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1 Introduction-preliminaries
In this paper, we are concerned with the problem of finding a common element in the
intersection F(T)∩ (A+B)–(), where F(T) denotes the fixed point set of the mapping T
and (A+B)–() denotes the zero point set of the sum of the operatorA and the operator B.
The motivation for the common element problem is mainly due to its possible appli-

cations to mathematical modeling of concrete complex problems. The common element
problems includemini-max problems, complementarity problems, equilibriumproblems,
common fixed point problems and variational inequalities as special cases; see, for exam-
ple, [–] and the references therein.
Throughout the article, we always assume that H is a real Hilbert space with the inner

product 〈· , ·〉 and the norm ‖ · ‖, respectively. Let C be a nonempty closed convex subset
of H , and let ProjC be the metric projection from H onto C.
Let A : C → H be a mapping. A–() stands for the zero point set of A; that is, A–() :=

{x ∈ C : Ax = }. Recall that A is said to be monotone iff

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

A is said to be α-strongly monotone iff there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C.

A is said to be α-inverse-strongly monotone iff there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.
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It is not hard to see that α-inverse-strongly monotonemappings are Lipschitz continuous.
Indeed, we have

α‖Ax –Ay‖ ≤ 〈Ax –Ay,x – y〉 ≤ ‖Ax –Ay‖‖x – y‖.

This shows that ‖Ax –Ay‖ ≤ 
α
‖x – y‖.

Recall that the classical variational inequality, denoted by VI(C,A), is to find u ∈ C such
that

〈Au, v – u〉 ≥ , ∀v ∈ C. (.)

One can see that the variational inequality (.) is equivalent to a fixed point problem of
the mapping ProjC(I – rA), where I is the identity and r is some positive real number. The
element u ∈ C is a solution of the variational inequality (.) iff u ∈ C satisfies the equation
u = PC(u – rAu). This alternative equivalent formulation has played a significant role in
the studies of variational inequalities and related optimization problems.
A multivalued operator B : H → H with the domain D(B) = {x ∈ H : Bx �= ∅} and the

range R(B) = {Bx : x ∈D(B)} is said to bemonotone if for x ∈ D(B), x ∈D(B), y ∈ Bx and
y ∈ Bx, we have 〈x – x, y – y〉 ≥ . A monotone operator B is said to be maximal if its
graphG(B) = {(x, y) : y ∈ Bx} is not properly contained in the graph of any other monotone
operator. Let I denote the identity operator onH and B :H → H be amaximal monotone
operator. Then we can define, for each r > , a nonexpansive single-valued mapping Jr :
H → H by Jr = (I + rB)–. It is called the resolvent of B. We know that B– = F(Jr) for all
r >  and Jr is firmly nonexpansive.
Let T : C → C be a mapping. In this paper, we use F(T) to denote the fixed point set

of T ; that is, F(T) := {x ∈ C : x = Tx}. Recall that T is said to be nonexpansive iff

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

T is said to be asymptotically nonexpansive iff there exists a sequence {kn} ⊂ [,∞) such
that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀x, y ∈ C,n ≥ .

T is said to be a κ-strict pseudocontraction iff there exists a constant κ ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥∥(x – Tx) – (y – Ty)

∥∥, ∀x, y ∈ C.

Note that the class of κ-strict pseudocontractions strictly includes the class of nonexpan-
sive mappings as a special case. That is, T is nonexpansive iff the coefficient κ = . T is
said to be an asymptotically κ-strict pseudocontraction iff there exist a constant κ ∈ [, )
and a sequence {kn} in [,∞) such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖ + κ

∥∥(
x – Tnx

)
–

(
y – Tny

)∥∥, ∀x, y ∈ C,n ≥ .

Note that the class of asymptotically κ-strict pseudocontractions strictly includes the class
of asymptotically nonexpansive mappings as a special case. That is, T is asymptotically
nonexpansive iff the coefficient κ = .
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In [], Kamimura and Takahashi investigated the problem of finding zero points of a
maximal monotone operator based on the following iterative algorithm:

x ∈H , xn+ = αnx + ( – αn)Jrnxn, ∀n≥ , (.)

where {αn} is a sequence in (, ), {rn} is a positive real number sequence, B : H → H is
maximal monotone and Jrn = (I + rnB)–. It is proved that the sequence {xn} generated in
(.) converges strongly to some z ∈ B–() provided that the control sequence satisfies
some restrictions. Further, using this result, they also investigated the case that B = ∂f ,
where f :H → (–∞,∞] is a proper lower semicontinuous convex function. Convergence
theorems are established in the framework of realHilbert spaces; formore details, see [].
Recently, Takahashi et al. studied zero point problems of the sumof twomonotonemap-

pings and fixed point problems of a nonexpansivemapping based on the following iterative
algorithm:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = αnx + ( – αn)Jrn (xn – rnAxn),

xn+ = βnxn + ( – βn)Tyn, ∀n≥ ,

(.)

where {αn} and {βn} are real number sequences in (, ), {rn} is a positive sequence,
T : C → C is a nonexpansive mapping and A : C → H is an inverse-strongly monotone
mapping. It is proved that the sequence {xn} generated in (.) converges strongly to some
z ∈ (A + B)–() ∩ F(S) provided that the control sequence satisfies some restrictions; for
more details, see [].
Motivated by the above results, we investigate fixed point problems of asymptotically

strict pseudocontractions and zero point problems of the sumof twomonotonemappings.
In order to state our main results, we need the following tools.
Recall that a space is said to satisfy Opial’s condition [] if, for any sequence {xn} ⊂ H

with xn ⇀ x, where ⇀ denotes the weak convergence, the inequality

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖

holds for every y ∈H with y �= x. Indeed, the above inequality is equivalent to the following:

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖.

Lemma . [] Let {xn} and {yn} be bounded sequences in a Banach space X , and let βn

be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ =
( – βn)yn + βnxn for all integers n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . [] Let C be a nonempty, closed and convex subset of H , let A : C → H be a
mapping, and let B : H ⇒ H be a maximal monotone operator. Then F(Jr(I – rA)) = (A +
B)–().

http://www.fixedpointtheoryandapplications.com/content/2014/1/52
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Lemma . [] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + δn,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
(i)

∑∞
n= γn =∞;

(ii) lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| <∞.
Then limn→∞ αn = .

Lemma . [] Let C be a nonempty, closed and convex subset of H . Let T : C → C be
an asymptotically strict pseudocontraction. Then T is Lipschitz continuous and I – T is
demiclosed at zero.

2 Main results
Theorem . Let C be a nonempty closed convex subset of H . Let T : C → C be an asymp-
totically κ-strict pseudocontraction. Let A : C → H be an α-inverse-strongly monotone
mapping, and let B be a maximal monotone operator on H . Assume that F(T) ∩ (A +
B)–() �= ∅. Let {αn}, {βn} and {γn} be real number sequences in (, ). Let Jrn = (I + rnB)–,
where {rn} is a positive real number sequence. Let {xn} be a sequence in C generated by:
x ∈ C is chosen arbitrarily and

⎧⎨
⎩
zn = ProjC(αnu + ( – αn)Jrn (xn – rnAxn)),

xn+ = βnxn + ( – βn)(γnzn + ( – γn)Tnzn), ∀n≥ .

Assume that the sequences {αn}, {βn}, {γn} and {rn} satisfy the following restrictions:
(a)  < a≤ rn ≤ b < α, limn→∞ |rn+ – rn| = ;
(b) limn→∞ αn = ,

∑∞
n= αn =∞;

(c)  < c≤ βn ≤ d < ;
(d) κ ≤ γn ≤ e < , limn→∞ |γn+ – γn| = ,

where a, b, c, d and e are some real numbers. If T is asymptotically regular, then the se-
quence {xn} converges strongly to some point x̄, where x̄ = PF(T)∩(A+B)–()u.

Proof First, we show that the mapping I – rnA is nonexpansive. Indeed, we have

∥∥(I – rnA)x – (I – rnA)y
∥∥

= ‖x – y‖ – rn〈x – y,Ax –Ay〉 + rn‖Ax –Ay‖

≤ ‖x – y‖ – rn(α – rn)‖Ax –Ay‖.

It follows from Restriction (a) that I – rnA is nonexpansive. Put yn = γnzn + ( – γn)Tnzn
and fix p ∈ F(T)∩ (A + B)–(). It follows from Lemma . that

‖zn – p‖ = ∥∥ProjC(
αnu + ( – αn)Jrn (xn – rnAxn)

)
– p

∥∥
≤ αn‖u – p‖ + ( – αn)

∥∥Jrn (xn – rnAxn) – p
∥∥

≤ αn‖u – p‖ + ( – αn)‖xn – p‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/52
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In view of Restriction (d), we find that

‖yn – p‖ ≤ ∥∥γn(zn – p) + ( – γn)
(
Tnzn – Tnp

)∥∥

= γn‖zn – p‖ + ( – γn)
∥∥Tnzn – Tnp

∥∥

– γn( – γn)
∥∥(zn – p) –

(
Tnzn – Tnp

)∥∥

≤ γn‖zn – p‖ + ( – γn)
(‖zn – p‖ + κ

∥∥(zn – p) –
(
Tnzn – Tnp

)∥∥)
– γn( – γn)

∥∥(zn – p) –
(
Tnzn – Tnp

)∥∥

= ‖zn – p‖ – ( – γn)(γn – κ)
∥∥(zn – p) –

(
Tnzn – Tnp

)∥∥

≤ ‖zn – p‖. (.)

Substituting (.) into (.), we obtain that

‖xn+ – p‖ ≤ βn‖xn – p‖ + ( – βn)‖yn – p‖
≤ βn‖xn – p‖ + ( – βn)

(
αn‖u – p‖ + ( – αn)‖xn – p‖)

≤ (
 – αn( – βn)

)‖xn – p‖ + αn( – βn)‖u – p‖.

Putting M = max{‖x – p‖,‖u – p‖}, we find that ‖xn – p‖ ≤ M for all n ≥ . Indeed, it is
clear that ‖x –p‖ ≤M. Suppose that ‖xm –p‖ ≤M for some positive integerm. It follows
that

‖xm+ – p‖ ≤ (
 – αm( – βm)

)‖xm – p‖ + αm( – βm)‖u – p‖
≤ (

 – αm( – βm)
)
M + αm( – βn)M

=M.

This finds that {xn} is bounded. Putting ρn = Jrn (xn – rnAxn), we find that

‖ρn+ – ρn‖ ≤ ∥∥Jrn+ (xn+ – rn+Axn+) – Jrn+ (xn – rnAxn)
∥∥

+
∥∥Jrn+ (xn – rnAxn) – Jrn (xn – rnAxn)

∥∥
≤ ∥∥(xn+ – rn+Axn+) – (xn – rnAxn)

∥∥
+

∥∥Jrn+ (xn – rnAxn) – Jrn (xn – rnAxn)
∥∥

≤ ‖xn+ – xn‖ + |rn+ – rn|‖Axn‖
+

∥∥Jrn+ (xn – rnAxn) – Jrn (xn – rnAxn)
∥∥. (.)

On the other hand, we have

‖zn+ – zn‖ ≤ ∥∥(
αn+u + ( – αn+)ρn+

)
–

(
αnu + ( – αn)ρn

)∥∥
≤ ( – αn+)‖ρn+ – ρn‖ + |αn+ – αn|‖ρn – u‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/52
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Substituting (.) into (.), we find that

‖zn+ – zn‖ ≤ ∥∥(
αn+u + ( – αn+)ρn+

)
–

(
αnu + ( – αn)ρn

)∥∥
≤ ( – αn+)‖xn+ – xn‖ + |rn+ – rn|‖Axn‖ + |αn+ – αn|‖ρn – u‖

+ ( – αn+)
∥∥Jrn+ (xn – rnAxn) – Jrn (xn – rnAxn)

∥∥. (.)

Put ξn = xn – rnAxn. Since B is monotone, we find that

〈
Jrn+ξn – Jrnξn,

ξn – Jrn+ξn
rn+

–
ξn – Jrnξn

rn

〉
≥ .

It follows that 〈Jrn+ξn– Jrnξn, (– rn+
rn )(ξn– Jrnξn)〉 ≥ ‖Jrn+ξn– Jrnξn‖. This yields that |rn+ –

rn|‖ξn – Jrnξn‖ ≥ rn‖Jrn+ξn – Jrnξn‖. This combines with (.) to yield that

‖zn+ – zn‖ ≤ ( – αn+)‖xn+ – xn‖ + |rn+ – rn|‖Axn‖

+ |αn+ – αn|‖ρn – u‖ + |rn+ – rn|
rn

‖ξn – Jrnξn‖. (.)

On the other hand, we have

‖yn+ – yn‖ ≤ γn+‖zn+ – zn‖ + |γn+ – γn|
∥∥zn – Tnzn

∥∥
+ ( – γn+)

∥∥Tn+zn+ – Tnzn
∥∥. (.)

Substituting (.) into (.), we find that

‖yn+ – yn‖ – ‖xn+ – xn‖
≤ |rn+ – rn|‖Axn‖ + |αn+ – αn|‖ρn – u‖

+
|rn+ – rn|

rn
‖ξn – Jrnξn‖ + |γn+ – γn|

∥∥zn – Tnzn
∥∥

+ ( – γn+)
∥∥Tn+zn+ – Tnzn

∥∥.
It follows from Restrictions (a), (c) and (d) that

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

It follows from Lemma . that limn→∞ ‖yn – xn‖ = . Since xn+ – xn = ( –βn)(yn – xn), we
find that limn→∞ ‖xn+ – xn‖ = . Notice that

∥∥Jrn (I – rnA)xn – Jrn (I – rnA)p
∥∥

=
∥∥(xn – p) – rn(Axn –Ap)

∥∥

= ‖xn – p‖ – rn〈xn – p,Axn –Ap〉 + rn‖Axn –Ap‖

≤ ‖xn – p‖ – rn(α – rn)‖Axn –Ap‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/52
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Since the norm is convex, we see from (.) and (.) that

‖xn+ – p‖ ≤ βn‖xn – p‖ + ( – βn)‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)‖zn – p‖

≤ βn‖xn – p‖ + ( – βn)
∥∥αn(u – p) + ( – αn)

(
Jrn (xn – rnAxn) – p

)∥∥

≤ βn‖xn – p‖ + αn( – βn)‖u – p‖

+ ( – αn)( – βn)
∥∥Jrn (xn – rnAxn) – p

∥∥

≤ ‖xn – p‖ + αn‖u – p‖ – rn(α – rn)( – αn)( – βn)‖Axn –Ap‖. (.)

This yields that

rn(α – rn)( – αn)( – βn)‖Axn –Ap‖

≤ ‖xn – p‖ + αn‖u – p‖ – ‖xn+ – p‖

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖ + αn‖u – p‖.

In view of Restrictions (a), (b) and (c), we obtain that

lim
n→∞‖Axn –Ap‖ = . (.)

Notice that

‖ρn – p‖ = ∥∥Jrn (xn – rnAxn) – Jrn (p – rnAp)
∥∥

≤ 〈
(xn – rnAxn) – (p – rnAp),ρn – p

〉

=


(∥∥(xn – rnAxn) – (p – rnAp)

∥∥ + ‖ρn – p‖

–
∥∥(xn – rnAxn) – (p – rnAp) – (ρn – p)

∥∥)

≤ 

(‖xn – p‖ + ‖ρn – p‖ – ∥∥xn – ρn – rn(Axn –Ap)

∥∥)

≤ 

(‖xn – p‖ + ‖ρn – p‖ – ‖xn – ρn‖ – rn‖Axn –Ap‖

+ rn‖xn – ρn‖‖Axn –Ap‖)

≤ 

(‖xn – p‖ + ‖ρn – p‖ – ‖xn – ρn‖ + rn‖xn – ρn‖‖Axn –Ap‖).

It follows that

‖ρn – p‖ ≤ ‖xn – p‖ – ‖xn – ρn‖ + rn‖xn – ρn‖‖Axn –Ap‖. (.)

This yields that

‖zn – p‖ ≤ αn‖u – p‖ + ( – αn)‖ρn – p‖

≤ αn‖u – p‖ + ‖xn – p‖ – ( – αn)‖xn – ρn‖ + rn‖xn – ρn‖‖Axn –Ap‖.

http://www.fixedpointtheoryandapplications.com/content/2014/1/52
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It follows from (.) that

‖xn+ – p‖ ≤ βn‖xn – p‖ + ( – βn)‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)‖zn – p‖

≤ ‖xn – p‖ + αn‖u – p‖ – ( – αn)( – βn)‖xn – ρn‖

+ rn( – βn)‖xn – ρn‖‖Axn –Ap‖.

We therefore obtain that

( – αn)( – βn)‖xn – ρn‖

≤ ‖xn – p‖ + αn‖u – p‖ – ‖xn+ – p‖

+ rn( – βn)‖xn – ρn‖‖Axn –Ap‖
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + αn‖u – p‖

+ rn( – βn)‖xn – ρn‖‖Axn –Ap‖.

In view of Restrictions (a), (b) and (c), we find from (.) that

lim
n→∞‖xn – ρn‖ = . (.)

Next, we show that lim supn→∞〈u – x̄,ρn – x̄〉 ≤ , where x̄ = PF(T)∩(A+B)–()u. To show it,
we can choose a subsequence {ρni} of {ρn} such that

lim sup
n→∞

〈u – x̄,ρn – x̄〉 = lim
i→∞〈u – x̄,ρni – x̄〉.

Since ρni is bounded, we can choose a subsequence {ρnij
} of {ρni} which converges weakly

to some point x.Wemay assume, without loss of generality, that ρni converges weakly to x.
Since ρn = Jrn (xn – rnAxn), we find that xn–ρn

rn –Axn ∈ Bρn. Since B is monotone, we get, for
any (μ,ν) ∈ B, that 〈ρn –μ, xn–ρn

rn –Axn – ν〉 ≥ . Replacing n by ni and letting i → ∞, we
obtain from (.) that 〈x –μ, –Ax – ν〉 ≥ . This means –Ax ∈ Bx, that is,  ∈ (A + B)(x).
Hence we get x ∈ (A + B)–(). Next, we show that x ∈ F(T). Notice that

‖zn – xn‖ ≤ ∥∥ProjC(
αnu + ( – αn)Jrn (xn – rnAxn)

)
– xn

∥∥
≤ αn‖u – xn‖ + ( – αn)

∥∥Jrn (xn – rnAxn) – xn
∥∥.

In view of Restriction (a), we find from (.) that limn→∞ ‖zn – xn‖ = . Note that

∥∥(
γnxn + ( – γn)Tnxn

)
– xn

∥∥
≤ ∥∥(

γnxn + ( – γn)Tnxn
)
–

(
γnzn + ( – γn)Tnzn

)∥∥
+

∥∥(
γnzn + ( – γn)Tnzn

)
– xn

∥∥
≤ γn‖xn – zn‖ + ( – γn)

∥∥Tnxn – Tnzn
∥∥ +

∥∥(
γnzn + ( – γn)Tnzn

)
– xn

∥∥
≤ L‖xn – zn‖ + ‖yn – xn‖.

http://www.fixedpointtheoryandapplications.com/content/2014/1/52
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It follows from (.) that

lim
n→∞

∥∥(
γnxn + ( – γn)Tnxn

)
– xn

∥∥ = . (.)

Note that

∥∥Tnxn – xn
∥∥ ≤ ∥∥Tnxn –

(
γnxn + ( – γn)Tnxn

)∥∥
+

∥∥(
γnxn + ( – γn)Tnxn

)
– xn

∥∥
≤ γn

∥∥Tnxn – xn
∥∥ +

∥∥(
γnxn + ( – γn)Tnxn

)
– xn

∥∥.
It follows that (–γn)‖Tnxn–xn‖ ≤ ‖(γnxn+(–γn)Tnxn)–xn‖. This implies fromRestric-
tion (d) and (.) that limn→∞ ‖Tnxn – xn‖ = . Since T is uniformly L-Lipschitz continu-
ous, we can obtain that limn→∞ ‖Txn–xn‖ = . In view of Lemma ., we find that x ∈ F(T).
This implies that

lim sup
n→∞

〈u – x̄,ρn – x̄〉 = 〈u – x̄,x – x̄〉 ≤ .

On the other hand, we have

‖xn+ – x̄‖ ≤ βn‖xn – x̄‖ + ( – βn)‖yn – x̄‖

≤ βn‖xn – x‖ + ( – βn)‖zn – x̄‖

≤ βn‖xn – x‖ + ( – βn)
∥∥αn(un – x̄) + ( – αn)(ρn – x̄)

∥∥

≤ βn‖xn – x‖ + ( – αn)( – βn)‖ρn – x‖

+ αn( – βn)〈u – x̄,ρn – x〉
≤ (

 – αn( – βn)
)‖xn – x̄‖ + αn( – βn)〈u – x̄,ρn – x̄〉.

From Lemma ., we find that limn→∞ ‖xn – x̄‖ = . This completes the proof. �

If T is asymptotically nonexpansive, then we find the following result.

Corollary . Let C be a nonempty closed convex subset of H . Let T : C → C be an asymp-
totically nonexpansive mapping. Let A : C → H be an α-inverse-strongly monotone map-
ping, and let B be amaximalmonotone operator on H .Assume that F(T)∩ (A+B)–() �= ∅.
Let {αn} and {βn} be real number sequences in (, ). Let Jrn = (I + rnB)–, where {rn} is a
positive real number sequence. Let {xn} be a sequence in C generated by: x ∈ C is chosen
arbitrarily and

⎧⎨
⎩
zn = PC(αnu + ( – αn)Jrn (xn – rnAxn)),

xn+ = βnxn + ( – βn)Tnzn, ∀n≥ .

Assume that the sequences {αn}, {γn} and {rn} satisfy the following restrictions:
(a)  < a≤ rn ≤ b < α, limn→∞ |rn+ – rn| = ;
(b) limn→∞ αn = ,

∑∞
n= αn =∞;

(c)  < c≤ βn ≤ d < ,
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where a, b, c and d are some real numbers. If T is asymptotically regular, then the sequence
{xn} converges strongly to some point x̄, where x̄ = PF(T)∩(A+B)–()u.

3 Applications
In this section, we shall consider equilibrium problems and variational inequalities.
Let F be a bifunction of C × C into R, where R denotes the set of real numbers. Recall

the following equilibrium problem:

Find x ∈ C such that F(x, y)≥ , ∀y ∈ C.

In this work, we use EP(F) to denote the solution set of the equilibrium problem.
To study the equilibrium problems, we may assume that F satisfies the following condi-

tions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x)≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y �→ F(x, y) is convex and weakly lower semi-continuous.
Putting F(x, y) = 〈Ax, y – x〉 for every x, y ∈ C, we see that the equilibrium problem is

reduced to the variational inequality (.).
The following lemma can be found in [].

Lemma . Let C be a nonempty closed convex subset of H , and let F : C × C → R be a
bifunction satisfying (A)-(A). Then, for any r >  and x ∈H , there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Further, define

Trx =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
(.)

for all r >  and x ∈H . Then the following hold:
(a) Tr is single-valued;
(b) Tr is firmly nonexpansive, i.e., for any x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

(c) F(Tr) = EP(F);
(d) EP(F) is closed and convex.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , let
F be a bifunction from C × C to R which satisfies (A)-(A), and let AF be a multivalued
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mapping of H into itself defined by

AFx =

⎧⎨
⎩

{z ∈H : F(x, y) ≥ 〈y – x, z〉,∀y ∈ C}, x ∈ C,

∅, x /∈ C.
(.)

Then AF is amaximalmonotone operator with the domain D(AF ) ⊂ C, EP(F) = A–
F () and

Trx = (I + rAF )–x, ∀x ∈H , r > ,

where Tr is defined as in (.).

The following result is not derived based on Theorem . and Lemma ..

Theorem . Let C be a nonempty closed convex subset of H . Let T : C → C be an asymp-
totically κ-strict pseudocontraction. Let F be a bifunction from C × C to R which satisfies
(A)-(A).Assume that F(T)∩EP(F) �= ∅. Let {αn}, {βn} and {γn} be real number sequences
in (, ). Let {xn} be a sequence in C generated by: x ∈ C is chosen arbitrarily and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wn ∈ C such that FB(wn,u) + 
rn 〈u –wn,wn – xn〉 ≥ , ∀u ∈ C,

zn = PC(αnu + ( – αn)wn),

yn = γnzn + ( – γn)Tnzn,

xn+ = βnxn + ( – βn)yn, ∀n≥ .

Assume that the sequences {αn}, {βn}, {γn} and {rn} satisfy the following restrictions:
(a)  < a≤ rn ≤ b < α, limn→∞ |rn+ – rn| = ;
(b) limn→∞ αn = ,

∑∞
n= αn =∞;

(c)  < c≤ βn ≤ d < ;
(d) κ ≤ γn ≤ e < , limn→∞ |γn+ – γn| = ,

where a, b, c, d and e are some real numbers. If T is asymptotically regular, then the se-
quence {xn} converges strongly to some point x̄, where x̄ = PF(T)∩EP(F)u.

If T is asymptotically nonexpansive, then Theorem . is reduced to the following.

Corollary . Let C be a nonempty closed convex subset of H . Let T : C → C be an asymp-
totically nonexpansivemapping. Let F be a bifunction from C×C toRwhich satisfies (A)-
(A). Assume that F(T) ∩ EP(F) �= ∅. Let {αn} and {βn} be real number sequences in (, ).
Let {xn} be a sequence in C generated by: x ∈ C is chosen arbitrarily and

⎧⎪⎪⎨
⎪⎪⎩
wn ∈ C such that FB(wn,u) + 

rn 〈u –wn,wn – xn〉 ≥ , ∀u ∈ C,

zn = PC(αnu + ( – αn)wn),

xn+ = βnxn + ( – βn)Tnzn, ∀n≥ .

Assume that the sequences {αn}, {βn}, {γn} and {rn} satisfy the following restrictions:
(a)  < a≤ rn ≤ b < α, limn→∞ |rn+ – rn| = ;
(b) limn→∞ αn = ,

∑∞
n= αn =∞;

(c)  < c≤ βn ≤ d < ,
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where a, b, c and d are some real numbers. If T is asymptotically regular, then the sequence
{xn} converges strongly to some point x̄, where x̄ = PF(T)∩EP(F)u.

Let H be a Hilbert space and f :H → (–∞, +∞] be a proper convex lower semicontin-
uous function. Then the subdifferential ∂f of f is defined as follows:

∂f (x) =
{
y ∈H : f (z) ≥ f (x) + 〈z – x, y〉, z ∈H

}
, ∀x ∈ H .

From Rockafellar [], we find that ∂f is maximal monotone. It is easy to verify that  ∈
∂f (x) if and only if f (x) =miny∈H f (y). Let IC be the indicator function of C, i.e.,

IC(x) =

⎧⎨
⎩
, x ∈ C,

+∞, x /∈ C.

Since IC is a proper lower semicontinuous convex function on H , we see that the subdif-
ferential ∂IC of IC is a maximal monotone operator.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , ProjC
the metric projection from H onto C, ∂IC the subdifferential of IC ,where IC is defined above
and Jλ = (I + λ∂IC)–. Then

y = Jλx ⇐⇒ y = ProjC x, x ∈H , y ∈ C.

Now, we consider a variation inequality problem.

Theorem . Let C be a nonempty closed convex subset of H . Let T : C → C be an asymp-
totically κ-strict pseudocontraction. Let A : C → H be an α-inverse-strongly monotone
mapping. Assume that F(T) ∩ VI(C,A) �= ∅. Let {αn}, {βn} and {γn} be real number se-
quences in (, ). Let {xn} be a sequence in C generated by: x ∈ C is chosen arbitrarily and

⎧⎪⎪⎨
⎪⎪⎩
zn = PC(αnu + ( – αn)PC(xn – rnAxn)),

yn = γnzn + ( – γn)Tnzn,

xn+ = βnxn + ( – βn)yn, ∀n≥ .

Assume that the sequences {αn}, {βn}, {γn} and {rn} satisfy the following restrictions:
(a)  < a≤ rn ≤ b < α, limn→∞ |rn+ – rn| = ;
(b) limn→∞ αn = ,

∑∞
n= αn =∞;

(c)  < c≤ βn ≤ d < ;
(d) κ ≤ γn ≤ e < , limn→∞ |γn+ – γn| = ,

where a, b, c, d and e are some real numbers. If T is asymptotically regular, then the se-
quence {xn} converges strongly to some point x̄, where x̄ = PF(T)∩VI(C,A)u.

Proof Put Bx = ∂IC . Next, we show that VI(C,A) = (A + ∂IC)–(). Notice that

x ∈ (A + ∂IC)–() ⇐⇒  ∈ Ax + ∂ICx

⇐⇒ –Ax ∈ ∂ICx

http://www.fixedpointtheoryandapplications.com/content/2014/1/52
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⇐⇒ 〈Ax, y – x〉 ≥ 

⇐⇒ x ∈ VI(C,A).

From Lemma ., we can conclude the desired conclusion immediately. �
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