δt(r, ε) = inf

{
 –


r
ρ
(
tf + ( – t)g

)
: (f , g) ∈ D(r, ε)

}
if D(r, ε) 	= φ,

and δ(r, ε) =  if D(r, ε) = φ.

As a conventional notation, δ = δ


 .

Definition  A nonzero regular convex function modular ρ is said to satisfy (UC) if for
every r > , ε > , δ(r, ε) > . Note that for every r > , D(r, ε) 	= φ for ε >  small enough.
ρ is said to satisfy (UUC) if for every s ≥ , ε > , there exists η(s, ε) >  depending only
upon s and ε such that δ(r, ε) > η(s, ε) >  for any r > s.

Definition  Let Lρ be a modular space. The sequence {fn} ⊂ Lρ is called:
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• ρ-convergent to f ∈ Lρ if ρ(fn – f ) →  as n→ ∞;
• ρ-Cauchy, if ρ(fn – fm) →  as n andm → ∞.

Consistent with [], the ρ-distance from an f ∈ Lρ to a set D ⊂ Lρ is given as follows:

distρ(f ,D) = inf
{
ρ(f – h) : h ∈D

}
.

Definition  A subset D ⊂ Lρ is called:
• ρ-closed if the ρ-limit of a ρ-convergent sequence of D always belongs to D;
• ρ-a.e. closed if the ρ-a.e. limit of a ρ-a.e. convergent sequence of D always belongs
to D;

• ρ-compact if every sequence in D has a ρ-convergent subsequence in D;
• ρ-a.e. compact if every sequence in D has a ρ-a.e. convergent subsequence in D;
• ρ-bounded if

diamρ(D) = sup
{
ρ(f – g) : f , g ∈D

}
< ∞.

A set D ⊂ Lρ is called ρ-proximinal if for each f ∈ Lρ there exists an element g ∈ D
such that ρ(f – g) = distρ(f ,D). We shall denote the family of nonempty ρ-bounded
ρ-proximinal subsets of D by Pρ(D), the family of nonempty ρ-closed ρ-bounded sub-
sets of D by Cρ(D) and the family of ρ-compact subsets of D by Kρ(D). Let Hρ(·, ·) be the
ρ-Hausdorff distance on Cρ(Lρ), that is,

Hρ(A,B) =max
{
sup
f∈A

distρ(f ,B), sup
g∈B

distρ(g,A)
}
, A,B ∈ Cρ(Lρ).

A multivalued mapping T :D → Cρ(Lρ) is said to be ρ-nonexpansive if

Hρ(Tf ,Tg) ≤ ρ(f – g), f , g ∈ D.

A sequence {tn} ⊂ (, ) is called bounded away from  if there exists a >  such that tn ≥ a
for every n ∈ N. Similarly, {tn} ⊂ (, ) is called bounded away from  if there exists b < 
such that tn ≤ b for every n ∈N.

Lemma  (Lemma . []) Let ρ satisfy (UUC) and let {tk} ⊂ (, ) be bounded away
from  and . If there exists R >  such that

lim sup
n→∞

ρ(fn) ≤ R, lim sup
n→∞

ρ(gn) ≤ R

and

lim
n→∞ρ

(
tnfn + ( – tn)gn

)
= R,

then limn→∞ ρ(fn – gn) = .

The above lemma is an analogue of a famous lemma due to Schu [] in Banach spaces.
A function f ∈ Lρ is called a fixed point of T : Lρ → Pρ(D) if f ∈ Tf . The set of all fixed

points of T will be denoted by Fρ(T).
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Lemma  Let T :D→ Pρ(D) be a multivalued mapping and

PT
ρ (f ) =

{
g ∈ Tf : ρ(f – g) = distρ(f ,Tf )

}
.

Then the following are equivalent:
() f ∈ Fρ(T), that is, f ∈ Tf .
() PT

ρ (f ) = {f }, that is, f = g for each g ∈ PT
ρ (f ).

() f ∈ F(PT
ρ (f )), that is, f ∈ PT

ρ (f ). Further Fρ(T) = F(PT
ρ (f )) where F(PT

ρ (f )) denotes the
set of fixed points of PT

ρ (f ).

Proof () �⇒ (). Since f ∈ Fρ(T) �⇒ f ∈ Tf , so distρ(f ,Tf ) = . Therefore, for any g ∈
PT

ρ (f ), ρ(f – g) = distρ(f ,Tf ) =  implies that ρ(f – g) = . Hence f = g . That is, PT
ρ (f ) = {f }.

()�⇒ (). Obvious.
() �⇒ (). Since f ∈ F(PT

ρ (f )), so by definition of PT
ρ (f ) we have distρ(f ,Tf ) = ρ(f – f ) = .

Thus f ∈ Tf by ρ-closedness of Tf . �

Definition  Amultivaluedmapping T :D → Cρ(D) is said to satisfy condition (I) if there
exists a nondecreasing function l : [,∞) → [,∞) with l() = , l(r) >  for all r ∈ (,∞)
such that distρ(f ,Tf ) ≥ l(distρ(f ,Fρ(T))) for all f ∈D.

It is a multivalued version of condition (I) of Senter and Dotson [] in the framework
of modular function spaces.

2 Main results
We prove a key result giving a major support to our ρ-convergence result for approxi-
mating fixed points of multivalued ρ-nonexpansive mappings in modular function spaces
using a Mann iterative process.

Theorem  Let ρ satisfy (UUC) and D a nonempty ρ-closed, ρ-bounded and convex
subset of Lρ .Let T :D→ Pρ(D) be amultivaluedmapping such that PT

ρ is a ρ-nonexpansive
mapping. Suppose that Fρ(T) 	= φ. Let {fn} ⊂D be defined by the Mann iterative process:

fn+ = ( – αn)fn + αnun,

where un ∈ PT
ρ (fn) and {αn} ⊂ (, ) is bounded away from both  and . Then

lim
n→∞ρ(fn – c) exists for all c ∈ Fρ(T)

and

lim
n→∞ρ

(
fn – PT

ρ (fn)
)
= .

Proof Let c ∈ Fρ(T). By Lemma , PT
ρ (c) = {c}. Moreover, by the same lemma, Fρ(T) =

F(PT
ρ ). To prove that limn→∞ ρ(fn – c) exists for all c ∈ Fρ(T), consider

ρ(fn+ – c) = ρ
[
( – αn)fn + αnun – c

]
= ρ

[
( – αn)(fn – c) + αn(un – c)

]
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/34
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By convexity of ρ , we have

ρ(fn+ – c) ≤ ( – αn)ρ(fn – c) + αnρ(un – c)

≤ ( – αn)Hρ

(
PT

ρ (fn),P
T
ρ (c)

)
+ αnHρ

(
PT

ρ (fn),P
T
ρ (c)

)
≤ ( – αn)ρ(fn – c) + αnρ(fn – c)

= ρ(fn – c).

Hence limn→∞ ρ(fn – c) exists for each c ∈ Fρ(T).
Suppose that

lim
n→∞ρ(fn – c) = L, (.)

where L ≥ .
We now prove that

lim
n→∞ρ

(
fn – PT

ρ (fn)
)
= .

As distρ(fn,PT
ρ (fn)) ≤ ρ(fn – un), it suffices to prove that

lim
n→∞ρ(fn – un) = .

Since

ρ(un – c) ≤Hρ

(
PT

ρ (fn),P
T
ρ (c)

) ≤ ρ(fn – c),

therefore

lim sup
n→∞

ρ(un – c) ≤ lim sup
n→∞

ρ(fn – c)

and so in view of (.), we have

lim sup
n→∞

ρ(un – c) ≤ L. (.)

As

lim
n→∞ρ(fn+ – c) = lim

n→∞ρ
[
( – αn)fn + αnun – c

]
(.)

= lim
n→∞ρ

[
( – αn)(fn – c) + αn(un – c)

]
(.)

= L, (.)

from (.), (.), (.), and Lemma , we have

lim
n→∞ρ(fn – un) = .

Hence

lim
n→∞distρ

(
fn,PT

ρ (fn)
)
= . �

http://www.fixedpointtheoryandapplications.com/content/2014/1/34
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Now we are all set for our convergence result for approximating fixed points of mul-
tivalued ρ-nonexpansive mappings in modular function spaces using the Mann iterative
process as follows.

Theorem  Let ρ satisfy (UUC) and D a nonempty ρ-compact, ρ-bounded and convex
subset of Lρ . Let T :D→ Pρ(D) be a multivalued mapping such that PT

ρ is ρ-nonexpansive
mapping. Suppose that Fρ(T) 	= φ. Let {fn} be as defined inTheorem .Then {fn} ρ-converges
to a fixed point of T .

Proof From ρ-compactness of D, there exists a subsequence {fnk } of {fn} such that
limk→∞(fnk – q) =  for some q ∈ D. To prove that q is a fixed point of T , let g be an
arbitrary point in PT

ρ (q) and f in PT
ρ (fnk ). Note that

ρ

(
q – g


)
= ρ

(
q – fnk


+
fnk – f


+
f – g


)

≤ 

ρ(q – fnk ) +



ρ(fnk – f ) +



ρ(f – g)

≤ ρ(q – fnk ) + distρ
(
fnk ,P

T
ρ (fnk )

)
+ distρ

(
PT

ρ (fnk ), g
)

≤ ρ(q – fnk ) + distρ
(
fnk ,P

T
ρ (fnk )

)
+Hρ

(
PT

ρ (fnk ),P
T
ρ (q)

)
≤ ρ(q – fnk ) + distρ

(
fnk ,P

T
ρ (fnk )

)
+ ρ(q – fnk ).

By Theorem , we have limn→∞ distρ(fn,PT
ρ (fn)) = . This gives ρ( q–g ) = . Hence q is a

fixed point of PT
ρ . Since the set of fixed points of PT

ρ is the same as that of T by Lemma ,
{fn} ρ-converges to a fixed point of T . �

Theorem Let ρ satisfy (UUC) and D a nonempty ρ-closed, ρ-bounded and convex sub-
set of Lρ . Let T :D → Pρ(D) be a multivalued mapping with and Fρ(T) 	= φ and satisfying
condition (I) such that PT

ρ is ρ-nonexpansive mapping. Let {fn} be as defined in Theorem .
Then {fn} ρ-converges to a fixed point of T .

Proof From Theorem , limn→∞ ρ(fn – c) exists for all c ∈ F(PT
ρ ) = Fρ(T). If limn→∞ ρ(fn –

c) = , there is nothing to prove. We assume limn→∞ ρ(fn – c) = L > . Again from Theo-
rem , ρ(fn+ – c) ≤ ρ(fn – c) so that

distρ
(
fn+,Fρ(T)

) ≤ distρ
(
fn,Fρ(T)

)
.

Hence limn→∞ distρ(fn,Fρ(T)) exists. We now prove that limn→∞ distρ(fn,Fρ(T)) = . By
using condition (I) and Theorem , we have

lim
n→∞ l

(
distρ

(
fn,Fρ(T)

)) ≤ lim
n→∞distρ(fn,Tfn) = .

That is,

lim
n→∞ l

(
distρ

(
fn,Fρ(T)

))
= .

Since l is a nondecreasing function and l() = , it follows that limn→∞ distρ(fn,Fρ(T)) = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/34
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Next, we show that {fn} is a ρ-Cauchy sequence in D. Let ε >  be arbitrarily chosen.
Since limn→∞ distρ(fn,Fρ(T)) = , there exists a constant n such that for all n ≥ n, we
have

distρ
(
fn,Fρ(T)

)
<

ε


.

In particular, inf{ρ(fn – c) : c ∈ Fρ(T)} < ε
 . There must exist a c∗ ∈ Fρ(T) such that

ρ
(
fn – c∗

)
< ε.

Now form,n≥ n, we have

ρ

(
fn+m – fn



)
≤ 


ρ
(
fn+m – c∗

)
+


ρ
(
fn – c∗

)

≤ ρ
(
fn – c∗

)
< ε.

Hence {fn} is a ρ-Cauchy sequence in a ρ-closed subset D of Lρ , and so it must converge
in D. Let limn→∞ fn = q. That q is a fixed point of T now follows from Theorem . �

We now give some examples. The first one shows the existence of a mapping satisfying
the condition (I) whereas the second one shows the existence of a mapping satisfying all
the conditions of Theorem .

Example  Let Lρ = M[, ] (the collection of all real valued measurable functions on
[, ]). Note thatM[, ] is a modular function space with respect to

ρ(f ) =
∫ 


|f |.

LetD = {f ∈ Lρ : 
 ≤ f (x)≤ }. ObviouslyD is a nonempty closed and convex subset of Lρ .

Define T :D → Cρ(Lρ) as

Tf =
{
g ∈ Lρ :




≤ g(x)≤  +
f (x)


}
.

Define a continuous and nondecreasing function l : [,∞)→ [,∞) by l(r) = r
 . It is obvi-

ous that distρ(f ,Tf ) ≥ l(distρ(f ,FT )) for all f ∈D. Hence T satisfies the condition (I).

Example  The real number system R is a space modulared by ρ(f ) = |f |. Let D = [, ].
Obviously D is a nonempty closed and convex subset of R. Define T :D→ Pρ(D) as

Tf =
[
,  +

f


]
.

Define a continuous and nondecreasing function l : [,∞)→ [,∞) by l(r) = r
 . It is obvi-

ous that distρ(f ,Tf ) ≥ l(distρ(f ,FT )) for all f ∈D.

http://www.fixedpointtheoryandapplications.com/content/2014/1/34
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Note that PT
ρ (f ) = {f } when f ∈ D. Hence PT

ρ is nonexpansive. Moreover, by Lemma ,
PT

ρ (f ) = {f } �⇒ f ∈ Tf for all f ∈D. Thus {fn} ⊂D defined by fn+ = ( – αn)fn + αnun where
un ∈ PT

ρ (fn) ρ-converges to a fixed point of T .
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