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The main purpose of this paper is to study Browder type convergence theorems for a
nonexpansive semigroup with geometric approaches in a CAT(κ ) space. Besides, we
determine a necessary and sufficient condition for convergence of a Browder type
iteration associated to a uniformly asymptotically regular nonexpansive semigroup on
the unit sphere in an infinite-dimensional Hilbert space.
MSC: 47H20; 47H10

Keywords: nonexpansive mapping; asymptotically regular; uniformly asymptotically
regular; �-convergence; CAT(κ ) space

1 Introduction
Let (X,d) be a metric space, C a closed convex subset of X and T : C → C a mapping.
Recall that T is nonexpansive on C if d(Tx,Ty) ≤ d(x, y), for all x, y ∈ C. We denote by
F(T) the fixed point set of the mapping T . A one-parameter family S = {T(t) : t ≥ } of
self-mappings of C is called a strongly continuous nonexpansive semigroup on C if the
following conditions are satisfied:

(i) for each t ≥ , T(t) is a nonexpansive mapping on C;
(ii) T()x = x, for all x ∈ C;
(iii) T(s + t) = T(s) ◦ T(t), for all s, t ≥ ;
(iv) for each x ∈ C, the mapping t �→ T(t)x from [,∞) into C is continuous.

Let F(S) denote the common fixed point set of all mappings inS.
There have been considerably many interesting results of iterative methods for approxi-

mating fixed points of nonexpansive mappings, nonexpansive semigroups, and their gen-
eralizations which solve some variational inequalities problems due to their various ap-
plications in several physical problems, such as in operations research, economics, and
engineering design; see, e.g., [–] and the references therein.
Suppose that X is a real Hilbert space and u is an arbitrary point of X. If T is nonexpan-

sive onC, then for each α ∈ (, ) there exists a unique xα ∈ C such that xα = αu+(–α)Txα

because themapping x �→ αu+(–α)Tx is a contraction. In , Browder [] was the pio-
neer to consider an implicit scheme and prove the following strong convergence theorem
of this algorithm in a Hilbert space.

Theorem . Let C be a bounded closed convex subset of a Hilbert space and T a nonex-
pansive mapping on C. Let u be an arbitrary point of C and define xα ∈ C by
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xα = αu + ( – α)Txα , for α ∈ (, ).

Then as α → , {xα} converges strongly to a point of F(T) nearest to u.

The extension work of Browder’s type convergence theorems has been tremendously
studied for not only one single nonexpansivemapping, but,most significantly, a semigroup
of nonexpansive mappings; see, e.g., [, ] and the references therein.
This paper is devoted to studying Browder’s type iterations for a nonexpansive semi-

group in a CAT(κ) space, where κ ∈R, which is a specific type of metric space. Intuitively,
triangles in a CAT(κ) space are ‘slimmer’ than corresponding ‘model triangles’ in a stan-
dard space of constant curvature κ (see Section ). Complete CAT() spaces are often
called Hadamard spaces. A few recent new convergence results of classical iterations on
CAT(κ) spaces with κ >  are obtained; see, e.g., [–] and the references therein.
In [], Dhompongsa et al. extended Suzuki’s result [, Theorem ] on common fixed

points of a nonexpansive semigroup in a Hilbert space to a complete CAT() space.

Theorem . ([, Theorem .]) Let C be a bounded closed convex subset of a CAT()
space, S = {T(t) : t ≥ } a strongly continuous nonexpansive semigroup on C, and two
sequences {αn} ⊂ (, ), {tn} ⊂ (,∞) such that limn→∞ tn = limn→∞ αn/tn = . Choose
arbitrarily a point x ∈ C and for each n ∈ N let xn be the fixed point of the mapping
x �→ αnx ⊕ ( – αn)T(tn)x. Then F(S) �= ∅ and {xn} converges strongly to a point of F(S)
nearest to x.

In , Acedo and Suzuki [] proved a Browder type convergence theorem for uni-
formly asymptotically regular (UAR for short) nonexpansive semigroups (see Section )
in Hilbert spaces under a weaker condition on {αn} and {tn} than that in Theorem ..

Theorem . ([, Theorem .]) Let C be a closed convex subset of a Hilbert space,
S = {T(t) : t ≥ } a UAR and strongly continuous nonexpansive semigroup on C such
that F(S) �= ∅, and two sequences {αn} ⊂ (, ), {tn} ⊂ [,∞) such that limn→∞ αn =
limn→∞ αn/tn = . Fix x ∈ C and define a sequence {xn} in C by

xn = αnx + ( – αn)T(tn)xn.

Then {xn} converges strongly to a point of F(S) nearest to x.

The preceding two theorems lead naturally to the question of whether or not they can
be extended to a CAT(κ) space with κ > . The purpose of this article is to investigate this
question with the geometric approaches in CAT(κ) spaces.
This paper is organized as follows. In Section  we recall the definition of geodesic met-

ric spaces and summarize some useful lemmas and the main properties of CAT(κ) spaces.
In Section  we present some technical results about �-convergence of a sequence in a
completeCAT() space. In Section we establish ourmain results (Theorems ., ., .)
of Browder’s iterations for nonexpansive semigroups in CAT(κ) spaces and conclude that
Theorems . and . can be generalized to CAT(κ) spaces under the same respective con-
ditions on the coefficients {αn} and {tn}. It is noteworthy that, however, without the UAR
assumption, the sequence {xn} established in Theorem . is not necessarily convergent
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to the nearest point of F(S) to x if limn→∞ tn = t̂ ∈ (,∞] even when limn→∞ αn =  (and
therefore limn→∞ αn/tn = ); see Example .. Furthermore, we determine a necessary and
sufficient condition for a Browder type convergence theorem associated to a nonexpansive
semigroup on the unit sphere in an infinite-dimensional Hilbert space. We also propose
an open problem in Section .

2 Preliminaries
Let (X,d) be a metric space. For any subset E of X and x ∈ X, the diameter of E and the
distance from x to E are defined, respectively, by

diamE = sup
{
d(x, y) : x, y ∈ E

}
,

d(x,E) = inf
{
d(x, y) : y ∈ E

}
.

We always denote the open ball and the closed ball centered at xwith radius r >  by B(x, r)
and B(x, r), respectively.
Let C be a closed convex subset of X and let S = {T(t) : t ≥ } be a family of self-

mappings of C. ThenS is called
(i) asymptotically regular on C if for any h≥  and any x ∈ C,

lim
t→∞d

(
T(h)T(t)x,T(t)x

)
= ;

(ii) uniformly asymptotically regular (in short UAR) on C if for any h≥  and any
bounded subset D of C,

lim
t→∞ sup

x∈D
d
(
T(h)T(t)x,T(t)x

)
= .

For x, y ∈ X, a geodesic path joining x to y (or a geodesic from x to y) is an isometric
mapping γ : [a,b] ⊂ R → X such that γ (a) = x, γ (b) = y, i.e., d(γ (t),γ (t′)) = |t – t′|, for all
t, t′ ∈ [a,b]. Therefore d(x, y) = b – a. The image of γ is called a geodesic (segment) from
x to y and we shall denote a definite choice of this geodesic segment by [x, y]. We remark
that composing γ with a translation (this is still an isometry), one can always choose the
interval [a,b] to be [,�], where � = b – a. A point z = γ (t) in the geodesic [x, y] will be
written as z = ( – λ)x⊕ λy, where λ = (t – a)/(b – a), and so d(z,x) = λd(x, y) and d(z, y) =
( – λ)d(x, y).
Let r > . The metric space (X,d) is said to be
(i) a geodesic (metric) space if any two points in X are joined by a geodesic;
(ii) uniquely geodesic if there is exactly one geodesic joining x to y for all x, y ∈ X ;
(iii) r-geodesic space if any two points x, y ∈ X with d(x, y) < r are joined by a geodesic;
(iv) r-uniquely geodesic if any two points x, y ∈ X with d(x, y) < r are joined by a unique

geodesic in X .
A subset C of X is convex if every pair of points x, y ∈ C can be joined by a geodesic in
X and the image of every such geodesic is contained in C. If this condition holds for all
points x, y ∈ C with d(x, y) < r, then C is said to be r-convex.
The n-dimensional sphere Sn is the set {x = (x, . . . ,xn+) ∈ R

n+ : (x | x) = }, where (· | ·)
denote the Euclidean scalar product. It is endowed with the following metric: Let dSn :
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S
n × S

n →R be the function that assigns to each pair (A,B) ∈ S
n × S

n the unique number
d(A,B) ∈ [,π ] such that

cosdSn (A,B) = (A | B).

Then dSn is a metric [, I..].

Definition . Given a real number κ , we denote byMn
κ the following metric spaces:

(i) if κ = , thenMn
 is the Euclidean space Rn;

(ii) if κ > , thenMn
κ is obtained from the sphere Sn by multiplying the distance

function by /
√

κ ;
(iii) if κ < , thenMn

κ is obtained from the sphere Hn by multiplying the distance
function by /

√
–κ , where Hn is the hyperbolic n-space.

It is well known that Mn
κ is a geodesic metric space. If κ ≤ , then Mn

κ is uniquely
geodesic. If κ > , then Mn

κ is π/
√

κ-uniquely geodesic, and any open ball (respectively,
closed) ball of radius ≤ π/(

√
κ) (respectively, <π/(

√
κ)) in X is convex [, I..]. The

diameter ofMn
κ will be denoted Dκ and thus Dκ is π/

√
κ if κ > , and ∞ otherwise.

Given two distinct pointsA,B ∈ S
n with d(A,B) = � < π there is a natural way to parame-

terize a unique geodesic joiningA to B: consider the path c(t) = (cos t)A+(sin t)u, t ∈ [,�],
where the initial vector u ∈R

n+ is the unit vector in the direction of B– (A | B)A. We shall
refer to the image of c as a minimal great arc joining A to B.
The spherical angle between two minimal great arcs issuing from a point of Sn, with the

initial vectors u and v, say, is the unique numberα ∈ [,π ] such that cosα = (u | v). A spher-
ical triangle � in S

n consists of a choice of three distinct points (its vertices) A,B,C ∈ S
n,

and threeminimal great arcs (its sides), one joining each other of vertices. The vertex angle
at C is defined to be the spherical angle between the sides of � joining C to A and C to B.

Proposition . (The Spherical Law of Cosines [, I..]) Let a geodesic triangle in Mn
κ

(κ > ) have sides a, b, c and angles α, β , γ at the vertices opposite to the sides of length a,
b, c, respectively. Then

cos(
√

κc) = cos(
√

κa) cos(
√

κb) + sin(
√

κa) sin(
√

κb) cosγ .

In particular, fixing a, b and κ , c is a strictly increasing function of γ , varying from |a – b|
to a + b as γ varies from  to π .

A geodesic triangle � in a metric space X consists of three points p,q, r ∈ X, its vertices,
and a choice of three geodesic segments [p,q], [q, r], [r,p] joining them, its sides. Such a
geodesic trianglewill be denoted�([p,q], [q, r], [r,p]) or (less accurately ifX is not uniquely
geodesic) �(p,q, r). If a point x ∈ X lies in the union of [p,q], [q, r] and [r,p], then we write
x ∈ �.
A triangle� =�(p̄, q̄, r̄) inM

κ is called a comparison triangle for� =�([p,q], [q, r], [r,p])
in X if dM

κ
(p̄, q̄) = d(p,q), dM

κ
(q̄, r̄) = d(q, r) and dM

κ
(r̄, p̄) = d(r,p). Such a triangle � ⊂ M

κ

always exists if the perimeter d(p,q) + d(q, r) + d(r,p) of � is less than Dκ ; it is unique up
to an isometry ofM

κ [, I..]. A point x̄ ∈ [q̄, r̄] is called a comparison point for x ∈ [q, r]
if dM

κ
(q̄, x̄) = d(q,x).

http://www.fixedpointtheoryandapplications.com/content/2014/1/44
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A geodesic triangle � in X is said to satisfy the CAT(κ) inequality if, given a comparison
triangle � ⊂M

κ for �, for all x, y ∈ �,

d(x, y) ≤ dM
κ
(x̄, ȳ),

where x̄, ȳ ∈ � are respective comparison points of x, y.

Definition . If κ ≤ , then X is called a CAT(κ) space if X is a geodesic space all of
whose geodesic triangles satisfy the CAT(κ) inequality.
If κ > , then X is called a CAT(κ) space if X is Dκ -geodesic and all geodesic triangles in

X of perimeter less than Dκ satisfy the CAT(κ) inequality.

In particular, Hilbert spaces are CAT(). A CAT(κ) space is a CAT(κ ′) space for every
κ ′ ≥ κ . A CAT(κ) space X is (Dκ-)uniquely geodesic (if κ > ) and any open (respectively,
closed) ball of radius ≤Dκ/ (respectively, <Dκ/) in X is convex [, II..].

Lemma . Let (X,d) be a CAT(κ) space and let α,β ∈ [, ]. Then
(i) [, II.. Exercise .()] for p ∈ X and x, y ∈ B(p,Dκ/), we have

d
(
αx⊕ ( – α)y,p

) ≤ αd(x,p) + ( – α)d(y,p);

(ii) for x, y ∈ X , we have

d
(
αx⊕ ( – α)y,βx⊕ ( – β)y

)
= |α – β|d(x, y);

(iii) [, Lemma .] if κ > , for x, y, z ∈ X with max{d(x, y),d(y, z),d(x, z)} <M ≤Dκ/,
we have

d
(
αx⊕ ( – α)y,αx⊕ ( – α)z

) ≤ sin[( – α)M]
sinM

d(y, z).

Let p, q, r be three distinct points of X with d(p,q) + d(q, r) + d(r,p) < Dκ . The κ-
comparison angle between q and r at p, denoted∠(κ)

p (q, r), is the angle at p̄ in a comparison
triangle �(p̄, q̄, r̄) ⊂M

κ for �(p,q, r).
Let γ : [,a]→ X and let γ ′ : [,a′]→ X be two geodesic paths with γ () = γ ′(). Given

t ∈ (,a] and t′ ∈ (,a′], we consider the comparison triangle �(γ (),γ (t),γ ′(t′)) and the
κ-comparison angle∠(κ)

γ ()(γ (t),γ
′(t′)). The (Alexandrov) angle or the upper angle between

the geodesic paths γ and γ ′ is the number ∠(γ ,γ ′) ∈ [,π ] defined by

∠
(
γ ,γ ′) = lim sup

t,t′→
∠(κ)

γ ()
(
γ (t),γ ′(t′)) = lim

ε→
sup

<t,t′<ε

∠(κ)
γ ()

(
γ (t),γ ′(t′)).

IfX is uniquely geodesic, p �= q and p �= r, the angle of�(p,q, r) inX at p is the (Alexandrov)
angle between the geodesic segments [p,q] and [p, r] issuing from p and is denoted∠p(q, r).

Proposition . ([, I.., . and II..]) Let X be a metric space and let γ , γ ′, γ ′′ be
three geodesics issuing from a common point. Then

(i) ∠(γ ,γ ′) =∠(γ ′,γ );

http://www.fixedpointtheoryandapplications.com/content/2014/1/44
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(ii) ∠(γ ,γ ′)≤∠(γ ,γ ′′) +∠(γ ′,γ ′′);
(iii) if γ : [–a,a]→ X is a geodesic with a > , and if γ ′,γ ′′ : [,a]→ X are defined by

γ ′(t) = γ (–t) and γ ′′(t) = γ (t), then ∠(γ ′,γ ′′) = π .

3 Basic properties and�-convergence
This section contains a number of primary results in [] which are crucial to the study of
our problem. The following proposition states very useful properties of the metric projec-
tion in a complete CAT() space.

Proposition . ([, Proposition .]) Let X be a complete CAT() space and let C ⊂ X
be nonempty closed and π -convex. Suppose that x ∈ X such that d(x,C) < π/. Then the
following are satisfied:

(i) There exists a unique point PCx ∈ C such that d(x,PCx) = d(x,C).
(ii) If x /∈ C and y ∈ C with y �= PCx, then ∠PCx(x, y) ≥ π/.
(iii) If diam(X)≤ π , then for any y ∈ C,

d(PCx,PCy) = d(PCx, y) ≤ d(x, y).

The mapping PC of X onto C in Proposition . is called the metric projection.
The next result shows the existence property of fixed points for a nonexpansivemapping.

Proposition . ([, Theorem .]) Let X be a complete CAT() space such that diamX <
π/. Then every nonexpansive mapping T : X → X has at least one fixed point.

The rest of this section is devoted to presenting several closely related characterizations
of �-convergence. For this purpose, we start with some basic definitions of an asymptotic
radius and an asymptotic center. Let {xn} be a bounded sequence in a complete CAT()
space X. For x ∈ X and C ⊂ X, let r(x, {xn}) = lim supn→∞ d(x,xn). The asymptotic radius
r({xn}) of {xn} is given by

r
({xn}) = inf

{
r
(
x, {xn}

)
: x ∈ X

}
;

the asymptotic radius rC({xn}) with respective to C of {xn} is given by

rC
({xn}) = inf

{
r
(
x, {xn}

)
: x ∈ C

}
;

the asymptotic center A({xn}) of {xn} is given by the set

A
({xn}) = {

x ∈ X : r
(
x, {xn}

)
= r

({xn})};
the asymptotic center AC({xn}) with respective to C of {xn} is given by the set

AC
({xn}) = {

x ∈ C : r
(
x, {xn}

)
= rC

({xn})}.
Proposition . ([, Proposition .]) Let X be a complete CAT() space and C ⊂ X
nonempty closed and π -convex. If {xn} be a sequence in X such that rC({xn}) < π/, then
AC({xn}) consists of exactly one point.

http://www.fixedpointtheoryandapplications.com/content/2014/1/44
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Definition . A sequence {xn} in X is said to �-converge to x ∈ X if x is the unique
asymptotic center of every subsequence of {xn}. In this case, we write �-limn→∞ xn = x
and x is called the �-limit of {xn}.

The next result is an immediate consequence of the preceding proposition.

Proposition . ([, Corollary .]) Let X be a completeCAT() space and {xn} a sequence
in X. If r({xn}) < π/, then {xn} has a �-convergent subsequence.

4 Main results
Since the validity of all our results, including the proofs as well, on CAT() spaces can
be restored on any CAT(κ) space with κ >  by rescaling without major changes, we will
pay our attention to CAT() spaces. In addition, when we deal with a CAT(κ) space, the
hypothesis d(x,F(T)) < π/ for each theorem in this section is replaced by d(x,F(T)) <
Dκ/ and so can be dropped if κ ≤  (in this case, Dκ = ∞; refer to Section  for the
definition).
To verify our result, the following basic property of asymptotical regularity is required;

also cf. [, Proposition .] in a topological vector space.

Lemma . Let C be a subset of a metric space (X,d) and letS = {T(t) : t ≥ } be a family
of self-mappings of C such that T(s + t) = T(s) ◦ T(t), for all s, t ≥ . If S is asymptotically
regular, then

F
(
T(t)

)
= F(S), for all t > .

Proof Fix t > . Then F(S) ⊂ F(T(t)). To prove F(T(t)) ⊂ F(S), let x be a fixed point of
T(t). For h≥ , we obtain

d
(
T(h)x,x

)
= lim

k→∞
d
(
T(h) ◦ T(t)kx,T(t)kx)

= lim
k→∞

d
(
T(h + tk)x,T(tk)x

)
= lim

s→∞d
(
T(h + s)x,T(s)x

)
= 

and therefore x ∈ F(S). �

Let (X,d) be a complete CAT() space, C a closed π-convex subset of X and T : C → C a
nonexpansive mapping. Then F(T) is closed. Also it is seen that F(T) is π-convex. Indeed,
for x, y ∈ F(T) with d(x, y) < π , we have

d
(
x,T

(
λx⊕ ( – λ)y

)) ≤ d
(
x,λx⊕ ( – λ)y

)
= ( – λ)d(x, y)

and similarly d(y,T(λx ⊕ ( – λ)y)) ≤ λd(x, y). Thus both equalities must hold and hence
λx ⊕ ( – λ)y and T(λx ⊕ ( – λ)y) belong to the unique geodesic [x, y]. This implies that
T(λx⊕ ( – λ)y) = λx⊕ ( – λ)y.

http://www.fixedpointtheoryandapplications.com/content/2014/1/44
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Now consider a family S = {T(t) : t ≥ } of nonexpansive self-mappings of C such that
F(S) �= ∅. From the previous remark, each fixed point set F(T(t)) is closed and convex,
hence so is F(S). Fix x ∈ C with  < d(x,F(S)) < π/. Let p = PF(S)x (the uniqueness
follows from Proposition .(i)) and ε = d(x,p). Then for each t ≥ , T(t) maps the closed
π-convex set C ∩ B(p, ε) into itself. For any α ∈ (, ] and t ≥ , define the mapping Sα,t :
C ∩ B(p, ε) → C ∩ B(p, ε) by Sα,tx = αx ⊕ ( – α)T(t)x. Observe that Sα,t is a contraction.
In fact, for x, y ∈ C ∩ B(p, ε), we apply Lemma .(iii) to get

d(Sα,tx,Sα,ty) ≤ sin

[
( – α)

π



]
d
(
T(t)x,T(t)y

) ≤ sin

[
( – α)

π



]
d(x, y).

Then Sα,t has a unique fixed point in C ∩ B(p, ε).
Let [t] denote the maximum integer no greater than t. We now extend Theorem . in

Hilbert spaces to CAT(κ) spaces as the following result.

Theorem . Let X be a complete CAT() space, C a closed π -convex subset of X , S =
{T(t) : t ≥ } a UAR and strongly continuous nonexpansive semigroup on C with F(S) �= ∅,
and two sequences {αn} ⊂ (, ], {tn} ⊂ (,∞) such that limn→∞ αn = limn→∞ αn/tn = .
Choose arbitrarily a point x ∈ C such that d(x,F(S)) < π/. Let p = PF(S)x and ε =
d(x,p). Define a sequence {xn} in C ∩ B(p, ε) by the implicit iteration

xn = αnx ⊕ ( – αn)T(tn)xn. (.)

Then {xn} converges strongly to the point p of F(S) nearest to x.

Proof If x ∈ F(S), then {xn} reduces to the constant sequence {x,x, . . .}. Suppose that
x /∈ F(S). We shall prove that any subsequence of {xn} contains a subsequence converg-
ing strongly to p from which it follows that {xn} also converges strongly to the point p. Let
{yn} be any subsequence of {xn}. Proposition . asserts that {yn} has a �-convergent sub-
sequence. By passing to a subsequence we may assume that {yn} �-converges to a point y.
Let {βn} and {sn} be the respective corresponding subsequences of {αn} and {tn}.
Observe that y ∈ F(S). To see this, take ŝ = lim supn→∞ sn. There are three cases:
(i) ŝ = ,
(ii)  < ŝ <∞,
(iii) ŝ =∞.

By passing to a subsequence if necessary it may be assumed that ŝ = limn→∞ sn. We discuss
each case as follows.
Suppose that ŝ = . Fix t ≥  and we obtain

d
(
T(t)y, yn

) ≤ d
(
T(t)y,T

([
t
sn

]
sn

)
y
)
+ d

(
T

([
t
sn

]
sn

)
y,T

([
t
sn

]
sn

)
yn

)

+
[t/sn]∑
j=

d
(
T

(
(j – )sn

)
yn,T(jsn)yn

)

≤ d
(
T

(
t –

[
t
sn

]
sn

)
y, y

)
+ d(y, yn) +

[
t
sn

]
d
(
yn,T(sn)yn

)

≤ max
≤s≤sn

d
(
T(s)y, y

)
+ d(y, yn) +

tβn

sn
d
(
x,T(sn)yn

)
.
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This implies that

lim sup
n→∞

d
(
T(t)y, yn

) ≤ lim sup
n→∞

d(y, yn);

hence T(t)y = y for all t ≥ , that is, y ∈ F(S).
If  < ŝ < ∞, then

d
(
T(ŝ)y, yn

) ≤ d
(
T(ŝ)y,T(sn)y

)
+ d

(
T(sn)y,T(sn)yn

)
+ d

(
T(sn)yn, yn

)
≤ d

(
y,T

(|sn – ŝ|)y) + d(y, yn) + d
(
T(sn)yn, yn

)
≤ d

(
y,T

(|sn – ŝ|)y) + d(y, yn) + βnd
(
x,T(sn)yn

)
and thus

lim sup
n→∞

d
(
T(ŝ)y, yn

) ≤ lim sup
n→∞

d(y, yn).

Hence T(ŝ)y = y from which it follows that y ∈ F(S) by Lemma ..
If ŝ =∞, fix t ≥ . For all sufficiently large n we get

d
(
T(t)y, yn

) ≤ d
(
T(t)y,T(t)yn

)
+ d

(
T(t)yn, yn

)
≤ d(y, yn) + βnd

(
T(t)yn,x

)
+ ( – βn)d

(
T(t)yn,T(sn)yn

)
≤ d(y, yn) + βnd

(
T(t)yn,x

)
+ ( – βn)d

(
yn,T(sn – t)yn

)
≤ d(y, yn) + βnd

(
T(t)yn,x

)
+ βn( – βn)d

(
x,T(sn – t)yn

)
+ ( – βn)d

(
T(sn)yn,T(sn – t)yn

)
≤ d(y, yn) + βnd

(
T(t)yn,x

)
+ βn( – βn)d

(
x,T(sn – t)yn

)
+ ( – βn)d

(
T(sn – t + t)yn,T(sn – t)yn

)
which yields

lim sup
n→∞

d
(
T(t)y, yn

) ≤ lim sup
n→∞

d(y, yn)

since

lim sup
n→∞

d
(
T(sn – t + t)yn,T(sn – t)yn

) ≤ lim
n→∞ sup

x∈C∩B(p,ε)
d
(
T(hn + t)x,T(hn)x

)
= ,

where hn = sn – t. It follows that T(t)y = y and therefore y ∈ F(S). This finishes the proof
that y is a common fixed point of all mappings inS.
Next, we claim that {yn} converges strongly to y. We suppose on the contrary that

r
({yn}) = σ > .

From y = T(sn)y, we obtain

d(y, yn) ≤ βnd(y,x) + ( – βn)d
(
y,T(sn)yn

)
≤ βnd(y,x) + ( – βn)d(y, yn),

http://www.fixedpointtheoryandapplications.com/content/2014/1/44


Huang Fixed Point Theory and Applications 2014, 2014:44 Page 10 of 17
http://www.fixedpointtheoryandapplications.com/content/2014/1/44

and hence taking the limit superior as n→ ∞ yields

lim sup
n→∞

d
(
y,T(sn)yn

)
= lim sup

n→∞
d(y, yn) = σ , (.)

since limn→∞ βn = . Recall that

d(x, yn) = ( – βn)d
(
x,T(sn)yn

)
< d

(
x,T(sn)yn

)
, for all n.

Then

d
(
yn,T(sn)yn

)
= d

(
x,T(sn)yn

)
– d(x, yn) > , for all n.

Recall that x /∈ F(S). We have y �= x and hence

lim sup
n→∞

d(x, yn) > σ . (.)

According to (.) and (.), by passing to a subsequence again we may assume that

d(x, yn) > , d(y, yn) > , d
(
y,T(sn)yn

)
> , for all n.

Let �(x̄, ȳ,T(sn)yn) be a comparison triangle for �(x, y,T(sn)yn) in S
. Observe that

∠ȳn (x̄, ȳ) ≥ π/. (.)

For, contrarily, if ∠ȳn (x̄, ȳ) < π/, since ∠ȳn (x̄,T(sn)yn) = π , then ∠ȳn (ȳ,T(sn)yn) > π/;
see Proposition .. By the law of cosines in S

 (Proposition .), since d(yn,T(sn)yn) > ,
it follows that

cosdS
(
ȳ,T(sn)yn

)
< cosdS (ȳ, ȳn),

which is a contradiction because T(sn) is nonexpansive. Notice that

 < d(y, yn) ≤ dS (ȳ, ȳn).

Hence (.) implies that

cosdS (x̄, ȳ) ≤ cosdS (x̄, ȳn) cosdS (ȳ, ȳn) < cosdS (x̄, ȳn),

or equivalently,

dS (x̄, ȳn) < dS (x̄, ȳ).

Similarly,

dS (ȳ, ȳn) < dS (x̄, ȳ).
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The previous two inequalities, together with the CAT(κ) inequality, yield

d(x, yn) < d(x, y), d(y, yn) < d(x, y), for all n. (.)

Let �(x̄, ȳ, ȳn) be a comparison triangle for �(x, y, yn) in S
. Since dS (ȳn, [x̄, ȳ]) < π/,

Proposition .(i) assures that there is a unique point ūn ∈ [x̄, ȳ] nearest to ȳn. Let un ∈
[x, y] such that d(x,un) = dS (x̄, ūn) and d(un, y) = dS (ūn, ȳ). By passing to a subsequence
again it may be assumed that {ūn} and {un} converge, respectively, to ū ∈ [x̄, ȳ] and u ∈
[x, y]. Since

σ = lim sup
n→∞

d(y, yn) ≤ lim sup
n→∞

d(u, yn)

≤ lim sup
n→∞

dS (ū, ūn) + lim sup
n→∞

dS (ūn, ȳn)

= lim sup
n→∞

dS (ūn, ȳn)

≤ lim sup
n→∞

dS (ȳ, ȳn)

= lim sup
n→∞

d(y, yn), (.)

this guarantees that u = y.
On the other hand, according to (.), by passing to a subsequence wemay suppose that

dS (ūn, ȳn) >
σ


, for all n.

Let an = dS (x̄, ūn), bn = dS (ūn, ȳn), cn = dS (x̄, ȳn) and γn = ∠ūn (x̄, ȳn). Then by (.),
bn > σ / and cn < dS (x̄, ȳ). Observe that un �= x. Otherwise, since y �= x, we have
∠x̄ (ȳ, ȳn) =∠ūn (ȳ, ȳn) ≥ π/ which implies that

d(y, yn) = dS (ȳ, ȳn) ≥ dS (x̄, ȳ) = d(x, y).

But this contradicts to (.). Therefore un �= x and so γn ≥ π/ by Proposition .(ii). The
law of cosines in S

 yields

cos cn = cosan cosbn + sinan sinbn cosγn

≤ cosan cosbn.

Since σ / < bn ≤ cn < dS (x̄, ȳ) < π/, this implies that

cosan ≥ cos cn
cosbn

>
cosdS (x̄, ȳ)
cos(σ /)

> cosdS (x̄, ȳ).

Hence

dS (x̄, ūn) = an < cos–
(
cosdS (x̄, ȳ)
cos(σ /)

)
< dS (x̄, ȳ).
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It follows that

d(y,un) = dS (ȳ, ūn) = dS (x̄, ȳ) – dS (x̄, ūn) > dS (x̄, ȳ) – δ > ,

where δ = cos–[cosdS (x̄, ȳ)/ cos(σ /)]. Taking the limit as n → ∞ yields u �= y, which is
a contradiction. Thus σ =  and so {yn} converges strongly to y, as claimed.
It remains to prove that y = PF(S)x. Let q ∈ F(S) and consider a comparison triangle

�(x̄, q̄,T(sn)yn) for �(x,q,T(sn)yn). From

dS
(
q̄,T(sn)yn

) ≤ dS (q̄, ȳn),

it is seen that ∠ȳn (q̄,T(sn)yn) ≤ π/. Hence ∠ȳn (x̄, q̄) ≥ π/ and so

d(x, yn) = dS (x̄, ȳn) ≤ dS (x̄, q̄) = d(x,q).

We then take the limit as n→ ∞ and obtain

d(x, y) ≤ d(x,q),

which shows that y is the nearest point in F(S) to x. Consequently, we conclude that {xn}
converges strongly to PF(S)x, which completes the proof. �

It is worthy emphasizing that a uniformly asymptotical regularity hypothesis of The-
orem . is superfluous when limn→∞ tn = limn→∞ αn/tn = ; see case (i) in the proof of
Theorem .. Thus, we state the result as follows.

Theorem . Let X be a complete CAT() space, C a closed π -convex subset of X , S =
{T(t) : t ≥ } a strongly continuous nonexpansive semigroup on C with F(S) �= ∅, and two
sequences {αn} ⊂ (, ], {tn} ⊂ (,∞) such that limn→∞ tn = limn→∞ αn/tn = . Choose ar-
bitrarily a point x ∈ C such that d(x,F(S)) < π/. Let p = PF(S)x and ε = d(x,p). Then
the sequence {xn} in C ∩ B(p, ε) defined by (.) converges strongly to the point p.

Furthermore, if X is aCAT() space (recall thatD = ∞) in Theorem ., then the corre-
sponding assumption d(x,F(S)) < π/ is d(x,F(S)) < ∞, which can be dropped. More-
over, the sequence {xn} defined by (.) is bounded. In fact, since

d(p,xn) ≤ αnd(p,x) + ( – αn)d
(
p,T(tn)xn

)
≤ αnd(p,x) + ( – αn)d(p,xn),

this shows that d(p,xn) ≤ d(p,x). Then {xn} is bounded and so is {T(t)xn : t ≥ ,n ∈ N}.
We restate Theorem . without assuming boundedness of C as follows.

Theorem. Let X be a complete CAT() space, C a closed convex subset of X,S = {T(t) :
t ≥ } a strongly continuous nonexpansive semigroup on C with F(S) �= ∅, and two se-
quences {αn} ⊂ (, ], {tn} ⊂ (,∞) such that limn→∞ tn = limn→∞ αn/tn = . Choose arbi-
trarily a point x ∈ C. Then the sequence {xn} in C defined by (.) converges strongly to a
point of F(S) nearest to x.
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Nonetheless, Theorem . has a uniformly asymptotical regularity hypothesis that can-
not in general be removed when limn→∞ tn = t̂ ∈ (,∞] as illustrated in the following ex-
ample.

Example . Consider the complex plane (C, | · |), where | · | is the absolute value, so
that it is a complete CAT() space. For t ≥ , define a self-mapping T(t) of C by T(t)(z) =
zeit , z ∈ C. ThenS = {T(t) : t ≥ } is a strongly continuous nonexpansive semigroup with
F(S) = {}. The familyS is not UAR on C because

lim
t→∞ sup

|z|=

∣∣T(π )T(t)(z) – T(t)(z)
∣∣ = lim

t→∞ sup
|z|=

∣∣zei(t+π ) – zeit
∣∣ = .

Let αn = /n, tn = nπ , n ∈ N, so that limn→∞ tn = ∞ and limn→∞ αn/tn = . Choose z = .
Define a sequence {zn} in C by (.), that is,

zn =

{


n– , n is odd,
, n is even.

Hence the sequence {zn} is divergent.
Next if we take αn = /n, tn = (/n) + π , n ∈ N, then limn→∞ tn = π and limn→∞ αn/

tn = . Choose z =  and define a sequence {zn} in C by (.) to get

zn =
/n

 – [ – (/n)]ei/n
.

However, the sequence {zn} converges to ( + i)/ /∈ F(S).
These two examples explain that strong convergence of the sequence defined by (.) in

Theorem . ceases to be true without the UAR assumption if limn→∞ tn = t̂ ∈ (,∞].

The next example shows that the condition limn→∞ αn = limn→∞ αn/tn =  in Theo-
rem . is also necessary when X is the unit sphere in �, the infinite-dimensional Hilbert
space of square-summable sequences.

Example . Let S� be the unit sphere in � endowed with the following intrinsic metric
d : S� × S� → R: for x, y ∈ S� , d(x, y) ∈ [,π ] such that

cosd(x, y) = (x | y) =
∞∑
k=

x(k)y(k).

This space (S� ,d) is a CAT() space.
Take one element v = (, , . . . , , . . .) of the canonical basis of S� . Let C = {x ∈ S� :

d(x, v) ≤ r} be a closed ball centered at v in S� , where  < r < π/. For t ≥ , define a
mapping T(t) : C → C by

T(t)(x) =
(
 – e–t

)
v⊕ e–tx,

that is,

(
T(t)(x)

)
() = cos

[
e–t cos– x()

]
, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/44
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and for k = , , . . . ,

(
T(t)(x)

)
(k) =

⎧⎨
⎩
, if x() = ,
x(k) sin[e–t cos– x()]√

–x()
, if x() �= . (.)

For x, y ∈ C, from Lemma .(iii), we obtain

d
(
T(t)x,T(t)y

)
= d

((
 – e–t

)
v⊕ e–tx,

(
 – e–t

)
v⊕ e–ty

)
≤ sin(e–tπ/)

sinπ/
d(x, y)

≤ d(x, y).

Then T(t) is nonexpansive. In fact, v is the unique fixed point of T(t) for t > . Further-
more, it is seen that S = {T(t) : t ≥ } is a UAR and strongly continuous nonexpansive
semigroup on C.
Choose u = (uk) ∈ C with  < u <  so that  < cos– u = d(u, v) ≤ r. For α ∈ (, ) and

t ∈ (,∞), define x(α, t) by

x(α, t) = αu⊕ ( – α)T(t)x(α, t)

= cos
[
( – α)d

(
u,T(t)x(α, t)

)]
u + sin

[
( – α)d

(
u,T(t)x(α, t)

)] A(α, t)
‖A(α, t)‖ , (.)

where

A(α, t) = T(t)x(α, t) –
(
u | T(t)x(α, t))u.

We remark that ‖A(α, t)‖ =  – (u | T(t)x(α, t)). Let {αn} ⊂ (, ], {tn} ⊂ (,∞) be two
sequences and define a sequence {xn} in B(v, cos– u)⊂ C by

xn = x(αn, tn) = αnu⊕ ( – αn)T(tn)xn.

We shall prove that if the sequence {xn} converges to the common fixed point v ofS, then
limn→∞ αn = limn→∞ αn/tn = .
First, assume that β = lim supn→∞ αn. Since limn→∞ xn() =  and |xn(k)| ≤ √

 – xn()

for k ≥ , we obtain from (.) and (.) that

lim
n→∞

(
T(tn)(xn)

)
() = , lim

n→∞
(
T(tn)(xn)

)
(k) = .

Therefore limn→∞ T(tn)(xn) = v, which implies that

lim
n→∞

(
u | T(tn)(xn)

)
= u, lim

n→∞d
(
u,T(tn)xn

)
= cos– u; (.)

hence

lim
n→∞A(αn, tn)() =  – u , lim

n→∞
∥∥A(αn, tn)

∥∥ =
√
 – u . (.)
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Let θ = d(u, v) = cos– u so that sin θ =
√
 – u . Using (.), (.), and (.), we have

 = lim
n→∞xn()

= lim inf
n→∞

{
u cos

[
( – αn)d

(
u,T(tn)xn

)]
+
A(αn, tn)()
‖A(αn, tn)‖ sin

[
( – αn)d

(
u,T(tn)xn

)]}

≤ lim sup
n→∞

{
u cos

[
( – αn)d

(
u,T(tn)xn

)]}

+ lim inf
n→∞

{
A(αn, tn)()
‖A(αn, tn)‖ sin

[
( – αn)d

(
u,T(tn)xn

)]}

= cos θ cos
[
( – β)θ

]
+ sin θ sin

[
( – β)θ

]
= cos(βθ ).

This shows that β =  because θ >  and so limn→∞ αn = .
To prove that limn→∞ αn/tn = , we recall the inequality t ≥  – e–t for all t ≥ . Since

tnd(v,xn) ≥
(
 – e–tn

)
d(v,xn) = d

(
xn,T(tn)(xn)

)
= αnd

(
u,T(tn)(xn)

)
,

it follows that

 = lim
n→∞d(v,xn)

≥ lim sup
n→∞

[
αn

tn
d
(
u,T(tn)(xn)

)]

= θ lim sup
n→∞

αn

tn
.

Consequently, lim supn→∞ αn/tn =  and therefore limn→∞ αn/tn =  as desired.

The following result is an immediate consequence of Theorem . and Example ..

Theorem . Let X be the unit sphere in an infinite-dimensional Hilbert space, and let
{αn} ⊂ (, ], {tn} ⊂ (,∞) be two sequences. Then the following conditions are equivalent:

(i) limn→∞ αn = limn→∞ αn/tn = .
(ii) Let C be a closed convex subset of X with diamC < π/,S = {T(t) : t ≥ } a UAR

and strongly continuous nonexpansive semigroup on C with F(S) �= ∅, x ∈ C such
that d(x,F(S)) < π/, p = PF(S)x, ε = d(x,p) and {xn} is a sequence in C ∩ B(p, ε)
defined by (.).

Then {xn} converges strongly to p.

5 Remark
A semitopological semigroup S is a semigroup equipped with a Hausdorff topology such
that for each t ∈ S the mappings s �→ ts and s �→ st from S into S are continuous. A semi-
topological semigroup S is left (respectively, right) reversible if any two closed right (respec-
tively, left) ideals of S have nonvoid intersection, i.e., aS∩bS �= ∅ (respectively, Sa∩Sb �= ∅),
for a,b ∈ S, where E denotes the closure of a set E in a topological space. The class S of
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all left reversible semitopological semigroups includes all groups, all commuting semi-
groups, and all normal left amenable semitopological semigroups, i.e., the space CB(S) of
bounded continuous functions on S has a left invariant mean; see [, , –]. If S is left
(respectively, right) reversible, (S,�) is a directed system when the binary relation � on
S is defined by a � b if and only if {a} ∪ aS ⊃ {b} ∪ bS (respectively, {a} ∪ Sa ⊃ {b} ∪ Sb),
a,b ∈ S.
Let S be a semitopological semigroup and C a closed convex subset of a metric space

(X,d). A familyS = {T(s) : s ∈ S} is called a representation of S on C if for each s ∈ S, T(s)
is a mapping from C into C and T(st) = T(s) ◦ T(t), for all s, t ∈ S. The representation is
called a strongly continuous nonexpansive semigroup on C (or a continuous representation
of S as nonexpansive mappings on C) if the following conditions are satisfied (see []):

(i) for each t ∈ S, T(t) is a nonexpansive mapping on C;
(ii) for each x ∈ C, the mapping t �→ T(t)x from S into C is continuous.

The representation S of S is called
(i) asymptotically regular on C if for any h ∈ S and any x ∈ C,

lim
t∈S d

(
T(h)T(t)x,T(t)x

)
= ;

(ii) uniformly asymptotically regular (in short UAR) on C if for any h ∈ S and any
bounded subset D of C,

lim
t∈S supx∈D

d
(
T(h)T(t)x,T(t)x

)
= .

Problem . Let X be a complete CAT() space, C a closed π-convex subset of X, S a
commutative (or left reversible) semitopological semigroup, and S = {T(t) : t ∈ S} a con-
tinuous representation of S as nonexpansive mappings on C. Can we obtain the result
analogous to Theorem . corresponding to a continuous representationS = {T(t) : t ∈ S}
of S as nonexpansive mappings on C?

To answer this problem, the following conjecture is required and hence needs to be
verified.

Conjecture . Let S be a commutative (or left reversible) semitopological semigroup, C
a subset of a metric space (X,d) and S = {T(t) : t ∈ S} a representation of S on C. If S is
asymptotically regular, then

F
(
T(t)

)
= F(S), for all t ∈ S.

Competing interests
The author declares that she has no competing interests.

Acknowledgements
This research was supported by a grant NSC 102-2115-M-259-004 from the National Science Council of Taiwan. The
author, therefore, thanks the NSC financial support. The author would like to express the most sincere thanks to the
referees for their careful reading of the manuscript, important comments and the citation of Ref. [13]. The author is also
very grateful to Professor Anthony Lau for giving valuable remarks and Refs. [14] and [3], and for suggesting presenting
Problem 5.1 for future studies.

Received: 18 October 2013 Accepted: 27 January 2014 Published: 20 Feb 2014

http://www.fixedpointtheoryandapplications.com/content/2014/1/44


Huang Fixed Point Theory and Applications 2014, 2014:44 Page 17 of 17
http://www.fixedpointtheoryandapplications.com/content/2014/1/44

References
1. Lau, AT-M, Miyake, H, Takahashi, W: Approximation of fixed points for amenable semigroups of nonexpansive

mappings in Banach spaces. Nonlinear Anal. 67, 1211-1225 (2007)
2. Lau, AT-M: Normal structure and common fixed point properties for semigroups of nonexpansive mappings in

Banach spaces. Fixed Point Theory Appl. 2010, Article ID 580956 (2010)
3. Lau, AT-M, Zhang, Y: Fixed point properties for semigroups of nonlinear mappings and amenability. J. Funct. Anal.

263(10), 2949-2977 (2012)
4. Suzuki, T: Strong convergence of Krasnoselskii and Mann’s type sequences for one parameter nonexpansive

semigroups without Bochner integrals. J. Math. Anal. Appl. 305, 227-239 (2005)
5. Browder, FE: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces.

Arch. Ration. Mech. Anal. 24, 82-90 (1967)
6. Acedo, GL, Suzuki, T: Browder’s convergence for uniformly asymptotically regular nonexpansive semigroups in

Hilbert spaces. Fixed Point Theory Appl. 2010, Article ID 418030 (2010)
7. Suzuki, T: On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces. Proc. Am.

Math. Soc. 131(7), 2133-2136 (2003)
8. Espínola, R, Fernández-León, A: CAT(κ )-spaces, weak convergence and fixed points. J. Math. Anal. Appl. 353, 410-427

(2009)
9. Huang, S: The �-convergence of iterations for nonexpansive mappings in CAT(κ ) spaces. J. Nonlinear Convex Anal.

13(3), 541-554 (2012)
10. Pia̧tek, B: Halpern iteration in CAT(κ ) spaces. Acta Math. Sin. Engl. Ser. 27, 635-646 (2011)
11. Dhompongsa, S, Fupinwong, W, Kaewkhaob, A: Common fixed points of a nonexpansive semigroup and a

convergence theorem for Mann iterations in geodesic metric spaces. Nonlinear Anal. 70, 4268-4273 (2009)
12. Bridson, M, Haefliger, A: Metric Spaces of Non-Positive Curvature. Springer, Berlin (1999)
13. Holmes, RD, Lau, AT-M: Asymptotically non-expansive actions of topological semigroups and fixed points. Bull. Lond.

Math. Soc. 3, 343-347 (1971)
14. Lau, AT-M: Semigroup of nonexpansive mappings on a Hilbert space. J. Math. Anal. Appl. 105(2), 514-522 (1985)
15. Lau, AT-M, Takahashi, W: Weak convergence and nonlinear ergodic theorems for reversible semigroups of

nonexpansive mappings. Pac. J. Math. 126, 277-294 (1987)

10.1186/1687-1812-2014-44
Cite this article as: Huang: Nonexpansive semigroups in CAT(κ ) spaces. Fixed Point Theory and Applications 2014, 2014:44

http://www.fixedpointtheoryandapplications.com/content/2014/1/44

	Nonexpansive semigroups in CAT(kappa) spaces
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Basic properties and Delta-convergence
	Main results
	Remark
	Competing interests
	Acknowledgements
	References


