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Abstract
The purpose of this paper is to obtain best proximity point theorems for a weakly
contractive mapping and a weakly Kannan mapping in partial metric spaces. In this
paper, the P-operator technique, which changes a non-self mapping to a self
mapping, provides a key method. Many recent results in this area have been
improved.
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1 Introduction and preliminaries
Let us recall some basic definitions of a partial metric space and its properties which can
be found in [].

Definition . A partial metric on a nonempty set X is a function p : X × X → R+ such
that for all x, y, z ∈ X:

(p) x = y⇔ p(x,x) = p(x, y) = p(y, y),
(p) p(x,x)≤ p(x, y),
(p) p(x, y) = p(y,x),
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial
metric on X.

We can see from (p) and (p) that p(x, y) =  implies x = y. However, the converse is not
necessarily true. A typical example of this situation is provided by the partial metric space
(R+,pmax), where the function pmax : R+ × R+ → R+ is defined by pmax(x, y) =max{x, y} for
all x, y ∈ R+. Other examples of partial metric spaces which are interesting from a compu-
tational point of view may be found in [] and [].
Following [], each partial metric p on X generates a T topology τ (p) on X, whose base

is a family of open p-balls:

{
Bp(x, ε) : x ∈ X, ε > 

}
,
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where Bp(x, ε) = {y ∈ X : p(x, y) ≤ p(x,x) + ε} for all x ∈ X and ε > . Definitions of con-
vergence, Cauchy sequence, completeness and continuity on partial metric spaces are as
follows:

(d) A sequence {xn} in a partial metric space (X,p) converges to x if and only if p(x,x) =
limn→∞ p(x,xn).

(d) A sequence {xn} in a partial metric space (X,p) is called a Cauchy sequence if
limn,m→∞ p(xn,xm) exists and is finite.

(d) A partial metric space (X,p) is called complete if every Cauchy sequence {xn} in X
converges, with respect to τ (p), to a point x ∈ X such that p(x,x) = limn,m→∞ p(xn,xm).

(d) A mapping f : X → X is said to be continuous at x ∈ X if for every ε > , there exists
δ >  such that f (Bp(x, δ))⊆ Bp(f (x), ε).

It can be easily verified that the function dp : X ×X → R+ defined by

dp(x, y) = p(x, y) – p(x,x) – p(y, y)

is a metric on X. The following useful remarks were introduced in []:

(r) If a sequence converges in a partial metric space (X,p) with respect to τ (dp), then it
converges with respect to τ (p). Of course, the converse is not true.

(r) A sequence {xn}n∈N in a partial metric space (X,p) is a Cauchy sequence if and only if
it is a Cauchy sequence in the metric space (X,dp).

(r) A partial metric space (X,p) is complete if and only if the metric space (X,dp) is com-
plete.

(r) Given a sequence {xn}n∈N in a partial metric space (X,p) and x ∈ X , we have that

lim
n→∞dp(x,xn) =  ⇔ p(x,x) = lim

n→∞p(x,xn) = lim
n,m→∞p(xn,xm).

Let A and B be nonempty subsets of a metric space (X,d). An operator T : A→ B is said
to be contractive if there exists k ∈ [, ) such that d(Tx,Ty) ≤ kd(x, y) for any x, y ∈ A. The
well-known Banach contraction principle says: Let (X,d) be a complete metric space, and
let T : X → X be a contraction of X into itself; then T has a unique fixed point in X.
In the last fifty years, the Banach contraction principle has been extensively studied and

generalized onmany settings. One of the generalizations is a weakly contractive mapping.

Definition . ([]) Let (X,d) be ametric space. Amapping f : X → X is said to beweakly
contractive provided that

d
(
f (x), f (y)

) ≤ ᾱ(x, y)d(x, y)

for all x, y ∈ X, where the function ᾱ : X ×X → [, ), holds for every  < a < b that

θ (a,b) = sup
{
ᾱ(x, y) : a ≤ d(x, y) ≤ b

}
< .

The fixed point theorem for a weakly contractive mapping was presented in [].

Theorem . Let (X,d) be a complete metric space. If f : X → X is a weakly contractive
mapping, then f has a unique fixed point x∗ and the Picard sequence of iterates {f n(x)}n∈N
converges, for every x ∈ X, to x∗.

http://www.fixedpointtheoryandapplications.com/content/2014/1/50


Zhang and Su Fixed Point Theory and Applications 2014, 2014:50 Page 3 of 8
http://www.fixedpointtheoryandapplications.com/content/2014/1/50

One type of contraction which is different from the Banach contraction is Kannanmap-
pings. In [], Kannan obtained the following fixed point theorem.

Theorem . ([]) Let (X,d) be a complete metric space, and let f : X → X be a mapping
such that

d
(
f (x), f (y)

) ≤ α


[
d
(
x, f (x)

)
+ d

(
y, f (y)

)]

for all x, y ∈ X and some α ∈ [, ], then f has a unique fixed point x∗ ∈ X. Moreover, the
Picard sequence of iterates {f n(x)}n∈N converges, for every x ∈ X, to x∗.

In [], the authors introduced a more general weakly Kannan mapping and obtained its
fixed point theorem.

Definition . ([]) Let (X,d) be a metric space. Amapping f : X → X is said to beweakly
Kannan if there exists ᾱ : X × X → [, ) which satisfies, for every  < a ≤ b and for all
x, y ∈ X, that

θ (a,b) = sup
{
ᾱ(x, y) : a ≤ d(x, y) ≤ b

}
< 

and

d
(
f (x), f (y)

) ≤ ᾱ(x, y)


[
d
(
x, f (x)

)
+ d

(
y, f (y)

)]
.

Theorem . ([]) Let (X,d) be a complete metric space. If f : X → X is a weakly Kannan
mapping, then f has a unique fixed point x∗ and the Picard sequence of iterates {f n(x)}n∈N
converges, for every x ∈ X, to x∗.

Recently, Alghamdi et al. [] generalized the weakly contractive and weakly Kannan
mappings to partial metric spaces and obtained the following fixed point theorems.

Definition . ([]) Let (X,p) be a partial metric space. A mapping f : X → X is said to
be weakly contractive provided that there exists ᾱ : X × X → [, ) such that for every
 ≤ a≤ b,

θ (a,b) = sup
{
ᾱ(x, y) : a ≤ p(x, y) ≤ b

}
< ,

and for every x, y ∈ X,

p
(
f (x), f (y)

) ≤ ᾱ(x, y)p(x, y).

Definition . ([]) Let (X,p) be a partial metric space. A mapping f : X → X is said to
be weakly Kannan if there exists ᾱ : X ×X → [, ) which satisfies for every  < a ≤ b and
for all x, y ∈ X that

θ (a,b) = sup
{
ᾱ(x, y) : a ≤ p(x, y) ≤ b

}
< 
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and

p
(
f (x), f (y)

) ≤ ᾱ(x, y)


[
p
(
x, f (x)

)
+ p

(
y, f (y)

)]
.

Theorem . ([]) Let (X,p) be a complete partial metric space, and let f : X → X be a
weakly contractive mapping. Then f has a unique fixed point x∗ ∈ X and the Picard se-
quence of iterates {f n(x)}n∈N converges, with respect to τ (dp), for every x ∈ X, to x∗. More-
over, p(x∗,x∗) = .

Theorem . ([]) Let (X,p) be a complete partial metric space, and let f : X → X be
a weakly Kannan mapping. Then f has a unique fixed point x∗ ∈ X and the Picard se-
quence of iterates {f n(x)}n∈N converges, with respect to τ (dp), for every x ∈ X, to x∗. More-
over, p(x∗,x∗) = .

In this paper, we first obtain best proximity point theorems for a weakly contractive
mapping and a weakly Kannan mapping in partial metric spaces. The P-operator tech-
nique, which changes a non-self mapping to a self mapping, provides a key method. Many
recent results in this area have been improved.
Before giving the main results, we need the following notations and basic facts.
LetA,B be twononempty subsets of a complete partialmetric space (X,p) and consider a

mapping T : A → B. The best proximity point problem is whether we can find an element
x ∈ A such that p(x,Tx) = p(A,B), where p(A,B) = inf{p(x, y) : x ∈ A and y ∈ B}. Since
p(x,Tx)≥ p(A,B) for any x ∈ A, in fact, the optimal solution to this problem is the one for
which the value p(A,B) is attained. Some works on the best proximity point problem can
be found in [–].
Let A and B be two nonempty subsets of a partial metric space (X,p). We denote by A

and B the following sets:

A =
{
x ∈ A : p(x, y) = p(A,B) for some y ∈ B

}
,

B =
{
y ∈ B : p(x, y) = p(A,B) for some x ∈ A

}
.

2 Best proximity point theorems in partial metric spaces
Definition . Let (A,B) be a pair of nonempty subsets of a partial metric space (X,p).
A mapping f : A→ B is said to be weakly contractive provided that

p
(
f (x), f (y)

) ≤ ᾱ(x, y)p(x, y)

for all x, y ∈ A, where the function ᾱ : A×A→ [, ), holds for every  < a < b that

θ (a,b) = sup
{
ᾱ(x, y) : a ≤ p(x, y) ≤ b

}
< .

Definition . Let (A,B) be a pair of nonempty subsets of a partial metric space (X,p).
A mapping f : A→ B is said to be weakly Kannan provided that

p
(
f (x), f (y)

) ≤ ᾱ(x, y)


[
p
(
x, f (x)

)
+ p

(
y, f (y)

)
– p(A,B)

]
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for all x, y ∈ A, where the function ᾱ : A×A→ [, ), holds for every  < a < b that

θ (a,b) = sup
{
ᾱ(x, y) : a ≤ p(x, y) ≤ b

}
< .

We rewrite the P-property in the setting of partial metric spaces as follows.

Definition . Let (A,B) be a pair of nonempty subsets of a partial metric space (X,p)
withA 
= ∅. Then the pair (A,B) is said to have the P-property if and only if, for any x,x ∈
A and y, y ∈ B,

{
p(x, y) = p(A,B),
p(x, y) = p(A,B)

⇒ p(x,x) = p(y, y).

Lemma . Let (X,p) be a partial metric space, then p is a continuous function, that is,
for any xn, yn,x, y⊆ X, if xn → x, yn → y, then p(xn, yn) → p(x, y) as n→ ∞.

Proof Since

p(xn, yn) ≤ p(xn,x) + p(x, yn) – p(x,x)

≤ p(xn,x) + p(x, y) + p(y, yn) – p(x,x) – p(y, y).

From the above inequality, we can get that

p(xn, yn) – p(x, y)

≤ [
p(xn,x) – p(x,x)

]
+

[
p(y, yn) – p(y, y)

] →  as n→ ∞.

On the other hand, we have

p(x, y) ≤ p(x,xn) + p(xn, y) – p(xn,xn)

≤ p(x,xn) + p(xn, yn) + p(yn, y) – p(xn,xn) – p(yn, yn).

Then we can obtain

p(x, y) – p(xn, yn)

≤ [
p(x,xn) – p(xn,xn)

]
+

[
p(yn, y) – p(yn, yn)

] →  as n→ ∞.

Above all, we can get that

∣∣p(xn, yn) – p(x, y)
∣∣ →  as n→ ∞.

This completes the proof. �

Remark For (r) we know that, for any xn, yn,x, y⊆ X, if dp(xn,x)→ , dp(yn, y) → , then
p(xn, yn) → p(x, y) as n→ ∞.
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Theorem . Let (A,B) be a pair of nonempty closed subsets of a complete partial metric
space (X,p) such that A 
= ∅. Let T : A → B be a continuous weakly contractive mapping.
Suppose that T(A) ⊆ B and the pair (A,B) has the P-property. Then T has a unique best
proximity point x∗ ∈ A and the iteration sequence {xk}∞n= defined by

xk+ = Txk , p(xk+,xk+) = p(A,B), k = , , , . . .

converges, with respect to τ (dp), for every x ∈ A, to x∗.

Proof We first prove that B is closed with respect to (X,dp). Let {yn} ⊆ B be a sequence
such that yn → q ∈ B. It follows from the P-property that

dp(yn, ym) = p(yn, ym) – p(yn, yn) – p(ym, ym)

= p(xn,xm) – p(xn,xn) – p(xm,xm)

= dp(xn,xm).

Hence

dp(yn, ym)→  ⇒ dp(xn,xm) → 

as n,m → ∞, where xn,xm ∈ A and p(xn, yn) = p(A,B), p(xm, ym) = p(A,B). Then {xn} is a
Cauchy sequence in (X,dp), so that {xn} converges to a point p ∈ A. By the continuity of
a partial metric p, we have p(p,q) = p(A,B), that is, q ∈ B, and hence B is closed with
respect to (X,dp).
Let A be the closure of A in a metric space (X,dp), we claim that T(A) ⊆ B. In fact,

if x ∈ A \A, then there exists a sequence {xn} ⊆ A such that xn → x. By the continuity
of T and the closedness of B, we have Tx = limn→∞ Txn ∈ B; that is, T(A) ⊆ B.
Define an operator PA : T(A) → A by PAy = {x ∈ A : p(x, y) = p(A,B)}. Since the pair

(A,B) has the P-property, we have

p(PATx,PATx) = p(Tx,Tx) ≤ ᾱ(x,x)p(x,x)

for any x,x ∈ A. This shows that PAT : A → A is a weak contraction from a complete
partial metric subspace A into itself. Using Theorem ., we can get that PAT has a
unique fixed point x∗; that is, PATx∗ = x∗ ∈ A, which implies that

p
(
x∗,Tx∗) = p(A,B).

Therefore, x∗ is the unique one inA such that p(x∗,Tx∗) = p(A,B). And the Picard iteration
sequence {(PAT)nx}n∈N converges, with respect to τ (dp), for every x ∈ A, to x∗. Since
the iteration sequence {xk}∞n= defined by

xk+ = Txk , p(xk+,xk+) = p(A,B), k = , , , . . .

is exactly the subsequence of {xn}, so that it converges, for every x ∈ A, to x∗. This com-
pletes the proof. �
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Theorem . Let (A,B) be a pair of nonempty closed subsets of a complete partial metric
space (X,p) such that A 
= ∅. Let T : A → B be a continuous weakly Kannan mapping.
Suppose that T(A) ⊆ B and the pair (A,B) has the P-property. Then T has a unique best
proximity point x∗ ∈ A and the iteration sequence {xk}∞n= defined by

xk+ = Txk , p(xk+,xk+) = p(A,B), k = , , , . . .

converges, with respect to τ (dp), for every x ∈ A, to x∗.

Proof We can prove that B is closed and T(A) ⊆ B in the same way as in Theorem ..
Now define an operator PA : T(A) → A by PAy = {x ∈ A : p(x, y) = p(A,B)}. Since the
pair (A,B) has the P-property, we have

p(PATx,PATx) = p(Tx,Tx)

≤ ᾱ(x, y)


[
p(x,Tx) + p(x,Tx) – p(A,B)

]
≤ ᾱ(x, y)


[
p(x,PATx) + p(PATx,Tx)

+ p(x,PATx) + p(PATx,Tx) – p(A,B)
]

=
ᾱ(x, y)


[
p(x,PATx) + p(x,PATx)

]

for any x,x ∈ A. This shows that PAT : A → A is a weakly Kannan mapping from a
complete partial metric subspace A into itself. Using Theorem ., we can get that PAT
has a unique fixed point x∗; that is, PATx∗ = x∗ ∈ A, which implies that

p
(
x∗,Tx∗) = p(A,B).

Therefore, x∗ is the unique one inA such that p(x∗,Tx∗) = p(A,B). And the Picard iteration
sequence {(PAT)nx}n∈N converges, with respect to τ (dp), for every x ∈ A, to x∗. Since
the iteration sequence {xk}∞n= defined by

xk+ = Txk , p(xk+,xk+) = p(A,B), k = , , , . . .

is exactly the subsequence of {xn}, so that it converges, for every x ∈ A, to x∗. This com-
pletes the proof. �
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