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Abstract
In this paper, a new iterative algorithm is proposed for finding a common solution to
a constrained convex minimization problem, a quasi-variational inclusion problem
and the fixed point problem of a strictly pseudo-contractive mapping in a real Hilbert
space. It is proved that the sequence generated by the proposed algorithm
converges strongly to a common solution of the three above described problems. By
applying this result to some special cases, several interesting results can be obtained.
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1 Introduction
Variational inequalities, introduced by Hartman and Stampacchia [] in the early sixties,
are one of the most interesting and intensively studied classes of mathematical problems.
They are a very powerful tool of the current mathematical technology and have been ex-
tended to study a considerable amount of problems arising in mechanics, physics, opti-
mization and control, nonlinear programming, transportation equilibrium and engineer-
ing sciences (see, e.g., [–]). As a useful and important generalization of variational in-
equalities, quasi-variational inclusion problems are also further studied (see, e.g., [–]
and the references contained therein).
Throughout this paper, we assume that H is a real Hilbert space with the inner product

〈· , ·〉 and the induced norm ‖ · ‖, and let C be a nonempty closed convex subset ofH .F (T)
denotes a fixed point set of the mapping T .
Let � be a single-valued mapping of C into H and M be a multi-valued mapping with

domain D(M) = C. The quasi-variational inclusion problem is to find u ∈ C such that

 ∈ �(u) +Mu. (.)
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The solution set of quasi-variational inclusion problem (.) is denoted by VI(C,�,M). In
particular, ifM = ∂δC , where δC :H → [,∞] is the indicator function of C, i.e.,

δC(x) =

{
, x ∈ C,
+∞, x /∈ C,

then the variational inclusion problem (.) is equivalent to finding u ∈ C such that

〈
�(u), v – u

〉 ≥ , ∀v ∈ C. (.)

This problem is called the Hartman-Stampacchia variational inequality problem []. The
solution set of problem (.) is denoted by VI(C,�).
Recall that T : C → C is called a k-strictly pseudo-contractive mapping if there exists a

constant k ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C, (.)

and T is called a pseudo-contractive mapping if

‖Tx – Ty‖ ≤ ‖x – y‖ + ∥∥(I – T)x – (I – T)y
∥∥, ∀x, y ∈ C.

It is obvious that k = , then the mapping T is nonexpansive, that is,

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

It is well known that finding fixed points of nonexpansive mappings is an important
topic in the theory of nonexpansive mappings and has wide applications in a number of
applied areas, such as the convex feasibility problem [, ], the split feasibility problem
[], image recovery and signal processing []. After that, as an important generalization
of nonexpansive mappings, strictly pseudo-contractive mappings become one of the most
interesting studied classes of nonexpansive mappings (see, e.g., [–]). In fact, strictly
pseudo-contractive mappings have more powerful applications than nonexpansive map-
pings do such as in solving an inverse problem [].
In order to find a common element of the solution set of quasi-variational inclusion

problem (.) and the fixed point set of k-strictly pseudo-contractive mapping (.), which
is also a solution of the following constrained convex minimization problem:

min
x∈C f (x), (.)

where f : C → R is a real-valued convex function and assumes that problem (.) is con-
sistent (i.e., its solution set is nonempty), let � denote its solution set. Ceng et al. []
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studied the following algorithm: take x = x ∈ C arbitrarily and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = PC(xn – λn∇f (xn)),
tn = PC(xn – λn∇f (yn)),
zn = ( – αn – α̂n)xn + αnJM,μn (tn –μn�(tn))

+ α̂nSJM,μn (tn –μn�(tn)),
Cn = {z ∈ C : ‖zn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z,x – xn〉 ≥ },
xn+ = PCn∩Qnx, n≥ .

Under appropriate conditions they obtained one strong convergence theorem.
In this paper, motivated and inspired by the above facts, we propose a new algorithm as

follows: take x ∈ C arbitrarily, set C = C, and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = PC(xn – λn∇f (xn)),
zn = PC(xn – λn∇f (yn)),
tn = JM,μn (zn –μn�(zn)),
wn = αntn + ( – αn)Stn,
Cn+ = {w ∈ Cn : ‖wn –w‖ ≤ ‖xn –w‖},
xn+ = PCn+x, n≥ ,

and also get a strong convergence theorem under certain conditions.
The remainder of this paper is organized as follows. In Section , some definitions and

lemmas are provided to get the main results of this paper. In Section , we give and prove
one strong convergence theorem about our proposed algorithm. Finally, in Section , we
apply our conclusion to some special cases.

2 Preliminaries
Let H be a real Hilbert space. It is well known that

‖x – y‖ = ‖x‖ – 〈x, y〉 + ‖y‖

and

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖

for all x, y ∈ H and t ∈ [, ].
Now, we recall some definitions and useful results which will be used in the next section.

Definition . Let T : C →H be a nonlinear operator.
() T is Lipschitz continuous if there exists a constant L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ C.

() T is monotone if

〈Tx – Ty,x – y〉 ≥ , ∀x, y ∈ C.
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() T is ρ-strongly monotone if there exists a number ρ >  such that

〈Tx – Ty,x – y〉 ≥ ρ‖x – y‖, ∀x, y ∈ C.

() T is η-inverse-strongly monotone if there exists a number η >  such that

〈Tx – Ty,x – y〉 ≥ η‖Tx – Ty‖, ∀x, y ∈ C.

It is easy to see that the following results hold: (i) strongly monotone is monotone; (ii) an
η-inverse-strongly monotone mapping is monotone and 

η
-Lipschitz continuous; (iii) T is

k-strictly pseudo-contractive, then I – T is –k
 -inverse strongly monotone.

Definition . A multi-valued mapping M : D(M) ⊂ H → H is called monotone if its
graph G(M) = {(x, f ) ∈ H ×H : x ∈ D(M), f ∈ Mx} is a monotone set in H ×H , that is, M
is monotone if and only if

(x, f ), (y, g) ∈G(M) ⇒ 〈x – y, f – g〉 ≥ .

Amonotonemulti-valuedmappingM is calledmaximal if for any (x, f ) ∈ H×H , 〈x–y, f –
g〉 ≥  for every (y, g) ∈G(M) implies f ∈Mx.

Remark . [] The following results are equivalent:
() A multi-valued mapping M is maximal monotone;
() M is monotone and (I + λM)D(M) =H for each λ > ;
() M is monotone and its graph G(M) is not properly contained in the graph of any

other monotone mapping in H .

Definition . PC : H → C is called a metric projection if for every point x ∈ H , there
exists a unique nearest point in C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

Lemma . Let C be a nonempty closed convex subset of H and let PC :H → C be ametric
projection, then
() ‖PCx – PCy‖ ≤ 〈x – y,PCx – PCy〉, ∀x, y ∈H ;
() moreover, PC is a nonexpansive mapping, i.e., ‖PCx – PCy‖ ≤ ‖x – y‖, ∀x, y ∈H ;
() 〈x – PCx, y – PCx〉 ≤ , ∀x ∈H , y ∈ C;
() ‖x – y‖ ≥ ‖x – PCx‖ + ‖y – PCx‖, ∀x ∈ H , y ∈ C.

Definition . LetM :D(M) ⊂H → H be a multi-valued maximal monotone mapping,
then the single-valued mapping JM,μ :H → H defined by

JM,μx = (I +μM)–x, ∀x ∈H

is called the resolvent operator associated with M, where μ is any positive number and I
is the identity mapping.
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Lemma . [, , ] The resolvent operator JM,μ associated with M is single-valued and
firmly nonexpansive, i.e.,

‖JM,μx – JM,μy‖ ≤ 〈JM,μx – JM,μy,x – y〉, ∀x, y ∈H .

Consequently, JM,μ is nonexpansive and monotone.

Lemma . [] Let M be a multi-valued maximal monotone mapping with D(M) = C.
Then, for any given μ > , u ∈ C is a solution of problem (.) if and only if u ∈ C satisfies

u = JM,μ
(
u –μ�(u)

)
.

Lemma . [] Let M be a multi-valued maximal monotone mapping with D(M) = C
and let � : C → H be a monotone, continuous and single-valued mapping. Then M +� is
maximal monotone.

In the sequel, we use xn ⇀ x and xn → x to denote the weak convergence and strong
convergence of the sequence {xn} in H , respectively.

Lemma . [] Let C be a nonempty closed convex subset of H and let T : C → C be a
k-strictly pseudocontractive mapping, then the following results hold:
() inequality (.) is equivalent to

〈Tx – Ty,x – y〉 ≤ ‖x – y‖ –  – k


∥∥(I – T)x – (I – T)y
∥∥, ∀x, y ∈ C.

() T is Lipschitz continuous with a constant +k
–k , i.e.,

‖Tx – Ty‖ ≤  + k
 – k

‖x – y‖, ∀x, y ∈ C.

() (Demi-closedness principle) I – T is demi-closed on C, that is,

if xn ⇀ x∗ ∈ C and (I – T)xn → , then x∗ = Tx∗.

Lemma . Let C be a nonempty closed convex subset of H and let T : C → H be an η-
inverse-strongly monotone mapping, then for all x, y ∈ C and η > , we have

∥∥(I – λT)x – (I – λT)y
∥∥ =

∥∥(x – y) – λ(Tx – Ty)
∥∥

= ‖x – y‖ – λ〈Tx – Ty,x – y〉 + λ‖Tx – Ty‖

≤ ‖x – y‖ + λ(λ – η)‖Tx – Ty‖.

So, if  < λ ≤ η, then I – λT is a nonexpansive mapping from C to H .

Lemma . [, ] Let A : C →H be a monotone, Lipschitz continuous mapping, and let
NCv be the normal cone to C at v ∈ C, i.e.,

NCv =
{
z ∈ H : 〈v – u, z〉 ≥ ,∀u ∈ C

}
.
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Define

Tv =

{
Av +NCv, v ∈ C,
∅, v /∈ C.

Then, T is maximal monotone and  ∈ Tv if and only if v ∈VI(C,A).

For the minimization problem (.), if f is (Frechet) differentiable, then we have the
following lemma.

Lemma . [] (Optimality condition) A necessary condition of optimality for a point
x∗ ∈ C to be a solution of the minimization problem (.) is that x∗ solves the variational
inequality

〈∇f
(
x∗),x – x∗〉 ≥ , ∀x ∈ C. (.)

Equivalently, x∗ ∈ C solves the fixed point equation

x∗ = PC
(
x∗ – λ∇f

(
x∗))

for every constant λ > . If, in addition, f is convex, then the optimality condition (.) is
also sufficient.

3 Main results
In this section, we prove a strong convergence theorem by an iterative algorithm for find-
ing a solution of the constrained convex minimization problem (.), which is also a com-
mon solution of the quasi-variational inclusion problem (.) and the fixed point problem
of a k-strictly pseudo-contractive mapping (.) in a real Hilbert space.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . For the
minimization problem (.), assume that f is (Frechet) differentiable and the gradient∇f is
a ρ-inverse-stronglymonotonemapping. Let� : C → H be an η-inverse-strongly monotone
mapping and M be a maximal monotone mapping with D(M) = C, and let S : C → C be a
k-strictly pseudo-contractive mapping such that F =F (S)∩ � ∩VI(C,�,M) �= ∅. Pick any
x ∈ C and set C = C. Let {xn} ⊂ C be a sequence generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = PC(xn – λn∇f (xn)),
zn = PC(xn – λn∇f (yn)),
tn = JM,μn (zn –μn�(zn)),
wn = αntn + ( – αn)Stn,
Cn+ = {w ∈ Cn : ‖wn –w‖ ≤ ‖xn –w‖},
xn+ = PCn+x, n≥ ,

(.)

where the following conditions hold:
(i)  < lim infn→∞ λn ≤ lim supn→∞ λn < ρ ;
(ii) ε ≤ μn ≤ η for some ε ∈ (, η];
(iii) k < lim infn→∞ αn ≤ lim supn→∞ αn < .

Then the sequence {xn} converges strongly to PFx.
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Proof It is obvious thatCn is closed for each n ∈N. Since ‖wn–w‖ ≤ ‖xn–w‖ is equivalent
to

‖wn – xn‖ + 〈wn – xn,xn –w〉 ≤ ,

we have that Cn is convex for each n ∈ N. Therefore, {xn} is well defined. We divide the
proof into five steps.
Step . We show by induction that F ⊂ Cn for each n ∈N.
It is obvious that F ⊂ C = C. Suppose that F ⊂ Cn for some n ∈ N. Let p ∈F , we have

‖wn – p‖ =
∥∥αntn + ( – αn)Stn – p

∥∥

=
∥∥αn(tn – p) + ( – αn)(Stn – p)

∥∥

= αn‖tn – p‖ + ( – αn)‖Stn – p‖ – αn( – αn)‖tn – Stn‖

≤ αn‖tn – p‖ + ( – αn)
[‖tn – p‖ + k‖tn – Stn‖

]
– αn( – αn)‖tn – Stn‖

= ‖tn – p‖ + ( – αn)(k – αn)‖tn – Stn‖

≤ ‖tn – p‖. (.)

According to Lemma ., Lemma . and Lemma ., we get

‖tn – p‖ =
∥∥JM,μn

(
zn –μn�(zn)

)
– JM,μn

(
p –μn�(p)

)∥∥

≤ ∥∥zn –μn�(zn) –
(
p –μn�(p)

)∥∥

≤ ‖zn – p‖ +μn(μn – η)
∥∥�(zn) –�(p)

∥∥

≤ ‖zn – p‖. (.)

Since the gradient ∇f is a ρ-inverse-strongly monotone mapping and p ∈ F ⊂ �, from
Lemma ., we have

〈∇f (yn) –∇f (p), yn – p
〉 ≥  and

〈∇f (p), yn – p
〉 ≥ . (.)

From Lemma .() and (.), we obtain

‖zn – p‖ =
∥∥PC

(
xn – λn∇f (yn)

)
– p

∥∥

≤ ∥∥xn – λn∇f (yn) – p
∥∥ –

∥∥xn – λn∇f (yn) – zn
∥∥

= ‖xn – p‖ – ‖xn – zn‖ + λn
〈∇f (yn),p – zn

〉
= ‖xn – p‖ – ‖xn – zn‖ + λn

[〈∇f (yn) –∇f (p),p – yn
〉

+
〈∇f (p),p – yn

〉
+

〈∇f (yn), yn – zn
〉]

≤ ‖xn – p‖ – ‖xn – zn‖ + λn
〈∇f (yn), yn – zn

〉
= ‖xn – p‖ – ‖xn – yn‖ – 〈xn – yn, yn – zn〉

– ‖yn – zn‖ + λn
〈∇f (yn), yn – zn

〉
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= ‖xn – p‖ – ‖xn – yn‖ – ‖yn – zn‖

+ 
〈
xn – λn∇f (yn) – yn, zn – yn

〉
. (.)

It is easy to see that ρ-inverse-strongly monotone mapping ∇f is 
ρ
-Lipschitz continuous.

Further, since yn = PC(xn – λn∇f (xn)) and by Lemma .() we have

〈
xn – λn∇f (yn) – yn, zn – yn

〉
=

〈
xn – λn∇f (xn) – yn, zn – yn

〉
+

〈
λn∇f (xn) – λn∇f (yn), zn – yn

〉
≤ 〈

λn∇f (xn) – λn∇f (yn), zn – yn
〉

≤ λn
∥∥∇f (xn) –∇f (yn)

∥∥‖zn – yn‖

≤ λn

ρ
‖xn – yn‖‖zn – yn‖. (.)

Substituting (.) into (.), we obtain

‖zn – p‖ ≤ ‖xn – p‖ – ‖xn – yn‖ – ‖yn – zn‖

+ 
〈
xn – λn∇f (yn) – yn, zn – yn

〉
≤ ‖xn – p‖ – ‖xn – yn‖ – ‖yn – zn‖ + λn

ρ
‖xn – yn‖‖zn – yn‖

≤ ‖xn – p‖ – ‖xn – yn‖ – ‖yn – zn‖ + λ
n

ρ ‖xn – yn‖ + ‖zn – yn‖

= ‖xn – p‖ +
(

λ
n

ρ – 
)

‖xn – yn‖

≤ ‖xn – p‖. (.)

From (.), (.) and (.), we have

‖wn – p‖ ≤ ‖xn – p‖. (.)

Hence p ∈ Cn+. This implies that p ∈ Cn for all n ∈N.
Step . We prove that limn→∞ ‖xn+ – xn‖ =  and limn→∞ ‖xn –wn‖ = .
Let x∗ = PFx. From xn = PCnx and x∗ ∈F ⊂ Cn, we obtain

‖xn – x‖ ≤ ∥∥x∗ – x
∥∥. (.)

Then {xn} is bounded. This implies that {zn}, {tn} and {wn} are also bounded. Since xn =
PCnx and xn+ ∈ Cn+ ⊂ Cn, we have

‖xn – x‖ ≤ ‖xn+ – x‖.

Therefore limn→∞ ‖xn – x‖ exists. From xn = PCnx, xn+ ∈ Cn+ ⊂ Cn and Lemma .(),
we obtain

 ≤ ‖xn+ – xn‖ ≤ ‖x – xn+‖ – ‖x – xn‖,

http://www.fixedpointtheoryandapplications.com/content/2014/1/54
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which implies

lim
n→∞‖xn+ – xn‖ = . (.)

It follows from xn+ ∈ Cn+ that ‖wn – xn+‖ ≤ ‖xn – xn+‖, and hence

‖xn –wn‖ ≤ ‖xn – xn+‖ + ‖xn+ –wn‖ ≤ ‖xn – xn+‖. (.)

From (.) and (.), we have

lim
n→∞‖xn –wn‖ = . (.)

Step . We show that limn→∞ ‖tn – Stn‖ = , limn→∞ ‖xn – zn‖ =  and limn→∞ ‖xn –
tn‖ = .
For p ∈F , from (.), (.) and (.), we have

‖wn – p‖ ≤ ‖tn – p‖ + ( – αn)(k – αn)‖tn – Stn‖

≤ ‖zn – p‖ + ( – αn)(k – αn)‖tn – Stn‖

≤ ‖xn – p‖ +
(

λ
n

ρ – 
)

‖xn – yn‖ + ( – αn)(k – αn)‖tn – Stn‖.

Then(
 –

λ
n

ρ

)
‖xn – yn‖ + ( – αn)(αn – k)‖tn – Stn‖

≤ ‖xn – p‖ – ‖wn – p‖

≤ (‖xn – p‖ + ‖wn – p‖)‖xn –wn‖. (.)

Since  < lim infn→∞ λn ≤ lim supn→∞ λn < ρ and k < lim infn→∞ αn ≤ lim supn→∞ αn < ,
from (.) and (.) we get

lim
n→∞‖xn – yn‖ =  (.)

and

lim
n→∞‖tn – Stn‖ = . (.)

As ∇f is 
ρ
-Lipschitz continuous, we have

‖zn – yn‖ =
∥∥PC

(
xn – λn∇f (yn)

)
– PC

(
xn – λn∇f (xn)

)∥∥
≤ ∥∥xn – λn∇f (yn) –

(
xn – λn∇f (xn)

)∥∥
= λn

∥∥∇f (yn) –∇f (xn)
∥∥

≤ λn

ρ
‖xn – yn‖.
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Hence

lim
n→∞‖zn – yn‖ = . (.)

From (.) and (.), we obtain

lim
n→∞‖xn – zn‖ = . (.)

We observe

‖wn – tn‖ =
∥∥αntn + ( – αn)Stn – tn

∥∥
= ( – αn)‖Stn – tn‖
≤ ‖Stn – tn‖. (.)

From (.), we get

lim
n→∞‖wn – tn‖ = . (.)

Combining (.) and (.), we have

lim
n→∞‖xn – tn‖ = . (.)

Step . Since {xn} is bounded, there exists a subsequence {xni} which converges weakly
to u. We show that

u ∈F =F (S)∩ � ∩VI(C,�,M).

Indeed, firstly, we show u ∈ F (S). Since ‖xn – tn‖ →  and xni ⇀ u, we have tni ⇀ u.
From ‖Stn – tn‖ → , we obtain ‖Stni – tni‖ →  as i → ∞. By Lemma . (Demi-
closedness principle), we can conclude that u ∈F (S).
Secondly, we show u ∈ �. Since zn = PC(xn – λn∇f (yn)) and by Lemma .(), we have

〈
xn – λn∇f (yn) – zn, zn – v

〉 ≥ ,

that is,〈
v – zn,

zn – xn
λn

+∇f (yn)
〉
≥ .

Let

Tv =

{
∇f (v) +NCv, v ∈ C,
∅, v /∈ C.

Then, from Lemma ., we know that T is maximal monotone and  ∈ Tv if and only if
v ∈ VI(C,∇f ). Let G(T) be the graph of T and let (v,h) ∈ G(T). Then we have h ∈ Tv =

http://www.fixedpointtheoryandapplications.com/content/2014/1/54
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∇f (v) +NCv. Hence h –∇f (v) ∈NCv. So, we have

〈
v – z,h –∇f (v)

〉 ≥ , ∀z ∈ C.

Therefore,

〈v – zni ,h〉
≥ 〈

v – zni ,∇f (v)
〉

≥ 〈
v – zni ,∇f (v)

〉
–

〈
v – zni ,

zni – xni
λni

+∇f (yni )
〉

=
〈
v – zni ,∇f (v) –∇f (zni )

〉
+

〈
v – zni ,∇f (zni ) –∇f (yni )

〉
–

〈
v – zni ,

zni – xni
λni

〉
≥ 〈

v – zni ,∇f (zni ) –∇f (yni )
〉
–

〈
v – zni ,

zni – xni
λni

〉
. (.)

Since ‖xn – yn‖ →  and ‖xn – zn‖ → , we have yni ⇀ u and zni ⇀ u. Then, from (.),
we obtain 〈v – u,h – 〉 = 〈v – u,h〉 ≥  as i → ∞. Since T is maximal monotone, we have
 ∈ Tu and hence u ∈VI(C,∇f ). According to Lemma ., we obtain u ∈ �.
Finally, let us show u ∈ VI(C,�,M). Since � : C → H is η-inverse-strongly monotone

and M is maximal monotone, by Lemma . we know that M +� is maximal monotone.
Take a fixed (y, g) ∈G(M +�) arbitrarily. Then we have g ∈ �(y) +My, that is,

g –�(y) ∈My.

Since tni = JM,μni
(zni –μni�(zni )), then


μni

(
zni –μni�(zni ) – tni

) ∈Mtni .

Therefore,〈
y – tni , g –�(y) –


μni

(
zni –μni�(zni ) – tni

)〉 ≥ ,

which hence yields

〈y – tni , g〉

≥
〈
y – tni ,�(y) +


μni

(
zni –μni�(zni ) – tni

)〉
=

〈
y – tni ,�(y) –�(zni )

〉
+

〈
y – tni ,

zni – tni
μni

〉
≥ η

∥∥�(y) –�(tni )
∥∥ +

〈
y – tni ,�(tni ) –�(zni )

〉
+

〈
y – tni ,

zni – tni
μni

〉
≥ 〈

y – tni ,�(tni ) –�(zni )
〉
+

〈
y – tni ,

zni – tni
μni

〉
. (.)
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Observe that∣∣∣∣〈y – tni ,�(tni ) –�(zni )
〉
+

〈
y – tni ,

zni – tni
μni

〉∣∣∣∣
≤ ‖y – tni‖

∥∥�(tni ) –�(zni )
∥∥ +


μni

‖y – tni‖‖zni – tni‖

≤ 
η
‖y – tni‖‖tni – zni‖ +


ε
‖y – tni‖‖zni – tni‖

=
(

η
+

ε

)
‖y – tni‖‖zni – tni‖.

By ‖xn – zn‖ →  and ‖xn – tn‖ → , we have ‖zn – tn‖ → . Then

lim
i→∞

∣∣∣∣〈y – tni ,�(tni ) –�(zni )
〉
+

〈
y – tni ,

zni – tni
μni

〉∣∣∣∣ = .

Let i → ∞, from (.) we get

〈y – u, g – 〉 = 〈y – u, g〉 ≥ .

This implies that  ∈ �(u) +Mu. Hence u ∈ VI(C,�,M). Therefore,

u ∈F =F (S)∩ � ∩VI(C,�,M).

Step . We show that xn → x∗, where x∗ = PFx.
Indeed, from x∗ = PFx, u ∈F =F (S)∩ � ∩VI(C,�,M) and (.), we have

∥∥x∗ – x
∥∥ ≤ ‖u – x‖ ≤ lim inf

i→∞ ‖xni – x‖ ≤ lim sup
i→∞

‖xni – x‖ ≤ ∥∥x∗ – x
∥∥.

Then

lim
i→∞‖xni – x‖ = ‖u – x‖.

From xni – x ⇀ u – x and the Kadec-Klee property of H , we have xni – x → u – x, and
hence xni → u. Since xni = PCni

x and x∗ ∈F ⊂ Cni , we have

–
∥∥x∗ – xni

∥∥ =
〈
x∗ – xni ,xni – x

〉
+

〈
x∗ – xni ,x – x∗〉 ≥ 〈

x∗ – xni ,x – x∗〉.
Let i → ∞, by u ∈F and x∗ = PFx, we have

–
∥∥x∗ – u

∥∥ ≥ 〈
x∗ – u,x – x∗〉 ≥ .

Hence u = x∗, which implies that xn → x∗. This completes the proof. �
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4 Applications
From Theorem ., we can obtain the following theorems.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . For the
minimization problem (.), assume that f is (Frechet) differentiable and the gradient ∇f
is a ρ-inverse-strongly monotonemapping. Let S : C → C be a k-strictly pseudo-contractive
mapping such that F = F (S) ∩ � �= ∅. Pick any x ∈ C and set C = C. Let {xn} ⊂ C be a
sequence generated by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yn = PC(xn – λn∇f (xn)),
zn = PC(xn – λn∇f (yn)),
wn = αnzn + ( – αn)Szn,
Cn+ = {w ∈ Cn : ‖wn –w‖ ≤ ‖xn –w‖},
xn+ = PCn+x, n≥ ,

(.)

where the following conditions hold:
(i)  < lim infn→∞ λn ≤ lim supn→∞ λn < ρ ;
(ii) k < lim infn→∞ αn ≤ lim supn→∞ αn < .

Then the sequence {xn} converges strongly to PFx.

Proof Let � = M =  in Theorem ., we have VI(C, , ) = C and F = F (S) ∩ � ∩
VI(C, , ) = F (S) ∩ �. Let η be any positive number in the interval (,∞) and take any
sequence {μn} ⊂ [ε, η] for some ε ∈ (, η]. In addition, we have

tn = JM,μn

(
zn –μn�(zn)

)
= (I +μnM)–zn = zn.

Therefore, by Theorem . we obtain the expected result. �

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
S : C → C be a nonexpansive mapping such that F (S) �= ∅. Pick any x ∈ C and set C = C.
Let {xn} ⊂ C be a sequence generated by⎧⎪⎨⎪⎩

wn = αnxn + ( – αn)Sxn,
Cn+ = {w ∈ Cn : ‖wn –w‖ ≤ ‖xn –w‖},
xn+ = PCn+x, n≥ ,

(.)

where the following condition holds: k < lim infn→∞ αn ≤ lim supn→∞ αn < . Then the se-
quence {xn} converges strongly to PFx.

Proof Let ∇f = � = M =  and k =  in Theorem .. Let ρ , η be any positive num-
ber in the interval (,∞). Take any sequence {λn} which satisfies  < lim infn→∞ λn ≤
lim supn→∞ λn < ρ and take any sequence {μn} ⊂ [ε, η] for some ε ∈ (, η]. In this case,
we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

yn = PC(xn – λn∇f (xn)) = xn,
zn = PC(xn – λn∇f (yn)) = xn,
tn = JM,μn (zn –μn�(zn)) = zn,
wn = αntn + ( – αn)Stn = αnxn + ( – αn)Sxn.

(.)

Therefore, by Theorem . we obtain the expected result. �
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Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . For the
minimization problem (.), assume that f is (Frechet) differentiable and the gradient ∇f
is a ρ-inverse-strongly monotone mapping. Let � : C → C be γ -strictly pseudo-contractive
and let S : C → C be a k-strictly pseudo-contractive mapping such that F = F (S) ∩ � ∩
F (�) �= ∅. Pick any x ∈ C and set C = C. Let {xn} ⊂ C be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = PC(xn – λn∇f (xn)),
zn = PC(xn – λn∇f (yn)),
tn = ( –μn)zn +μn�(zn),
wn = αntn + ( – αn)Stn,
Cn+ = {w ∈ Cn : ‖wn –w‖ ≤ ‖xn –w‖},
xn+ = PCn+x, n≥ ,

(.)

where the following conditions hold:
(i)  < lim infn→∞ λn ≤ lim supn→∞ λn < ρ ;
(ii) ε ≤ μn ≤  – γ for some ε ∈ (,  – γ ];
(iii) k < lim infn→∞ αn ≤ lim supn→∞ αn < .

Then the sequence {xn} converges strongly to PFx.

Proof Let � = I – � andM =  in Theorem ., then we have that � is η-inverse strongly
monotone with η = –γ

 . Now, we show that VI(C,�,M) = F (�). In fact, since � = I – �

andM = , we obtain

 ∈VI(C,�,M) ⇔  ∈ �(u) +Mu

⇔  = �(u)

⇔  = u – �(u)

⇔ u ∈F (�).

Thus,

F =F (S)∩ � ∩VI(C,�,M) =F (S)∩ � ∩F (�).

Note that μn ∈ [ε,  – γ ]⊂ [, ], hence ( –μn)zn +μn�(zn) ∈ C. In this case, we have

tn = JM,μn

(
zn –μn�(zn)

)
= (I +μnM)–

(
zn –μn�(zn)

)
= zn –μn�(zn) = zn –μn(I – �)(zn)

= ( –μn)zn +μn�(zn).

Therefore, by Theorem . we obtain the expected result. �
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