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Abstract
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1 Introduction
In , Kohsaka andTakahashi [] introduced the concept of nonspreadingmapping. Let
T be a mapping on a subset C of a smooth Banach space E. T is said to be nonspreading if

φ(Tx,Ty) + φ(Ty,Tx) ≤ φ(Tx, y) + φ(Ty,x) ()

for all x, y ∈ C, where φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖. We denote by F(T) the set of fixed
points of T . They proved F(T) is nonempty provided C is bounded, closed, and convex;
and E is reflexive and strictly convex. In the case where E is Hilbertian, () is equivalent to

‖Tx – Ty‖ ≤ ‖Tx – y‖ + ‖x – Ty‖. ()

We note that the concept of nonspreading mapping is very important because of useful
applications.
On the other hand, Chatterjea [] considered the following condition:

‖Tx – Ty‖ ≤ α‖Tx – y‖ + α‖x – Ty‖,

where α is constant belonging to (, /).
Motivated by the above, we introduce a new concept, named Chatterjea mapping. The

condition () of this concept is weaker than (). It is meaningful to study Chatterjea map-
ping because the concept of nonspreading mapping is very important. In this paper, we
prove fixed point theorems for Chatterjea mappings without the convexity of the domain.
We also prove convergence theorems to a fixed point.
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2 Preliminaries
Throughout this paper we denote byN the set of all positive integers and byR the set of all
real numbers. For n ∈N∪ {}, we define n! by ! =  and (n+ )! = n!(n+ ), that is, n! is the
factorial of n. Stirling’s formula limn

√
πn(n/e)n/(n!) =  is well known. For n,k ∈N∪ {}

with k ≤ n, we define C(n,k) = n!/(k!(n – k)!), that is, C(n,k) is the binomial coefficient of
(n;k).
A Banach space E is said to be smooth if the limit limt→(‖x+ ty‖– ‖x‖)/t exists for each

x, y ∈ E with ‖x‖ = ‖y‖ = . The normalized duality mapping J from E into E∗ is defined
by 〈x, Jx〉 = ‖x‖ = ‖Jx‖ for all x ∈ E.
Let E be a Banach space. E is said to be strictly convex if ‖x + y‖ <  for all x, y ∈ E with

‖x‖ = ‖y‖ =  and x �= y. We recall that E is said to be uniformly convex in every direction
(UCED, for short) if for ε ∈ (, ] and z ∈ E with ‖z‖ = , there exists δ >  such that

‖x + y‖ ≤ ( – δ)

for all x, y ∈ E with ‖x‖ ≤ , ‖y‖ ≤  and x – y ∈ {tz : t ∈ [–,–ε] ∪ [+ε, +]}. It is obvious
that UCED implies strictly convexity. We know that every separable Banach space can
be equivalently renormed so that it is UCED. See [, ] and others. We know UCED is
characterized as follows.

Lemma  ([]) For a Banach space E, the following are equivalent:
(i) E is UCED.
(ii) If {un} is a bounded sequence in E, then a function g on E defined by

g(x) = lim sup
n→∞

‖un – x‖ ()

is strictly quasiconvex, that is,

g
(
λx + ( – λ)y

)
<max

{
g(x), g(y)

}
for all λ ∈ (, ) and x, y ∈ E with x �= y.

Let C be a subset of a Banach space E. C is said to be boundedly weakly compact if
its intersection with any closed ball is weakly compact. It is obvious that if E is reflexive,
then every closed convex subset is boundedly weakly compact. C is said to have theOpial
property [] if for each weakly convergent sequence {xn} in C with weak limit z ∈ C,

lim inf
n→∞ ‖xn – z‖ < lim inf

n→∞ ‖xn – y‖

holds for y ∈ C with y �= z.We remark thatwemay replace ‘lim inf’ by ‘lim sup’. All nonempty
compact subsets have the Opial property. Also, all Hilbert spaces, �p ( ≤ p < ∞) and
finite dimensional Banach spaces have the Opial property. A Banach space with a duality
mappingwhich isweakly sequentially continuous also has theOpial property [].Weknow
that every separable Banach space can be equivalently renormed so that it has the Opial
property [].

Lemma  Let C be a boundedly weakly compact subset of a Banach space E and let f be
a function from C into R which is lower semicontinuous in the weak topology. Assume that
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either C is bounded or f satisfies

inf
{
f (x) : x ∈ C

}
< lim

r→∞ inf
{
f (x) : x ∈ C,‖x‖ ≥ r

}
. ()

Then min f (C) exists.

Proof Let {xn} be a sequence in C such that limn f (xn) = inf f (C). From the assumption,
{xn} is bounded. Since C is boundedly weakly compact, there exist a subsequence {xnj} of
{xn} and z ∈ C such that {xnj} converges weakly to z. Since f is lower semicontinuous in
the weak topology, we have

inf f (C) ≤ f (z) ≤ lim inf
j→∞ f (xnj ) = inf f (C)

and hence f (z) = inf f (C). �

Let C be a subset of a Banach space E and let f be a function from C into R. f is said to
be nonincreasing with respect to a mapping T on C if f (Tx)≤ f (x) for all x ∈ C. Also, from
now on, in the case where C is bounded, we consider every function f to satisfy ().
The proof of the following lemma is obvious.

Lemma  Let η be a continuous, strictly increasing function from [,∞) into itself. Then
the following hold:

(i) s≤ t if and only if η(s) ≤ η(t).
(ii) If lim supn tn ∈R, then η(lim supn tn) = lim supn η(tn).

3 Chatterjea mapping
In this section, we introduce the concept of Chatterjea mapping.
Let T be a mapping on a subset C of a Banach space E and let η be a continuous, strictly

increasing function from [,∞) into itself with η() = . Then T is call a Chatterjea map-
ping with η if

η
(‖Tx – Ty‖) ≤ η

(‖Tx – y‖) + η
(‖x – Ty‖) ()

for all x, y ∈ C.
From the definition, we can obtain the following propositions.

Proposition  Let T be a nonspreading mapping on a subset C of a Hilbert space E. Then
T is Chatterjea with t �→ t.

Proof Obvious. �

Proposition  Let T be a mapping on a subset C of a Banach space E and let η be a
continuous, strictly increasing function from [,∞) into itself with η() = . Assume that
there exists α ∈ [, ] such that

η
(‖Tx – Ty‖) ≤ αη

(‖Tx – y‖) + ( – α)η
(‖x – Ty‖)

for all x, y ∈ C. Then T is Chatterjea with η.

http://www.fixedpointtheoryandapplications.com/content/2014/1/47
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Proof For x, y ∈ C, we have

η
(‖Tx – Ty‖) ≤ αη

(‖Tx – y‖) + ( – α)η
(‖x – Ty‖)

and

η
(‖Ty – Tx‖) ≤ αη

(‖Ty – x‖) + ( – α)η
(‖y – Tx‖).

Adding the both inequalities, we obtain the desired result. �

Proposition  Let p and q be positive real numbers with p < q. Let T be a mapping on a
subset C of a Banach space E. Assume T is Chatterjea with t �→ tp. Then T is also Chat-
terjea with t �→ tq.

Proof Let α and β be nonnegative real numbers and define functions f and g from (,∞)
into R by

f (r) = r ln r and g(r) =
(
αr + βr)/r–/r .

Then we note f is convex because f ′′(r) = /r > . We next show that g is nondecreasing.
In the case where α =  or β = , the nondecreasingness of g is obvious. In the case where
α >  and β > , we have

d
dr

g(r) = g(r)
d
dr

(
ln

(
g(r)

))
=

g(r)
r(αr + βr)

(
f (αr) + f (βr)


– f

(
αr + βr



))
≥ 

and hence g is nondecreasing. Let x, y ∈ C be fixed. Then we have

‖Tx – Ty‖ ≤ (‖Tx – y‖p + ‖x – Ty‖p)/p–/p
≤ (‖Tx – y‖q + ‖x – Ty‖q)/q–/q,

which implies that T is Chatterjea with t �→ tq. �

Example  Let p and q be positive real numbers with p < q. Let E be a Banach space and
let w ∈ E \ {} be fixed. Define a mapping T on E by

Tx =

⎧⎨
⎩ if x �= w,

–/qw if x = w.

Then T is Chatterjea with t �→ tq, however, T is not Chatterjea with t �→ tp.

Proof Let x ∈ E \ {w} be fixed. Then since Tx = , we have

‖Tw – Tx‖q = ‖w‖q ≤ ‖Tw – x‖q + ‖w‖q = ‖Tw – x‖q + ‖w – Tx‖q,

http://www.fixedpointtheoryandapplications.com/content/2014/1/47
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which implies that T is Chatterjea with t �→ tq. On the other hand, since Tw = , we have


∥∥Tw – Tw

∥∥p = –p/q‖w‖p > ‖w‖p = ‖Tw – Tw‖p + ∥∥w – Tw
∥∥p,

which implies that T is not Chatterjea with t �→ tp. �

Remark Example  also informs thatChatterjeamappings are not necessarily continuous.

4 Basic properties
In this section, we prove basic properties of Chatterjea mapping.
A mapping T on a subset C of a Banach space E is said to be quasinonexpansive [] if

‖Tx – z‖ ≤ ‖x – z‖ ()

for all x ∈ C and z ∈ F(T).

Proposition  Assume that a mapping T on C is Chatterjea and has a fixed point. Then
T is a quasinonexpansive mapping.

Proof Let η satisfy (). For x ∈ C and z ∈ F(T), we have

η
(‖Tx – z‖) ≤ η

(‖Tx – z‖) + η
(‖x – z‖).

Using this and the strict increasingness of η, we obtain (). �

From Proposition , we obtain the following.

Lemma  Assume that a mapping T on C is Chatterjea and has a fixed point. Then {Tnu}
is bounded for all u ∈ C.

Proposition  Let T be a Chatterjea mapping on a closed subset C of a Banach space E.
Then F(T) is closed. Moreover, if E is strictly convex and C is convex, then F(T) is also
convex.

The following lemma plays a very important role in this paper.

Lemma  Put I = {(m,n) :m,n ∈ N ∪ {},m ≤ n} and I = {(m,n) :m,n ∈ N,m < n}. Let
A be a function from I into [,∞) satisfying the following:
• A(,n)≤  for n ∈N∪ {};
• A(n,n) =  for n ∈N;
• A(m,n)≤ (/)A(m – ,n) + (/)A(m,n – ) for (m,n) ∈ I .

Then the following hold:
(i) A(m,n)≤  for (m,n) ∈ I;
(ii) A(j+n, j+n+ )≤ 

n
∑n

k=C(n,k)
n–k+
n–k+ A(j+ k, j+n+ – k) for j,n ∈N∪ {};

(iii) A(j + n + , j + n + )≤ 
n+

∑n
k=C(n + ,k) n–k+n–k+ A(j + k, j + n +  – k) for

j,n ∈N∪ {};
(iv) limn→∞ A(n,n + ) = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/47
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Proof Wefirst noteA(m,n)≤  for (m,n) ∈ I \ I . Define a total order≤ on I by (m,n) ≤
(m,n) iff either n < n or n = n and m ≤ m. Fix (m,n) ∈ I and assume A(m′,n′) ≤ 
for (m′,n′) ∈ I with (m′,n′) < (m,n). Then we have

A(m,n)≤ (/)A(m – ,n) + (/)A(m,n – )≤ / + / = .

By induction, we obtain (i). In order to show (ii) and (iii), we also use inductionwith respect
to n. When n = , (ii) becomes A(j, j + ) ≤ A(j, j + ), which clearly holds. We assume (ii)
holds for some n ∈N∪ {}. Then we have

A(j + n + , j + n + )

= A(j +  + n, j +  + n + )

≤ 
n

n∑
k=

C(n,k)
n – k + 
n – k + 

A(j +  + k, j +  + n +  – k)

≤ 
n+

n∑
k=

C(n,k)
n – k + 
n – k + 

(
A(j + k, j + n +  – k)

+A(j + k + , j + n +  – k)
)

=


n+

(
A(j, j + n + ) +

n∑
k=

(
C(n,k)

n – k + 
n – k + 

+C(n,k – )
n – k + 
n – k + 

)
A(j + k, j + n +  – k)

+C(n,n)


n + 
A(j + n + , j + n + )

)

=


n+

(
A(j, j + n + ) +

n∑
k=

C(n + ,k)
n – k + 
n – k + 

A(j + k, j + n +  – k)

)

=


n+

n∑
k=

C(n + ,k)
n – k + 
n – k + 

A(j + k, j + n +  – k).

Hence (iii) holds provided (ii) holds. We also have

A(j + n + , j + n + )

= A(j +  + n + , j +  + n + )

≤ 
n+

n∑
k=

C(n + ,k)
n – k + 
n – k + 

A(j +  + k, j +  + n +  – k)

≤ 
n+

n∑
k=

C(n + ,k)
n – k + 
n – k + 

(
A(j + k, j + n +  – k)

+A(j + k + , j + n +  – k)
)

=


n+

(
A(j, j + n + ) +

n∑
k=

(
C(n + ,k)

n – k + 
n – k + 

http://www.fixedpointtheoryandapplications.com/content/2014/1/47


Suzuki Fixed Point Theory and Applications 2014, 2014:47 Page 7 of 13
http://www.fixedpointtheoryandapplications.com/content/2014/1/47

+C(n + ,k – )
n – k + 
n – k + 

)
A(j + k, j + n +  – k)

+C(n + ,n)


n + 
A(j + n + , j + n + )

)

=


n+

(
A(j, j + n + ) +

n∑
k=

C(n + ,k)
n – k + 
n – k + 

A(j + k, j + n +  – k)

+C(n + ,n + )


n + 
A(j + n + , j + n + )

)

=


n+

n+∑
k=

C(n + ,k)
n – k + 
n – k + 

A(j + k, j + n +  – k).

Thus (ii) holds when n := n + . By induction, we obtain (ii) and (iii). We put

αn =

n

n∑
k=

C(n,k)
n – k + 
n – k + 

and

βn =


n+

n∑
k=

C(n + ,k)
n – k + 
n – k + 

.

From the above proof, we have βn = αn – –n–C(n,n)/(n + ) and αn+ = βn; and hence
αn+ = αn – –n–C(n,n)/(n + ). We shall show by induction

αn = –nC(n,n) ()

for n ∈N∪{}.When n = , () obviously holds.We assume () holds for some n ∈N∪{}.
Then we have

αn+ = αn – –n–C(n,n)/(n + )

= –n–C(n,n)
(
 – /(n + )

)
= –n–

(n)!
(n!)

n + 
n + 

= –n–
(n)!
(n!)

n + 
n + 

n + 
n + 

= –n–C(n + ,n + ).

Thus () holds when n := n + . By induction, () holds for all n. We have

lim
n→∞αn = lim

n→∞

n

(n)!
(n!)

= lim
n→∞


n

(n)!√
πn(n/e)n

√
πn(n/e)n

( n!√
πn(n/e)n )

πn(n/e)n

= lim
n→∞

(n)!√
πn(n/e)n

( n!√
πn(n/e)n )



√
πn

= .
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We also have limn βn = limn αn+ = . By (i) and (ii), we obtain

lim
n→∞A(n, n + )

≤ lim
n→∞


n

n∑
k=

C(n,k)
n – k + 
n – k + 

A(k, n +  – k)

≤ lim
n→∞


n

n∑
k=

C(n,k)
n – k + 
n – k + 

= lim
n→∞αn = .

Similarly we can prove limn A(n + , n + ) = . We have shown (iv). �

A mapping T on C is said to be asymptotically regular at x ∈ C [] if

lim
n→∞

∥∥Tn+x – Tnx
∥∥ = . ()

T is said to be asymptotically regular on C if T is asymptotically regular at all x ∈ C.

Lemma  Let T be a Chatterjea mapping on a subset C of a Banach space E. Assume
{Tnx} is bounded for some x ∈ C. Then T is asymptotically regular at x.

Proof Let η satisfy (). From the assumption, there exists a positive real number M such
thatM > η(‖Tnx‖) for n ∈N∪ {}. Define a function A by

A(m,n) =

M

η
(∥∥Tmx – Tnx

∥∥)
for m,n ∈ N ∪ {} with m ≤ n. Then all the assumption of Lemma  are satisfied. So we
obtain

lim
n→∞η

(∥∥Tnx – Tn+x
∥∥)

=M lim
n→∞A(n,n + ) = .

Therefore T is asymptotically regular at x. �

Proposition  Let T be a Chatterjeamapping on a subset C of a Banach space E.Assume
{Tnu} is bounded for some u ∈ C. Then the following hold:

(i) {Tnx} is bounded for all x ∈ C.
(ii) T is asymptotically regular on C.

Proof Let η satisfy (). Define a continuous function f from C into [,∞) by

f (x) = lim sup
n→∞

η
(∥∥Tnu – x

∥∥)
()

for all x ∈ C. Then f is well defined from the assumption. We have

f (Tx) = lim sup
n→∞

η
(∥∥Tnu – Tx

∥∥)
≤ lim sup

n→∞

(
η
(∥∥Tnu – x

∥∥)
+ η

(∥∥Tn–u – Tx
∥∥))

http://www.fixedpointtheoryandapplications.com/content/2014/1/47
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≤ lim sup
n→∞

η
(∥∥Tnu – x

∥∥)
+ lim sup

n→∞
η
(∥∥Tn–u – Tx

∥∥)
= f (Tx) + f (x),

which implies f (Tx) ≤ f (x). Thus, f is nonincreasing with respect to T . Hence f (Tnx) ≤
f (x) for n ∈ N. This implies that {Tnx} is bounded. We have shown (i). By Lemma , we
obtain (ii). �

5 Convergence theorems
In this section, we prove convergence theorems under the assumption that the domain C
has the Opial property.

Proposition  Let T be a Chatterjeamapping on a subset C of a Banach space E.Assume
C has the Opial property. If {xn} converges weakly to z ∈ C and limn ‖Txn – xn‖ = , then
Tz = z. That is, I – T is demiclosed at zero.

Proof We note that {xn} is bounded. Since

‖Txn – y‖ – ‖Txn – xn‖ ≤ ‖xn – y‖ ≤ ‖Txn – xn‖ + ‖Txn – y‖,

we have

lim sup
n→∞

‖Txn – y‖ = lim sup
n→∞

‖xn – y‖

for all y ∈ C. Using this, we have

η
(
lim sup
n→∞

‖xn – Tz‖
)
= η

(
lim sup
n→∞

‖Txn – Tz‖
)

= lim sup
n→∞

η
(‖Txn – Tz‖)

≤ lim sup
n→∞

(
η
(‖Txn – z‖) + η

(‖xn – Tz‖))
≤ lim sup

n→∞
η
(‖Txn – z‖) + lim sup

n→∞
η
(‖xn – Tz‖)

= η
(
lim sup
n→∞

‖Txn – z‖
)
+ η

(
lim sup
n→∞

‖xn – Tz‖
)

= η
(
lim sup
n→∞

‖xn – z‖
)
+ η

(
lim sup
n→∞

‖xn – Tz‖
)

and hence

η
(
lim sup
n→∞

‖xn – Tz‖
)

≤ η
(
lim sup
n→∞

‖xn – z‖
)
.

Since C has the Opial property, we obtain Tz = z. �

Remark A function y �→ lim supn η(‖xn–y‖) fromC into [,∞) is also nonincreasingwith
respect to T .

http://www.fixedpointtheoryandapplications.com/content/2014/1/47
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Theorem  Let T be a Chatterjea mapping on a subset C of a Banach space E. Assume
{Tnu} is bounded for some u ∈ C; and C is boundedly weakly compact and has the Opial
property. Then {Tnx} converges weakly to a fixed point of T for all x ∈ C.

Remark We do not need the convexity of C.

Proof Fix x ∈ C. By Proposition , {Tnx} is bounded and limn ‖Tnx–T ◦Tnx‖ = . From
the assumption, there exist a subsequence {Tnjx} of {Tnx} and z ∈ C such that {Tnjx} con-
verges weakly to z. By Proposition , z is a fixed point of T . By Proposition , we note that
{‖Tnx–z‖} is a nonincreasing sequence. Arguing by contradiction, assume that {Tnx} does
not converge to z. Then there exist a subsequence {Tnkx} of {Tnx} and w ∈ C such that
{Tnkx} converges weakly to w and z �= w. We note Tw = w. From the Opial property,

lim
n→∞

∥∥Tnx – z
∥∥ = lim

j→∞
∥∥Tnjx – z

∥∥ < lim
j→∞

∥∥Tnjx –w
∥∥ = lim

n→∞
∥∥Tnx –w

∥∥
= lim

k→∞
∥∥Tnkx –w

∥∥ < lim
k→∞

∥∥Tnkx – z
∥∥ = lim

n→∞
∥∥Tnx – z

∥∥.
This is a contradiction. Therefore {Tnx} converges weakly to z. �

As direct consequences of Theorem , we obtain the following.

Corollary  Let T be a Chatterjea mapping on a weakly compact subset C of a Banach
space E. Assume C has the Opial property. Then {Tnx} converges weakly to a fixed point of
T for all x ∈ C.

Corollary  Let T be a Chatterjea mapping on a compact subset C of a Banach space E.
Then {Tnx} converges strongly to a fixed point of T for all x ∈ C.

6 Existence theorems
In this section, we prove the existence of fixed points of Chatterjeamappings. By Lemma 
and Theorem , we obtain the following.

Theorem  Let T be a Chatterjea mapping on a subset C of a Banach space E. Assume
C is boundedly weakly compact and has the Opial property. Then the following are equiv-
alent:

(i) {Tnu} is bounded for some u ∈ C.
(ii) T has a fixed point.

As direct consequences of Theorem , we obtain the following.

Corollary  Let T be a Chatterjea mapping on a subset C of a Banach space E. Assume
that either of the following holds:
• C is compact;
• C is weakly compact and has the Opial property.

Then T has a fixed point.

Remark It is obvious that Corollary  also can be proved by Corollaries  and .

http://www.fixedpointtheoryandapplications.com/content/2014/1/47
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Corollary  Let T be a nonspreading mapping on a weakly closed subset C of a Hilbert
space E. Then the following are equivalent:

(i) {Tnu} is bounded for some u ∈ C.
(ii) T has a fixed point.

Remark Corollary  is a generalization of Corollary . in [] because we do not assume
the convexity of C.

We shall prove fixed point theorems in UCED Banach spaces.

Lemma  Let C be a boundedly weakly compact and convex subset of a Banach space E.
Let T be amapping on a subset C.Assume that there exists a lower semicontinuous, strictly
quasiconvex function f from C into R such that f is nonincreasing with respect to T and f
satisfies (). Then T has a fixed point.

Proof Since f is quasiconvex, we note that f is lower semicontinuous in the weak topology.
By Lemma , there exists z ∈ C such that f (z) = inf f (C). Since f is nonincreasing with
respect to T , f (Tz) ≤ f (z). Thus f (Tz) = f (z). If Tz �= z, then since f is strictly quasiconvex,
we have

f (z) ≤ f
(
(z + Tz)/

)
<max

{
f (z), f (Tz)

}
= f (z).

This is a contradiction. Hence Tz = z. �

Lemma  Let C be a boundedly weakly compact and convex subset of a Banach space E.
Let T,T,T, . . . ,T� be commuting mappings on C. Assume that for every j = , , , . . . ,�,
there exists a lower semicontinuous, strictly quasiconvex function fj from C intoR such that
fj is nonincreasing with respect to Tj and fj satisfies ().Assume also that F(Tj) is closed and
convex for j = , , . . . ,�. Then

⋂�
j= F(Tj) is nonempty.

Proof By Lemma , F(T) is nonempty. Since F(T) is closed and convex, F(T) is weakly
closed. Thus F(T) is boundedly weakly compact. We assume that Ak– :=

⋂k–
j= F(Tj) is

nonempty, boundedly weakly compact and convex for some k ∈ N with  < k ≤ �. For x ∈
Ak– and j ∈N with ≤ j < k, since Tk ◦Tj = Tj ◦Tk , we have Tkx = Tk ◦Tjx = Tj ◦Tkx, thus
Tkx is a fixed point of Tj. Therefore Tk(Ak–) ⊂ Ak–. By Lemma  again, Tk has a fixed
point in Ak–, thus, Ak :=

⋂k
j= F(Tj) �=∅. Since Ak is closed and convex, Ak is nonempty,

boundedly weakly compact and convex. By induction, A� is nonempty, boundedly weakly
compact and convex. By Lemma , T has a fixed point in A�. This completes the proof.

�

Lemma  Let C be a weakly compact and convex subset of a Banach space E. Let S =
{T} ∪ S′ be a family of commuting mappings on C. Assume that for every T ∈ S, there
exists a lower semicontinuous, strictly quasiconvex function fT from C into R such that fT
is nonincreasing with respect to T . Assume also that F(T) is closed and convex for T ∈ S′.
Then S has a common fixed point.

Proof By Lemma , {F(T) : T ∈ S′} has the finite intersection property. Since C is weakly
compact and F(T) is weakly closed for every T ∈ S′, we have A :=

⋂
T∈S′ F(T) �=∅. Since A

http://www.fixedpointtheoryandapplications.com/content/2014/1/47
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is weakly compact and T(A) ⊂ A, T has a fixed point in A. Thus S has a common fixed
point. �

Lemma  Let C be a convex subset of a UCED Banach space E. Let T be a Chatterjea
mapping on C. Assume that {Tnu} is bounded for some u ∈ C. Define a function f from
C into [,∞) by (). Then f is a continuous, strictly quasiconvex function such that f is
nonincreasing with respect to T and f satisfies ().

Proof We note that a function g defined by () is continuous and strictly quasiconvex; and
g satisfies (). So f is also continuous and strictly quasiconvex; and f satisfies (). We have
shown that f is nonincreasing with respect to T in the proof of Proposition . �

Using Lemmas -, we obtain the following.

Theorem  Let C be a boundedly weakly compact and convex subset of a UCED Banach
space E. Let T be a Chatterjea mapping on C. Then the following are equivalent:

(i) {Tnu} is bounded for some u ∈ C.
(ii) T has a fixed point.

Theorem  Let C be a boundedly weakly compact and convex subset of a UCED Banach
space E. Let T,T, . . . ,T� be commuting Chatterjea mappings on C. Assume that {Tj

nu} is
bounded for all u ∈ C and j. Then

⋂�
j= F(Tj) is nonempty.

Theorem  Let C be a weakly compact and convex subset of a UCED Banach space E.
Let S be a family of commuting Chatterjea mappings on C. Then S has a common fixed
point.
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