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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖, let F :H ×
H → R be a bifunction. Then we consider the following equilibrium problem (EP): find
z ∈H such that

F(z, y) ≥ , ∀y ∈H . (.)

The set of the EP is denoted by �, i.e.,

� =
{
z ∈H : F(z, y) ≥ ,∀y ∈ H

}
.

The problem (.) is very general in the sense that it includes, as special cases, optimization
problems, variational inequality problems, theNash equilibriumproblems and others, see,
for instance, [–]. Some methods have been proposed to solve the EP, see, e.g., [–] and
[, ].
The split feasibility problem (SFP) was proposed by Censer and Elfving in []. It can be

formulated as the problem of finding a point x satisfying the property:

x ∈ C, Ax ∈Q, (.)

where A is a given M × N real matrix, and C and Q are nonempty, closed and convex
subsets in R

N and R
M , respectively.
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Due to its extraordinary utility and broad applicability in many areas of applied mathe-
matics (most notably, fully discretized models of problems in image reconstruction from
projections, in image processing, and in intensity-modulated radiation therapy), algo-
rithms for solving convex feasibility problems have been received great attention (see, for
instance [–] and also [–]).
We assume the SFP (.) is consistent, and let � be the solution set, i.e.,

� = {x ∈ C : Ax ∈Q}.

It is not hard to see that � is closed convex and x ∈ � if and only if it solves the fixed-point
equation

x = PC
(
I – γA∗(I – PQ)A

)
x, (.)

where PC and PQ are the orthogonal projection onto C and Q, respectively, γ >  is any
positive constant and A∗ denotes the adjoint of A.
Recently, for the purpose of generality, the SFP (.) has been studied in a more general

setting. For instance, see [, ]. However, the algorithms in these references have only
weak convergence in the setting of infinite-dimensional Hilbert spaces. Very recently, He
and Zhao [] introduce a new relaxed CQ algorithm (.) such that the strong conver-
gence is guaranteed in infinite-dimensional Hilbert spaces:

xn+ = PCn

(
αnu + ( – αn)

(
xn – τn∇fn(xn)

))
. (.)

Motivated and inspired by the research going on in the sections of equilibrium prob-
lems and split feasibility problems, the purpose of this article is to introduce an iterative
algorithm for equilibrium problems and split feasibility problems in Hilbert spaces. Un-
der suitable conditions we prove the sequence converges strongly to a common element
of the set of solutions of equilibrium problems and the set of solutions of split feasibility
problems. Our result extends and improves the corresponding results of He et al. [] and
some others.

2 Preliminaries and lemmas
Throughout this paper, we assume thatH ,H orH is a real Hilbert space, A is a bounded
linear operator from H to H, and I is the identity operator on H , H or H. If f :H → R

is a differentiable function, then we denote by ∇f the gradient of the function f . We will
also use the notations: → to denote strong convergence, ⇀ to denote weak convergence
and to denote by

wω(xn) =
{
x|∃{xnk } ⊂ {xn} such that xnk ⇀ x

}

the weak ω-limit set of {xn}.
Recall that a mapping T :H →H is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, x, y ∈H .

http://www.fixedpointtheoryandapplications.com/content/2014/1/36
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T :H →H is said to be firmly nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(I – T)x – (I – T)y
∥∥, x, y ∈H .

A mapping T : H → H is said to be demi-closed at origin, if for any sequence {xn} ⊂ H
with xn ⇀ x∗ and limn→∞ ‖(I – T)xn‖ = , then x∗ = Tx∗.
It is easy to prove that if T :H → H is a firmly nonexpansive mapping, then T is demi-

closed at the origin.
A function f :H →R is called convex if

f
(
λx + ( – λ)y

) ≤ λf (x) + ( – λ)f (y), ∀λ ∈ (, ),∀x, y ∈H .

Lemma . Let T :H → H be a firmly nonexpansive mapping such that ‖(I – T)x‖ is a
convex function from H to R̄ = [–∞, +∞]. Let A :H → H be a bounded linear operator
and

f (x) :=


∥∥(I – T)Ax

∥∥, ∀x ∈H.

Then
(i) ∇f (x) = A∗(I – T)Ax, x ∈H.
(ii) ∇f is ‖A‖-Lipschitz, i.e., ‖∇f (x) –∇f (y)‖ ≤ ‖A‖‖x – y‖, x, y ∈H.

Proof (i) From the definition of f , we know that f is convex. First we prove that the limit

〈∇f (x), v
〉
= lim

h→+

f (x + hv) – f (x)
h

exists in R̄ := {–∞} ∪R∪ {+∞} and satisfies

〈∇f (x), v
〉 ≤ f (x + v) – f (x), ∀v ∈H.

If fact, if  < h ≤ h, then

f (x + hv) – f (x) = f
(
h
h

(x + hv) +
(
 –

h
h

)
x
)
– f (x).

Since f is convex and h
h

≤ , it follows that

f (x + hv) – f (x)≤ h
h

f (x + hv) +
(
 –

h
h

)
f (x) – f (x),

and hence that

f (x + hv) – f (x)
h

≤ f (x + hv) – f (x)
h

.

This shows that this difference quotient is increasing, therefore it has a limit in R̄ as
h→ +:

〈∇f (x), v
〉
= inf

h>

f (x + hv) – f (x)
h

= lim
h→+

f (x + hv) – f (x)
h

. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/36
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This implies that f is differential. Taking h = , (.) implies that

〈∇f (x), v
〉 ≤ f (x + v) – f (x).

Next we prove that

∇f (x) = A∗(I – T)Ax, x ∈H.

In fact, since

lim
h→+

f (x + hv) – f (x)
h

= lim
h→+

‖Ax + hAv – TA(x + hv)‖ – ‖(I – T)Ax‖
h

(.)

and
∥∥Ax + hAv – TA(x + hv)

∥∥ –
∥∥(I – T)Ax

∥∥

= ‖Ax‖ + h‖Av‖ + h
〈
A∗Ax, v

〉
+

∥∥TA(x + hv)
∥∥ – ‖Ax‖ – ‖TAx‖

– 
〈
Ax,TA(x + hv) – TAx

〉
– h

〈
A∗TA(x + hv), v

〉
. (.)

Substituting (.) into (.), simplifying and then letting h → + and taking the limit we
have

lim
h→+

f (x + hv) – f (x)
h

= lim
h→+

h{〈A∗Ax, v〉 – 〈A∗TA(x + hv), v〉}
h

=
〈
A∗(I – T)Ax, v

〉
, ∀v ∈H.

It follows from (.) that

∇f (x) = A∗(I – T)Ax, x ∈H.

(ii) From (i) we have

∥∥∇f (x) –∇f (y)
∥∥ =

∥∥A∗(I – T)Ax –A∗(I – T)Ay
∥∥

=
∥∥A∗[(I – T)Ax – (I – T)Ay

]∥∥
≤ ‖A‖‖Ax –Ay‖ ≤ ‖A‖‖x – y‖, x, y ∈H. �

Lemma . (See, for example, []) Let T : H → H be an operator. The following state-
ments are equivalent.

(i) T is firmly nonexpansive.
(ii) ‖Tx – Ty‖ ≤ 〈x – y,Tx – Ty〉, ∀x, y ∈H .
(iii) I – T is firmly nonexpansive.

Proof (i) ⇒ (ii): Since T is firmly nonexpansive, for all x, y ∈H we have

‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(I – T)x – (I – T)y
∥∥

= ‖x – y‖ – ‖x – y‖ – ‖Tx – Ty‖ + 〈x – y,Tx – Ty〉
= 〈x – y,Tx – Ty〉 – ‖Tx – Ty‖,

http://www.fixedpointtheoryandapplications.com/content/2014/1/36
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hence

‖Tx – Ty‖ ≤ 〈x – y,Tx – Ty〉, ∀x, y ∈H .

(ii) ⇒ (iii): From (ii), we know that for all x, y ∈H

∥∥(I – T)x – (I – T)y
∥∥ =

∥∥(x – y) – (Tx – Ty)
∥∥

= ‖x – y‖ – 〈x – y,Tx – Ty〉 + ‖Tx – Ty‖

≤ ‖x – y‖ – 〈x – y,Tx – Ty〉
=

〈
x – y, (I – T)x – (I – T)y

〉
.

This implies that I – T is firmly nonexpansive.
(iii) ⇒ (i): From (iii) we immediately know that T is firmly nonexpansive.
Let C be a nonempty closed convex subset of H . Recall that for every point x ∈H , there

exists a unique nearest point of C, denoted by PCx, such that ‖x – PCx‖ ≤ ‖x – y‖ for all
y ∈ C. Such a PC is called themetric projection fromH ontoC.We know that PC is a firmly
nonexpansive mapping from H onto C, i.e.,

‖PCx – PCy‖ ≤ 〈PCx – PCy,x – y〉, ∀x, y ∈H .

Further, for any x ∈H and z ∈ C, z = PCx if and only if

〈x – z, z – y〉 ≥ , ∀y ∈ C. (.)

Throughout this paper, let us assume that a bifunction F :H ×H → R satisfies the fol-
lowing conditions:
(A) F(x,x) = , ∀x ∈H ;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤ , ∀x, y ∈H ;
(A) limt↓ F(tz + ( – t)x, y)≤ F(x, y), ∀x, y, z ∈ H ;
(A) for each x ∈H , y �→ F(x, y) is convex and lower semicontinuous. �

Lemma . ([, ]) Let H be a Hilbert space and let F : H × H → R satisfy (A), (A),
(A), and (A). Then, for any r >  and x ∈ H , there exists z ∈H such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ H .

Furthermore, if

Trx =
{
z ∈H : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈H

}
,

then the following hold:
() Tr is single-valued;
() Tr is firmly nonexpansive;
() F(Tr) = �;
() � is closed and convex.

http://www.fixedpointtheoryandapplications.com/content/2014/1/36
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The following results play an important role in this paper.

Lemma . ([]) Let X be a real Hilbert space, then we have

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈ X.

Lemma . ([]) Let {xn} and {yn} be bounded sequences in a Banach space X . Let {βn}
be a sequence in [, ] satisfying  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that

xn+ = ( – βn)yn + βnxn

for all integer n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . ([]) Let {an} be a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + γnσn, n = , , , . . . ,

where {γn} is a sequence in (, ), and {σn} is a sequence in R such that
(i)

∑∞
n= γn =∞;

(ii) lim supn→∞ σn ≤ , or
∑∞

n= |γnσn| < ∞.
Then limn→∞ an = .

3 Main results
We are now in a position to prove the following theorem.

Theorem . Let H,H be two real Hilbert spaces, F :H ×H →R be a bifunction satis-
fying (A), (A), (A), and (A). Let A :H →H be a bounded linear operator, S :H →H

be a firmly nonexpansive mapping, and let T :H →H be a firmly nonexpansive mapping
such that ‖(I –T)x‖ is a convex function from H to R. Assume that C := F(S)∩ � �= ∅ and
Q := F(T) �= ∅. Let u ∈H and {xn} be the sequence generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈H chosen arbitrarily,

xn+ = βnxn + ( – βn)yn,

F(yn,x) + 
λn

〈x – yn, yn – zn〉 ≥ , ∀x ∈H,

zn = S(αnu + ( – αn)(xn – ξn∇f (xn))),

(.)

where

f (xn) =


∥∥(I – T)Axn

∥∥, ∇f (xn) = A∗(I – T)Axn �=  ∀n≥ ,

ξn =
ρnf (xn)

‖∇f (xn)‖ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/36
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If the solution set � of SPF (.) is not empty, and the sequences {ρn} ⊂ (, ), {αn}, {βn} ⊂
(, ) satisfy the following conditions:

(i) limn→∞ αn = ,
∑∞

n= αn =∞;
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iii) λn ∈ (a,b)⊂ (, +∞) and limn→∞(λn+ – λn) = ,

then the sequence {xn} converges strongly to P�u.

Proof Since the solution set � of EP and the solution set of SPF (.) are both closed and
convex, � ( �= ∅) is closed and convex. Thus, the metric projection P� is well defined.
Letting p = P�u, it follows from Lemma . that yn = Tλnzn and

‖yn – p‖ = ‖Tλnzn – Tλnp‖ ≤ ‖zn – p‖. (.)

Observing that S is firmly nonexpansive, we have

‖zn – p‖ = ∥∥S(αnu + ( – αn)
(
xn – ξn∇f (xn)

))
– p

∥∥
≤ ∥∥αn(u – p) + ( – αn)

(
xn – ξn∇f (xn) – p

)∥∥
≤ αn‖u – p‖ + ( – αn)

∥∥xn – ξn∇f (xn) – p
∥∥. (.)

Since p ∈ � ⊂ C,∇f (p) = . Observe that I –T is firmly nonexpansive, from Lemma .(ii)
we have

〈∇f (xn),xn – p
〉
=

〈
(I – T)Axn,Axn –Ap

〉
≥ ∥∥(I – T)Axn

∥∥ = f (xn). (.)

This implies that

∥∥xn – ξn∇f (xn) – p
∥∥ = ‖xn – p‖ + ∥∥ξn∇f (xn)

∥∥ – ξn
〈∇f (xn),xn – p

〉
≤ ‖xn – p‖ + ξ 

n
∥∥∇f (xn)

∥∥ – ξnf (xn)

= ‖xn – p‖ – ρn( – ρn)
f (xn)

‖∇f (xn)‖
≤ ‖xn – p‖. (.)

Substituting (.) into (.), we get

‖zn – p‖ ≤ αn‖u – p‖ + ( – αn)‖xn – p‖. (.)

Thus, from (.) and (.) we have

‖xn+ – p‖ = ∥∥βnxn + ( – βn)yn – p
∥∥

≤ βn‖xn – p‖ + ( – βn)‖yn – p‖
≤ βn‖xn – p‖ + ( – βn)‖zn – p‖
≤ (

 – αn( – βn)
)‖xn – p‖ + αn( – βn)‖u – p‖.

http://www.fixedpointtheoryandapplications.com/content/2014/1/36
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It turns out that

‖xn+ – p‖ ≤max
{‖xn – p‖,‖u – p‖}.

By induction, we have

‖xn – p‖ ≤max
{‖x – p‖,‖u – p‖}.

This implies that the sequence {xn} is bounded. From (.) and (.) we know that {yn}
and {zn} both are bounded.
From Lemma . and (.), we have

‖zn – p‖ = ∥∥S(αnu + ( – αn)
(
xn – ξn∇f (xn)

))
– p

∥∥

≤ ∥∥αn(u – p) + ( – αn)
(
xn – ξn∇f (xn) – p

)∥∥

≤ ( – αn)
∥∥xn – ξn∇f (xn) – p

∥∥ + αn〈u – p, zn – p〉
≤ ( – αn)‖xn – p‖ + αn〈u – p, zn – p〉

– ( – αn)ρn( – ρn)
f (xn)

‖∇f (xn)‖ . (.)

Therefore, from Lemma . and (.), (.) we have

‖xn+ – p‖ = ∥∥βnxn + ( – βn)yn – p
∥∥

≤ βn‖xn – p‖ + ( – βn)‖zn – p‖

≤ βn‖xn – p‖ + ( – βn)( – αn)‖xn – p‖ + αn( – βn)〈u – p, zn – p〉

– ( – αn)( – βn)ρn( – ρn)
f (xn)

‖∇f (xn)‖
= ‖xn – p‖ – αn( – βn)‖xn – p‖ + αn( – βn)〈u – p, zn – p〉

– ( – αn)( – βn)ρn( – ρn)
f (xn)

‖∇f (xn)‖ . (.)

On the other hand, without loss of generality, wemay assume that there is a constant σ > 
such that

( – αn)( – βn)ρn( – ρn) > σ , ∀n≥ .

Setting sn = ‖xn – p‖, we get the following inequality:

sn+ – sn + αn( – βn)sn +
σ f (xn)

‖∇f (xn)‖ ≤ αn( – βn)〈u – p, zn – p〉. (.)

Now, we prove sn →  by employing the technique studied by Maingé []. For the
purpose we consider two cases.

http://www.fixedpointtheoryandapplications.com/content/2014/1/36
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Case : {sn} is eventually decreasing, i.e., there exists a sufficient large positive integer
k ≥  such that sn > sn+ holds for all n≥ k. In this case, {sn} must be convergent, and from
(.) it follows that

σ f (xn)
‖∇f (xn)‖ ≤ (sn – sn+) + αn( – βn)M, (.)

where M is a constant such that M ≥ ‖zn – p‖‖u – p‖ for all n ∈ N. Using the condition
(i) and (.), we have

f (xn)
‖∇f (xn)‖ →  (n→ ∞). (.)

Moreover, it follows from Lemma .(ii) that for all n ∈N

∥∥∇f (xn)
∥∥ =

∥∥∇f (xn) –∇f (p)
∥∥ ≤ ‖A‖‖xn – p‖.

This implies that {‖∇f (xn)‖} is bounded. From (.) it yields f (xn) → , namely

∥∥(I – T)Axn
∥∥ → . (.)

Furthermore, we have

lim
n→∞ ξn = . (.)

For any x∗ ∈ wω(xn), and if {xnk } is a subsequence of {xn} such that xnk ⇀ x∗ ∈H, then

Axnk ⇀ Ax∗. (.)

On the other hand, from (.), we have

∥∥(I – T)Axnk
∥∥ → . (.)

Since T is demi-closed at origin, from (.) and (.) we have Ax∗ ∈ F(T), i.e., Ax∗ ∈Q.
In order to prove x∗ ∈ C = F(S) ∩ �, we need to prove limn→∞ ‖xn+ – xn‖ =  and

limn→∞ ‖xn – zn‖ = . In fact, from (.) we have

F(yn,x) +

λn

〈x – yn, yn – zn〉 ≥ , ∀x ∈H.

Taking x = yn+, we get

F(yn, yn+) +

λn

〈yn+ – yn, yn – zn〉 ≥ .

Similarly, we also have

F(yn+, yn) +


λn+
〈yn – yn+, yn+ – zn+〉 ≥ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/36
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Adding up the above two inequalities, we get

F(yn, yn+) + F(yn+, yn) +
〈
yn+ – yn,

yn – zn
λn

–
yn+ – zn+

λn+

〉
≥ .

From (A), we have
〈
yn+ – yn,

yn – zn
λn

–
yn+ – zn+

λn+

〉
≥ .

Multiplying the above inequality by λn and simplifying, we have

〈
yn+ – yn, yn – yn+ + yn+ – zn –

λn

λn+
(yn+ – zn+)

〉
≥ .

Hence we have

‖yn+ – yn‖ ≤
〈
yn+ – yn, yn+ – zn –

λn

λn+
(yn+ – zn+)

〉

=
〈
yn+ – yn, zn+ – zn +

(
 –

λn

λn+

)
(yn+ – zn+)

〉

≤ ‖yn+ – yn‖
(

‖zn+ – zn‖ +
∣∣∣∣ – λn

λn+

∣∣∣∣ · ‖yn+ – zn+‖
)

and hence

‖yn+ – yn‖ ≤ ‖zn+ – zn‖ +
∣∣∣∣ – λn

λn+

∣∣∣∣‖yn+ – zn+‖

≤ ‖zn+ – zn‖ + 
a
|λn+ – λn| · ‖yn+ – zn+‖.

By (.) we have

‖zn+ – zn‖ =
∥∥S(αn+u + ( – αn+)

(
xn+ – ξn+∇f (xn+)

))
– S

(
αnu + ( – αn)

(
xn – ξn∇f (xn)

))∥∥
≤ ∥∥(αn+ – αn)u

+ ( – αn+)
{(
xn+ – ξn+∇f (xn+)

)
–

(
xn – ξn∇f (xn)

)}
– (αn+ – αn)

(
xn – ξn∇f (xn)

)∥∥
≤ ( – αn+)‖xn+ – xn‖ +Nn ≤ ‖xn+ – xn‖ +Nn, (.)

where

Nn = |αn+ – αn| · ‖u‖ + ( – αn+)
(
ξn+

∥∥∇f (xn+)
∥∥ + ξn

∥∥∇f (xn)
∥∥)

+ |αn+ – αn| ·
∥∥xn – ξn∇f (xn)

∥∥ →  (n→ ∞). (.)

This implies that

‖yn+ – yn‖ ≤ ‖xn+ – xn‖ + 
a
|λn+ – λn| · ‖yn+ – zn+‖ +Nn.
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It follows that

‖yn+ – yn‖ – ‖xn+ – xn‖ ≤ 
a
|λn+ – λn| · ‖yn+ – zn+‖ +Nn.

In view of condition (iii) and (.) we get

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

By Lemma ., we obtain

lim
n→∞‖yn – xn‖ = . (.)

Consequently

‖xn+ – xn‖ =
∥∥βnxn + ( – βn)yn – xn

∥∥
= ( – βn)‖yn – xn‖ →  (n→ ∞). (.)

Since S is firmly nonexpansive, it follows from (.) that

‖zn – p‖ = 
∥∥S(αnu + ( – αn)

(
xn – ξn∇f (xn)

))
– Sp

∥∥

≤ 
〈
αnu + ( – αn)

(
xn – ξn∇f (xn)

)
– p, zn – p

〉
=

∥∥αnu + ( – αn)
(
xn – ξn∇f (xn)

)
– p

∥∥ + ‖zn – p‖

–
∥∥αnu + ( – αn)

(
xn – ξn∇f (xn)

)
– p – zn + p

∥∥

=
∥∥αn(u – p) + ( – αn)

(
xn – ξn∇f (xn) – p

)∥∥ + ‖zn – p‖

–
∥∥αn(u – zn) + ( – αn)

(
xn – ξn∇f (xn) – zn

)∥∥

≤ ( – αn)‖xn – p‖ + ‖zn – p‖ – ‖xn – zn‖ +Mn,

where

Mn := αn‖u – p‖ + ( – αn)
∥∥ξn∇f (xn)

∥∥ – ( – αn)ξn
〈
xn – p,∇f (xn)

〉
– αn‖u – zn‖ – ( – αn)

{∥∥ξn∇f (xn)
∥∥ – 

〈
xn – zn, ξn∇f (xn)

〉}
+ αn‖xn – zn‖ + αn( – αn)

∥∥xn – u – ξn∇f (xn)
∥∥

→  (as n→ ∞).

Therefore we have

‖zn – p‖ ≤ ‖xn – p‖ – ‖xn – zn‖ +Mn.

This together with (.) shows that

‖xn+ – p‖ ≤ βn‖xn – p‖ + ( – βn)‖zn – p‖

≤ ‖xn – p‖ – ( – βn)‖xn – zn‖ + ( – βn)Mn.

http://www.fixedpointtheoryandapplications.com/content/2014/1/36
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Then we obtain

( – βn)‖xn – zn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + ( – βn)Mn

= sn – sn+ + ( – βn)Mn.

Therefore, we get

lim
n→∞‖xn – zn‖ = . (.)

By virtue of (.), we have

lim
n→∞‖yn – zn‖ = . (.)

Now, we turn to a proof that x∗ ∈ C = F(S)∩ �. For this purpose, we denote

vn := αnu + ( – αn)
(
xn – ξn∇f (xn)

)
.

In view of condition (i) and (.) we have

‖vn – xn‖ =
∥∥αnu + ( – αn)

(
xn – ξn∇f (xn)

)
– xn

∥∥
=

∥∥αn(u – xn) – ( – αn)ξn∇f (xn)
∥∥

≤ αn‖u – xn‖ + ( – αn)ξn
∥∥∇f (xn)

∥∥ → . (.)

Since S is firmly nonexpansive (and so it is also nonexpansive), it follows from Lemma .
that

‖zn+ – p‖ = ‖Svn+ – Sxn + Sxn – Sp‖

≤ ‖Sxn – Sp‖ + 〈Svn+ – Sxn+ + Sxn+ – Sxn, zn+ – p〉
≤ ‖xn – p‖ – ∥∥(I – S)xn

∥∥ + 
(‖vn+ – xn+‖ + ‖xn+ – xn‖

)‖zn+ – p‖.

Thus, we have

∥∥(I – S)xn
∥∥

≤ ‖xn – p‖ – ‖zn+ – p‖ + 
(‖vn+ – xn+‖ + ‖xn+ – xn‖

)‖zn+ – p‖
≤ ‖xn – p‖ – (‖zn+ – xn+‖ – ‖xn+ – p‖)
+ 

(‖vn+ – xn+‖ + ‖xn+ – xn‖
)‖zn+ – p‖

≤ ‖xn – p‖ – ‖xn+ – p‖ – ‖zn+ – xn+‖ + ‖xn+ – p‖ · ‖zn+ – xn+‖
+ 

(‖vn+ – xn+‖ + ‖xn+ – xn‖
)‖zn+ – p‖

= sn – sn+ – ‖zn+ – xn+‖ + ‖xn+ – p‖ · ‖zn+ – xn+‖
+ 

(‖vn+ – xn+‖ + ‖xn+ – xn‖
)‖zn+ – p‖. (.)

It follows from (.), (.), and (.) that ‖(I – S)xn‖ → . In view of xnk ⇀ x∗ and that
S is demi-closed at origin, we get x∗ ∈ F(S).

http://www.fixedpointtheoryandapplications.com/content/2014/1/36
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On the other hand, from xnk ⇀ x∗ and (.), we obtain ynk ⇀ x∗. From (.), for any
x ∈H, we have

F(yn,x) +

λn

〈x – yn, yn – zn〉 ≥ .

From (A), we have


λn

〈x – yn, yn – zn〉 ≥ F(x, yn), ∀x ∈H.

Replacing n by nk , we have

〈
x – ynk ,

ynk – znk
λnk

〉
≥ F(x, ynk ), ∀x ∈H.

Since ‖ ynk –znk
λnk

‖ →  and ynk ⇀ x∗, from (A) we have

F
(
x,x∗) ≤ , ∀x ∈H. (.)

Put wt = tx + ( – t)x∗ for all t ∈ (, ] and x ∈H. Then we get wt ∈H. So, from (.) we
have

F
(
wt ,x∗) ≤ , ∀x ∈H.

From (A), we have

 = F(wt ,wt) ≤ tF(wt ,x) + ( – t)F
(
wt ,x∗)

≤ tF(wt ,x),

and hence F(wt ,x)≥ . Letting t → , we have

F
(
x∗,x

) ≥ , ∀x ∈H.

This implies x∗ ∈ �. Consequently, x∗ ∈ C, and hence ww(xn) ⊂ �. Furthermore, in view
of (.) we have

lim sup
n→∞

〈u – p, zn – p〉 = lim sup
n→∞

〈u – p,xn – p〉

= max
w∈ww(xn)

〈u – P�u,w – P�u〉 ≤ .

On the other hand, from (.), we have

sn+ ≤ (
 – αn( – βn)

)
sn + αn( – βn)〈u – p, zn – p〉. (.)

Applying Lemma . to (.), from the condition (i) we obtain sn → , that is, xn → p.

http://www.fixedpointtheoryandapplications.com/content/2014/1/36
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Case : {sn} is not eventually decreasing, that is, we can find a positive integer n such
that sn ≤ sn+. Now we define

Un := {n ≤ k ≤ n : sk ≤ sk+}, n > n.

It easy to see that Un is nonempty and satisfies Un ⊆Un+. Let

ψ(n) :=maxUn, n > n.

It is clear that ψ(n) → ∞ as n → ∞ (otherwise, {sn} is eventually decreasing). It is also
clear that sψ(n) ≤ sψ(n)+ for all n > n. Moreover, we prove that

sn ≤ sψ(n)+, ∀n > n. (.)

In fact, if ψ(n) = n, then the inequality (.) is trivial; if ψ(n) < n, from the definition of
ψ(n), there exists some i ∈N such that ψ(n) + i = n, we deduce that

sψ(n)+ > sψ(n)+ > · · · > sψ(n)+i = sn,

and the inequality (.) holds again. Since sψ(n) ≤ sψ(n)+ for all n > n, it follows from
(.) that

σ f (xψ(n))
‖∇f (xψ(n))‖ ≤ αψ(n)( – βψ(n))M → .

Noting that {‖∇f (xψ(n))‖} is bounded, we get f (xψ(n)) → . By the same argument to the
proof in case , we have ww(xψ(n)) ⊂ �. From (.) we have

lim
n→∞‖xψ(n) – xψ(n)+‖ = . (.)

Furthermore, in view of (.), we can deduce that

lim sup
n→∞

〈u – p, zψ(n) – p〉

= lim sup
n→∞

〈u – p,xψ(n) – p〉

= max
w∈ww(xψ(n))

〈u – P�u,w – P�u〉 ≤ . (.)

Since sψ(n) ≤ sψ(n)+, it follows from (.) that

sψ(n) ≤ 〈u – p, zψ(n) – p〉, n > n. (.)

Combining (.) and (.) we have

lim sup
n→∞

sψ(n) ≤ , (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/36
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and hence sψ(n) → , which together with (.) implies that

√sψ(n)+ ≤ ∥∥(xψ(n) – p) + (xψ(n)+ – xψ(n))
∥∥

≤ √sψ(n) + ‖xψ(n)+ – xψ(n)‖ → .

Noting the inequality (.), this shows that sn → , that is, xn → p. This completes the
proof of Theorem .. �
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