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Abstract
In this paper, we introduce a composite iterative method for solving a common
element of the set of solutions of fixed points for nonexpansive semigroups, the set of
solutions of generalized mixed equilibrium problems and the set of solutions of the
variational inclusion for a β-inverse strongly monotone mapping in a real Hilbert
space. We prove that the sequence converges strongly to a common element of the
above sets under some mild conditions. Our results improve and extend the
corresponding results of Kumam and Wattanawitoon (Math. Comput. Model.
53:998-1006, 2011), Shehu (Math. Comput. Model. 55:1301-1314, 2012), Plubtieng and
Punpaeng (Math. Comput. Model. 48:279-286, 2008), Li et al. (Nonlinear Anal.
70:3065-3071, 2009), Plubtieng and Wangkeeree (Bull. Korean Math. Soc. 45:717-728,
2008) and some authors.
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1 Introduction
LetH be a real Hilbert space with inner product 〈· , ·〉 and norm ‖ · ‖. Let C be a nonempty
closed convex subset of H . Recall that a mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

We denote by F(T) the set of fixed points of T . Let PC be the projection of H onto the
convex subset C. Moreover, we also denote by R the set of all real numbers.
A one-parameter family 	 = {T(t) :  ≤ t < ∞} is said to be a nonexpansive semigroup

on C if it satisfies the following conditions:
() T()x = x for all x ∈ C;
() T(s + t) = T(s)T(t) for all s, t ≥ ;
() ‖T(t)x – T(t)y‖ ≤ ‖x – y‖ for all x, y ∈ C and t ≥ ;
() for all x ∈ C, t �→ T(t)x is continuous.

We denote by F(	) the set of all common fixed points of 	, that is, F(	) = {x ∈ C : T(t)x =
x, ≤ t <∞}. It is well known that F(	) is closed and convex.
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AmappingA ofC intoH is calledmonotone if 〈Ax–Ay,x–y〉 ≥  for all x, y ∈ C. Amap-
ping A is called α-inverse strongly monotone if there exists a positive real number α such
that 〈Ax–Ay,x–y〉 ≥ α‖Ax–Ay‖ for all x, y ∈ C. AmappingA is called α-stronglymono-
tone if there exists a positive real number α such that 〈Ax – Ay,x – y〉 ≥ α‖x – y‖ for all
x, y ∈ C. It is obvious that any α-inverse stronglymonotonemappingsA is amonotone and

α
-Lipschitz continuous mapping. A linear bounded operator A is called strongly positive

if there exists a constant γ >  with the property 〈Ax,x〉 ≥ γ ‖x‖ for all x ∈H .
Let B : H → H be a single-valued nonlinear mapping and M : H → H be a set-valued

mapping. The variational inclusion problem is to find x ∈H such that

 ∈ B(x) +M(x), (.)

where  is the zero vector in H .
The set of solutions of (.) is denoted by I(B,M) (see [–] and the reference therein).
A set-valued mapping M : H → H is called monotone if for all x, y ∈ H , f ∈ M(x)

and g ∈ M(y) imply 〈x – y, f – g〉 ≥ . A monotone mapping M is maximal if its graph
G(M) = {(f ,x) ∈ H × H : f ∈ M(x)} of M is not properly contained in the graph of any
other monotone mapping. It is well known that a monotone mappingM is maximal if and
only if for (x, f ) ∈H ×H , 〈x – y, f – g〉 ≥  for all (y, g) ∈ G(M) imply f ∈M(x).
Let M : H → H be a set-valued maximal monotone mapping. Then the single-valued

mapping JM,λ :H →H defined by

JM,λ(x) = (I + λM)–(x), x ∈H ,

is called the resolvent operator associated with M, where λ is any positive number and I
is the identity mapping. It is well known that the resolvent operator JM,λ is nonexpansive,
-inverse strongly monotone and that a solution of problem (.) is a fixed point of the
operator JM,λ(I – λB) for all λ > , where I denotes the identity operator on H (see []).
Peng and Yao [] considered the following generalized mixed equilibrium problem of

finding x ∈ C such that

θ (x, y) + ϕ(y) – ϕ(x) + 〈Fx, y – x〉 ≥ , ∀y ∈ C, (.)

where F : C → H is a nonlinear mapping, ϕ : C → R is a function and θ : C × C → R is a
bifunction. The set of solutions of problem (.) is denoted by GMEP.
In the case of F = , problem (.) reduces to the following mixed equilibrium problem

of finding x ∈ C such that

θ (x, y) + ϕ(y) – ϕ(x)≥ , ∀y ∈ C,

which was considered by Ceng and Yao []. GMEP is denoted byMEP.
In the case of ϕ = , problem (.) reduces to the following generalized equilibriumprob-

lem of finding x ∈ C such that

θ (x, y) + 〈Fx, y – x〉 ≥ , ∀y ∈ C,

which was studied by Takahashi and Takahashi [].
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In the case of ϕ =  and F = , problem (.) reduces to the equilibrium problem of
finding x ∈ C such that

θ (x, y)≥ , ∀y ∈ C. (.)

The set of solution of (.) is denoted by EP(θ ).
In the case θ =  and ϕ = , problem (.) reduces to the classical variational inequality

of finding x ∈ C such that

〈Fx, y – x〉 ≥ , ∀y ∈ C. (.)

The set of solutions of problem (.) is denoted by VI(F ,C).
The problem (.) is very general in the sense that it includes, as special cases, optimiza-

tion problem, variational inequalities, minimax problems, the Nash equilibrium problem
in noncooperative games and others (see [, –]).
Peng and Yao [] considered iterative methods for finding a common element of the

set of solutions of problem (.), the set of solutions of problem (.), and the set of fixed
points of a nonexpansive mapping.
Let G,G : C × C → R be two bifunctions, φ,ψ : C → R be two functions and B,B :

C → H be two nonlinear mappings. We consider the generalized mixed equilibria prob-
lem of finding (x, y) ∈ C ×C such that

⎧⎨
⎩
G(x,x) + φ(x) – φ(x) + 〈By,x – x〉 + 

μ
〈x – y,x – x〉 ≥ , ∀x ∈ C,

G(y, y) +ψ(y) –ψ(y) + 〈Bx, y – y〉 + 
μ

〈y – x, y – y〉 ≥ , ∀y ∈ C,
(.)

where μ >  and μ >  are two constants.
In the case φ = ψ = , problem (.) reduces to the following problem of the general

system of generalized equilibria of finding (x, y) ∈ C ×C such that

⎧⎨
⎩
G(x,x) + 〈By,x – x〉 + 

μ
〈x – y,x – x〉 ≥ , ∀x ∈ C,

G(y, y) + 〈Bx, y – y〉 + 
μ

〈y – x, y – y〉 ≥ , ∀y ∈ C,
(.)

which was considered by Ceng and Yao [].
In the case G = G = , problem (.) reduces to the following problem of the general

system of variational inequalities of finding (x, y) ∈ C ×C such that

⎧⎨
⎩

〈μBy + x – y,x – x〉 ≥ , ∀x ∈ C,

〈μBx + y – x, y – y〉 ≥ , ∀y ∈ C,
(.)

which was considered by Ceng, Wang and Yao [].
In particular, if B = B =D : C →H is a nonlinear mapping, then problem (.) reduces

to the following problem of the system of variational inequalities of finding (x, y) ∈ C ×C

http://www.fixedpointtheoryandapplications.com/content/2014/1/57
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such that

⎧⎨
⎩

〈μDy + x – y,x – x〉 ≥ , ∀x ∈ C,

〈μDx + y – x, y – y〉 ≥ , ∀y ∈ C,
(.)

which was studied by Verma [].
If x = y in (.), then (.) reduces to the classical variational inequality (.).
For solving themixed equilibrium problem, let us give the following assumptions for the

bifunction θ , ϕ and the set C:
(H) θ (x, y) =  for all x ∈ C;
(H) θ is monotone, i.e., θ (x, y) + θ (y,x) ≤  for all x, y ∈ C;
(H) for each x, y, z ∈ C

lim sup
t→

θ
(
tz + ( – t)x, y

) ≤ θ (x, y);

(H) for each x ∈ C, y �→ θ (x, y) is convex and lower semicontinuous;
(A) for each x ∈H and r > , there exist a bounded subset D⊂ C and y ∈ C such that

for any z ∈ C\D

θ (z, y) + ϕ(y) – ϕ(z) +

r
〈y – z, z – x〉 < ;

(A) C is a bounded set.
Recently, Shehu [] studied the problem of finding a common element of the set of

common fixed points of a one-parameter nonexpansive semigroup, the set of solutions
to a variational inclusion, and the set of solutions to a generalized equilibrium problem.
More precisely, the author proved the following theorem.

Theorem . Let C be a nonempty closed and convex subset of a real Hilbert space H . Let
θ be a bifunction from C × C to R satisfying (H)-(H), ψ a μ-inverse strongly monotone
mapping of C into H , B an α-inverse strongly monotone mapping of C into H and M :
H → H a maximal monotone mapping. Let 	 = {T(u) :  ≤ u < ∞} be a one-parameter
nonexpansive semigroup on H such that F = F(	) ∩ I(B,M) ∩ EP(θ ) �= φ and suppose f :
H → H is a contraction mapping with a constant γ ∈ (, ). Let {tn} ⊂ (,∞) be a real
sequence such that limn→∞ tn =∞. Suppose {xn}∞n= and {un}∞n= are generated by x ∈H ,

θ (un, y) + 〈ψxn, y – un〉 + 
rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)
(

tn

∫ tn


T(u)

[
αnf (xn) + ( – αn)JM,λ(un – λAun)

]
du

)

for all n ≥ , where {αn}∞n= and {βn}∞n= are sequences in (, ) and {rn}∞n= ⊂ (,∞) satisfy-
ing:

(i) limn→∞ βn = ,
∑∞

n= |βn+ – βn| < ∞,
(ii) limn→∞ αn = ,

∑∞
n= αn =∞,

∑∞
n= |αn+ – αn| < ∞,

(iii) λ ∈ (, α],

http://www.fixedpointtheoryandapplications.com/content/2014/1/57
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(iv)  < a ≤ rn ≤ b < μ,
∑∞

n= |rn+ – rn| < ∞,
(v) limn→∞ |tn–tn–|

tn


αn(–βn) = .
Then {xn}∞n= converges strongly to z, where z = PF f (z).

In this paper, motivated by Shehu [], Kumam and Wattanawitoon [], Li et al. [],
Plubtieng and Punpaeng [], Plubtieng andWangkeeree [], we introduce the following
general iterative scheme for finding a common element of the set of common fixed points
of a one-parameter nonexpansive semigroup, the set of solutions of the generalizedmixed
equilibrium problem (.), the set of solutions to a variational inclusion (.), and the set
of solutions of the generalized mixed equilibria problem (.), which solves the variational
inequality

〈
(A – γ f )x∗,x – x∗〉 ≥ , ∀x ∈F ,

where F = F(	) ∩ GMEP ∩ 
 ∩ I(B,M) and 
 is the set of solutions of the generalized
equilibria problem (.).
The results obtained in this paper improve and extend the recent results announced by

[, –] and many others.

2 Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert spaceH . For every point x ∈ H
there exists a unique nearest point of C, denoted by PCx such that ‖x – PCx‖ ≤ ‖x – y‖
for all y ∈ C. Such a PC is called the metric projection of H onto C. We know that PC is a
firmly nonexpansive mapping of H onto C, i.e.,

〈x – y,PCx – PCy〉 ≥ ‖PCx – PCy‖, ∀x, y ∈H .

Further, for any x ∈H and z ∈ C, z = PCx if and only if

〈x – z, z – y〉 ≥ , ∀y ∈ C.

It is also known that H satisfies Opial’s condition [], that is, if for each sequence {xn}∞n=
in H which converges weakly to a point x ∈H , we have

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖, ∀y ∈ H , y �= x.

In order to prove our main results in the next section, we need the following lemmas.

Lemma . ([]) Let C be a nonempty closed convex subset of H . Let θ : C × C → R be
a bifunction satisfying conditions (H)-(H) and let ϕ : C → R be a lower semicontinuous
and convex function. For r >  and x ∈ H define a mapping

T (θ ,ϕ)
r (x) =

{
z ∈ C : θ (z, y) + ϕ(y) – ϕ(z) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all x ∈ H . Assume that either (A) or (A) holds.

http://www.fixedpointtheoryandapplications.com/content/2014/1/57
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Then the following results hold:
(i) T (θ ,ϕ)

r (x) �= φ for each x ∈H and T (θ ,ϕ)
r is single-valued;

(ii) T (θ ,ϕ)
r is firmly nonexpansive, i.e., for any x, y ∈H

∥∥T (θ ,ϕ)
r x – T (θ ,ϕ)

r y
∥∥ ≤ 〈

T (θ ,ϕ)
r x – T (θ ,ϕ)

r y,x – y
〉
;

(iii) F(T (θ ,ϕ)
r ) =MEP(θ ,ϕ);

(iv) MEP(θ ,ϕ) is closed and convex.

By similar argument as in the proof of Lemma . in [], we have the following result.

Lemma . Let C be a nonempty closed convex subset of H . Let G,G : C×C →R be two
bifunctions satisfying conditions (H)-(H). Let φ,ψ : C →R be two lower semicontinuous
and convex functions with restriction (A) or (A) and let the mappings B,B : C → H
be β-inverse strongly monotone and β-inverse strongly monotone, respectively. Let μ ∈
(, β) and μ ∈ (, β). Then for given x, y ∈ C, (x, y) is a solution of problem (.) if and
only if x is a fixed point of the mapping � : C → C defined by

�(x) = T (G,φ)
μ

[
T (G,ψ)

μ (x –μBx) –μBT (G,ψ)
μ (x –μBx)

]
, ∀x ∈ C,

where y = T (G,ψ)
μ (x –μBx).

Remark . Under the conditions of Lemma ., the set of fixed points of the mapping �

is denoted by 
.

Proposition . ([]) Let C, H , θ , ϕ and T (θ ,ϕ)
r be as in Lemma .. Then the following

holds:

∥∥T (θ ,ϕ)
s x – T (θ ,ϕ)

t x
∥∥ ≤ s – t

s
〈
T (θ ,ϕ)
s x – T (θ ,ϕ)

t x,T (θ ,ϕ)
s x – x

〉

for all s, t >  and x ∈H .

Lemma . ([]) Assume that T is a nonexpansive self-mapping of a nonempty closed
convex subset of C of a real Hilbert space H . If T has a fixed point, then I –T is demiclosed,
that is, when {xn}∞n= is a sequence in C converging weakly to some x ∈ C and the sequence
{(I – T)xn}∞n= converges strongly to some y, it follows that (I – T)x = y.

Lemma . ([]) Let M : H → H be a maximal monotone mapping and let B : H → H
be a monotone and Lipschitz continuous mapping. Then the mapping M +B :H → H is a
maximal monotone mapping.

Lemma . ([]) Let C be a nonempty bounded closed convex subset of a Hilbert space H
and let 	 = {T(s) : ≤ s < ∞} be a nonexpansive semigroup on C. Then for any h ≥ ,

lim
t→∞ sup

x∈C

∥∥∥∥t
∫ t


T(s)xds – T(h)

(

t

∫ t


T(s)xds

)∥∥∥∥ = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/57
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Lemma . ([]) Let {an}∞n= be a sequence of nonnegative real numbers such that

an+ ≤ ( – δn)an + bn + σn, n ∈N ,

where {δn}∞n= ⊂ (, ) and {bn}∞n=, {σn}∞n= are sequences in R such that
(i) limn→∞ δn = ,

∑∞
n= δn =∞;

(ii) lim supn→∞
bn
δn

≤ ;
(iii) σn ≥ ,

∑∞
n= σn <∞.

Then limn→∞ an = .

Lemma. ([]) Assume that A is a strongly positive linear bounded operator on aHilbert
space H with coefficient γ >  and  < ρ ≤ ‖A‖–. Then ‖I – ρA‖ ≤  – ργ .

3 Main results
Now we state and prove our main results.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
θ ,G,G : C × C → R be three bifunctions which satisfy assumptions (H)-(H) and
ϕ,φ,ψ : C → R be three lower semicontinuous and convex functions with restriction (A)
or (A). Let F ,B,B,B : C → H be ζ -inverse strongly monotone, β-inverse strongly mono-
tone, β-inverse strongly monotone and β-inverse strongly monotone, respectively and
M : H → H be a maximal monotone mapping. Let 	 = {T(u) :  ≤ u < ∞} be a one-
parameter nonexpansive semigroup on H such that F = F(	) ∩GMEP ∩ 
 ∩ I(B,M) �= φ.
Let {tn} ⊂ (,∞) be a real sequence such that limn→∞ tn = ∞. Let f be a contraction from
C into itself with a constant α ( < α < ) and let A be a strongly positive linear bounded
operator with coefficient γ >  such that ‖A‖ ≤ . Assume that  < γ < γ

α(–αnγ ) . Let x ∈ C
and let {xn} be a sequence defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zn = T (θ ,ϕ)
δn (xn – δnFxn),

yn = T (G,φ)
μ [T (G,ψ)

μ (zn –μBzn) –μBT (G,ψ)
μ (zn –μBzn)],

xn+ = αnγ f (xn) + βnxn
+ (( – βn)I – αnA)[ 

tn

∫ tn
 T(u)(JM,λ(yn – λByn))du], n≥ ,

(.)

where αn ∈ (, ), μ ∈ (, β], μ ∈ (, β], λ ∈ (, β], δn ∈ (, ζ ] satisfy the following
conditions:
(C) limn→∞ αn = ,

∑∞
n= αn =∞ and

∑∞
n= |αn+ – αn| < ∞;

(C)
∑∞

n= βn < ∞ and
∑∞

n= |βn+ – βn| < ∞;
(C) lim infn→∞ δn >  and

∑∞
n= |δn+ – δn| < ∞;

(C) limn→∞ |tn–tn–|
tn


αn

= .
Then {xn} converges strongly to x∗ = PF (γ f + (I –A))(x∗), which solves the following varia-
tional inequality:

〈
(A – γ f )x∗,x – x∗〉 ≥ , ∀x ∈F ,

and (x∗, y∗) is a solution of problem (.), where y∗ = T (G,ψ)
μ (x∗ –μBx∗).

http://www.fixedpointtheoryandapplications.com/content/2014/1/57
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Proof Since F is a ζ -inverse strongly monotone mapping, we have

∥∥(I – δnF)x – (I – δnF)y
∥∥ = ‖x – y‖ – δn〈x – y,Fx – Fy〉 + δn‖Fx – Fy‖

≤ ‖x – y‖ + δn(δn – ζ )‖Fx – Fy‖. (.)

In similar way, we can obtain

∥∥(I – λB)x – (I – λB)y
∥∥ ≤ ‖x – y‖ + λ(λ – β)‖Bx – By‖,

∥∥(I –μB)x – (I –μB)y
∥∥ ≤ ‖x – y‖ +μ(μ – β)‖Bx – By‖, (.)

∥∥(I –μB)x – (I –μB)y
∥∥ ≤ ‖x – y‖ +μ(μ – β)‖Bx – By‖.

Noticing that limn→∞ αn =  = limn→∞ βn, we may assume, with no loss of generality, that
αn

–βn
< ‖A‖– for all n≥ . FromLemma .we know that if  ≤ ρ ≤ ‖A‖–, then ‖I–ρA‖ ≤

 – ργ . Since A is a strongly positive bounded linear operator on H , we have

‖A‖ = sup
{∣∣〈Ax,x〉∣∣ : x ∈H ,‖x‖ = 

}
.

Observe that

〈(
( – βn)I – αnA

)
x,x

〉
=  – βn – αn〈Ax,x〉 ≥  – βn – αn‖A‖ ≥ .

This shows that ( – βn)I – αnA is positive. It follows that

∥∥( – βn)I – αnA
∥∥ = sup

{〈(
( – βn)I – αnA

)
x,x

〉
: x ∈ H ,‖x‖ = 

}
= sup

{
 – βn – αn〈Ax,x〉 : x ∈H ,‖x‖ = 

}
≤  – βn – αnγ .

We divide the proof into several steps.
Step . {xn} is bounded.
Indeed, take p ∈ F arbitrarily. Since p = T (θ ,ϕ)

δn (p – δnFp), F is ζ -inverse strongly mono-
tone and  < δn ≤ ζ , we obtain for any n≥ 

‖zn – p‖ = ∥∥T (θ ,ϕ)
δn (xn – δnFxn) – T (θ ,ϕ)

δn (p – δnFp)
∥∥

≤ ∥∥(xn – p) – δn(Fxn – Fp)
∥∥

= ‖xn – p‖p – δn〈xn – p,Fxn – Fp〉 + δn‖Fxn – Fp‖

≤ ‖xn – p‖ + δn(δn – ζ )‖Fxn – Fp‖

≤ ‖xn – p‖. (.)

Putting un = T (G,ψ)
μ (zn–μBzn),wn = JM,λ(yn–λByn), and u = T (G,ψ)

μ (p–μBp), we have

‖un – u‖ = ∥∥T (G,ψ)
μ (zn –μBzn) – T (G,μ)

μ (p –μBp)
∥∥

≤ ∥∥(zn – p) –μ(Bzn – Bp)
∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/57
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= ‖zn – p‖ – μ〈zn – p,Bzn – Bp〉 +μ
‖Bzn – Bp‖

≤ ‖zn – p‖ +μ(μ – β)‖Bzn – Bp‖

≤ ‖zn – p‖ (.)

and

‖wn – p‖ = ∥∥JM,λ(yn – λByn) – JM,λ(p – λBp)
∥∥

≤ ∥∥(yn – p) – λ(Byn – Bp)
∥∥

= ‖yn – p‖ – λ〈yn – p,Byn – Bp〉 + λ‖Byn – Bp‖

≤ ‖yn – p‖ + λ(λ – β)‖Byn – Bp‖

≤ ‖yn – p‖. (.)

And since

p = T (G,φ)
μ

[
T (G,ψ)

μ (p –μBp) –μBT (G,ψ)
μ (p –μBp)

]
= T (G,φ)

μ (u –μBu),

we know that for any n≥ 

‖yn – p‖ = ∥∥T (G,φ)
μ (un –μBun) – T (G,φ)

μ (u –μBu)
∥∥

≤ ∥∥(un – u) –μ(Bun – Bu)
∥∥

= ‖un – u‖ – μ〈un – u,Bun – Bu〉 +μ
‖Bun – Bu‖

≤ ‖un – u‖ +μ(μ – β)‖Bun – Bu‖

≤ ‖un – u‖

≤ ‖zn – p‖. (.)

Since A is a strongly positive linear bounded operator with coefficient γ > , we have

‖xn+ – p‖

=
∥∥∥∥αn

(
γ f (xn) –Ap

)
+ βn(xn – p) +

(
( – βn)I – αnA

) 
tn

∫ tn



[
T(u)wn – T(u)p

]
du

∥∥∥∥
≤ αn

∥∥γ f (xn) –Ap
∥∥ + βn‖xn – p‖ + ( – βn – αnγ )‖wn – p‖

≤ αnγ
∥∥f (xn) – f (p)

∥∥ + αn
∥∥γ f (p) –Ap

∥∥ + βn‖xn – p‖ + ( – βn – αnγ )‖xn – p‖
≤ [

 – αn(γ – γα)
]‖xn – p‖ + αn

∥∥γ f (p) –Ap
∥∥.

By induction, we obtain for all n≥ 

‖xn – p‖ ≤max

{
‖x – p‖, 

γ – γα

∥∥γ f (p) –Ap
∥∥}

.

Hence {xn}∞n= is bounded. So are {yn}∞n=, {zn}∞n=, {wn}∞n=.
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Step . We show that limn→∞ ‖xn+ – xn‖ = .
We estimate ‖yn+ – yn‖. From (.), we have

‖yn+ – yn‖ =
∥∥T (G,φ)

μ (un+ –μBun+) – T (G,φ)
μ (un –μBun)

∥∥

≤ ∥∥(un+ – un) –μ(Bun+ – Bun)
∥∥

≤ ‖un+ – un‖ +μ(μ – β)‖Bun+ – Bun‖

≤ ‖un+ – un‖

=
∥∥T (G,ψ)

μ (zn+ –μBzn+) – T (G,ψ)
μ (zn –μBzn)

∥∥

≤ ∥∥(zn+ – zn) –μ(Bzn+ – Bzn)
∥∥

≤ ‖zn+ – zn‖ +μ(μ – β)‖Bzn+ – Bzn‖

≤ ‖zn+ – zn‖, (.)
∥∥(xn+ – δn+Fxn+) – (xn – δnFxn)

∥∥
=

∥∥xn+ – xn – δn+(Fxn+ – Fxn) + (δn – δn+)Fxn
∥∥

≤ ∥∥xn+ – xn – δn+(Fxn+ – Fxn)
∥∥ + |δn – δn+|‖Fxn‖

≤ ‖xn+ – xn‖ + |δn – δn+|‖Fxn‖

and

‖zn+ – zn‖ =
∥∥T (θ ,ϕ)

δn+
(xn+ – δn+Fxn+) – T (θ ,ϕ)

δn (xn – δnFxn)
∥∥

≤ ∥∥T (θ ,ϕ)
δn+

(xn+ – δn+Fxn+) – T (θ ,ϕ)
δn+

(xn – δnFxn)
∥∥

+
∥∥T (θ ,ϕ)

δn+
(xn – δnFxn) – T (θ ,ϕ)

δn (xn – δnFxn)
∥∥

≤ ∥∥(xn+ – δn+Fxn+) – (xn – δnFxn)
∥∥

+
∥∥T (θ ,ϕ)

δn+
(xn – δnFxn) – T (θ ,ϕ)

δn (xn – δnFxn)
∥∥

≤ ‖xn+ – xn‖ + |δn+ – δn|‖Fxn‖
+

∥∥T (θ ,ϕ)
δn+

(xn – δnFxn) – T (θ ,ϕ)
δn (xn – δnFxn)

∥∥. (.)

Without loss of generality, let us assume that there exists a real number a such that δn >
a >  for all n. Utilizing Proposition . we have

∥∥T (θ ,ϕ)
δn+

(xn – δnFxn) – T (θ ,ϕ)
δn (xn – δnFxn)

∥∥
≤ |δn+ – δn|

δn+

∥∥T (θ ,ϕ)
δn+

(I – δnF)xn – xn
∥∥

≤ |δn+ – δn|
a

∥∥T (θ ,ϕ)
δn+

(I – δnF)xn – xn
∥∥. (.)

It follows from (.)-(.) that

‖wn+ –wn‖ =
∥∥JM,λ(yn+ – λBun+) – JM,λ(yn – λByn)

∥∥
≤ ∥∥(yn+ – λByn+) – (yn – λByn)

∥∥
≤ ‖yn+ – yn‖ (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/57
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and

‖yn+ – yn‖ ≤ ‖zn+ – zn‖
≤ ‖xn+ – xn‖ + |δn+ – δn|‖Fxn‖

+
|δn+ – δn|

a
∥∥T (θ ,ϕ)

δn+
(I – δnF)xn – xn

∥∥. (.)

Put hn = 
tn

∫ tn
 T(u)wn du for all n≥ . We note that

‖hn – hn–‖ =
∥∥∥∥ 
tn

∫ tn


T(u)wn du –


tn–

∫ tn–


T(u)wn– du

∥∥∥∥
≤

∥∥∥∥ 
tn

∫ tn



[
T(u)wn – T(u)wn–

]
du

∥∥∥∥
+

∣∣∣∣ tn –


tn–

∣∣∣∣
∥∥∥∥
∫ tn–



[
T(u)wn– – T(u)p

]
du

∥∥∥∥
+


tn

∥∥∥∥
∫ tn

tn–

[
T(u)wn– – T(u)p

]
du

∥∥∥∥
≤ ‖yn – yn–‖ + |tn – tn–|

tn
‖yn– – p‖. (.)

Using (.) and (.) we get

‖xn+ – xn‖
=

∥∥[
αnγ f (xn) + βnxn +

(
( – βn)I – αnA

)
hn

]
–

[
αn–γ f (xn–) + βn–xn– +

(
( – βn–)I – αn–A

)
hn–

]∥∥
≤ αnγα‖xn – xn–‖ + γ |αn – αn–|

∥∥f (xn–)∥∥ + βn‖xn – xn–‖
+ |βn – βn–|‖xn–‖ + ( – αnγ )‖hn – hn–‖ + |αn – αn–|‖Ahn–‖
+ |βn – βn–|‖hn – hn–‖

≤ αnγα‖xn – xn–‖ + γ |αn – αn–|
∥∥f (xn–)∥∥ + βn‖xn – xn–‖

+ |βn – βn–|‖xn–‖ + ( – αnγ )
[
‖yn – yn–‖ + |tn – tn–|

tn
‖yn– – p‖

]

+ |αn – αn–|‖Ahn–‖ + |βn – βn–|
[
‖yn – yn–‖ + |tn – tn–|

tn
‖yn– – p‖

]

≤ αnγα‖xn – xn–‖ + γ |αn – αn–|
∥∥f (xn–)∥∥ + βn‖xn – xn–‖

+ |βn – βn–|‖xn–‖ + ( – αnγ )
[
‖xn – xn–‖ + |δn – δn–|‖Fxn–‖

+
|δn – δn–|

a
∥∥T (θ ,ϕ)

δn (I – δn–F)xn– – xn–
∥∥]

+ ( – αnγ )
|tn – tn–|

tn
‖yn– – p‖ + |αn – αn–|‖Ahn–‖

+ |βn – βn–|
[
‖xn – xn–‖ + |δn – δn–|‖Fxn–‖
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+
|δn – δn–|

a
∥∥T (θ ,ϕ)

δn (I – δn–F)xn– – xn–
∥∥]

+ |βn – βn–||tn – tn–|
tn

‖yn– – p‖

≤ [
 – (γ – γα)αn

]‖xn – xn–‖ + |tn – tn–|
tn

‖yn– – p‖

+ |αn – αn–|
(
γ
∥∥f (xn–)∥∥ + ‖Ahn–‖

)
+ βn

[‖xn‖ + ‖xn–‖
]

+ |βn – βn–|
[‖xn‖ + ‖xn–‖

]

+ |δn – δn–|
[
‖Fxn–‖ + 

a
∥∥T (θ ,ϕ)

δn (I – δn–F)xn– – xn–
∥∥]

=
[
 – (γ – γα)αn

]‖xn – xn–‖ +D
[
|tn – tn–|

tn
+ |αn – αn–| + βn

+ |βn – βn–| + |δn – δn–|
]
,

whereD =max{ supn≥ ‖xn‖, supn≥(γ ‖f (xn)‖+‖Ahn‖), supn≥(‖Fxn‖+ 
a‖T (θ ,ϕ)

δn (I–δnF)×
xn – xn‖), supn≥ ‖yn – p‖}. From Lemma ., taking δn = (γ – γα)αn, bn = |tn–tn–|

tn D, σn =
D(|αn – αn–| + βn + |βn – βn–| + |δn – δn–|), it follows that limn→∞ ‖xn+ – xn‖ = .
Step . limn→∞ ‖Fxn – Fp‖ = , limn→∞ ‖Bun – Bu‖ = , limn→∞ ‖Bzn – Bp‖ =  and

limn→∞ ‖Byn – Bp‖ = .
Indeed, from (.), (.), (.), and (.) we get

‖xn+ – p‖

=
∥∥∥∥αn

(
γ f (xn) –Ap

)
+ βn(xn – p) +

(
( – βn)I

– αnA
) 
tn

∫ tn



[
T(u)

(
JM,λ(yn – λByn)

)
– T(u)

(
JM,λ(p – λBp)

)]
du

∥∥∥∥


≤ αn
∥∥γ f (xn) –Ap

∥∥ + βn‖xn – p‖ + ( – βn – αnγ )‖yn – p‖

≤ αn
∥∥γ f (xn) –Ap

∥∥ + βn‖xn – p‖

+ ( – βn – αnγ )
[‖un – u‖ +μ(μ – β)‖Bun – Bu‖]

≤ αn
∥∥γ f (xn) –Ap

∥∥ + βn‖xn – p‖ + ( – βn – αnγ )
[‖zn – p‖

+μ(μ – β)‖Bzn – Bp‖ +μ(μ – β)‖Bun – Bu‖]
≤ αn

∥∥γ f (xn) –Ap
∥∥ + βn‖xn – p‖ + ( – βn – αnγ )

[‖xn – p‖

+ δn(δn – ζ )‖Fxn – Fp‖ +μ(μ – β)‖Bzn – Bp‖

+μ(μ – β)‖Bun – Bu‖].

Therefore

δn(ζ – δn)‖Fxn – Fp‖ +μ(β –μ)‖Bzn – Bp‖

+μ(β –μ)‖Bun – Bu‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/57
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≤ αn
∥∥γ f (xn) –Ap

∥∥ + ‖xn – p‖ – ‖xn+ – p‖

≤ αn
∥∥γ f (xn) –Ap

∥∥ +
(‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖.

Since αn →  and ‖xn – xn+‖ →  as n → ∞, we have limn→∞ ‖Fxn – Fp‖ = ,
limn→∞ ‖Bzn – Bp‖ =  and limn→∞ ‖Bun – Bu‖ = . Similarly, from (.), (.), and
(.) we have

‖xn+ – p‖ ≤ αn
∥∥γ f (xn) –Ap

∥∥ + βn‖xn – p‖ + ( – βn – αnγ )‖wn – p‖

≤ αn
∥∥γ f (xn) –Ap

∥∥ + ( – αnγ )‖xn – p‖ + λ(λ – β)‖Byn – Bp‖,

which implies that

λ(β – λ)‖Byn – Bp‖ ≤ αn
∥∥γ f (xn) –Ap

∥∥ +
(‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖.

We also have limn→∞ ‖Byn – Bp‖ = .
Step . We claim that limn→∞ ‖xn – yn‖ = , limn→∞ ‖xn – zn‖ =  and limn→∞ ‖wn –

yn‖ = .
Indeed, from Lemma ., (.), (.), and (.) we have

‖un – u‖ = ∥∥T (G,ψ)
μ (zn –μBzn) – T (G,ψ)

μ (p –μBp)
∥∥

≤ 〈
(zn –μBzn) – (p –μBp),un – u

〉

=


[∥∥(zn –μBzn) – (p –μBp)

∥∥ + ‖un – u‖

–
∥∥(zn –μBzn) – (p –μBzn) – (un – u)

∥∥]

≤ 

[‖xn – p‖ + ‖un – u‖ – ∥∥(zn – un) – (p – u)

∥∥

+ μ
〈
(zn – un) – (p – u),Bzn – Bp

〉
–μ

‖Bzn – Bp‖
]

and

‖yn – p‖ = ∥∥T (G,φ)
μ (un –μBun) – T (G,φ)

μ (u –μBu)
∥∥

≤ 〈
(un –μBun) – (u –μBu), yn – p

〉

=


[∥∥(un –μBun) – (u –μBu)

∥∥ + ‖yn – p‖

–
∥∥(un –μBun) – (u –μBu) – (yn – p)

∥∥]

≤ 

[‖un – u‖ + ‖yn – p‖ – ∥∥(un – yn) + (p – u)

∥∥

+ μ
〈
Bun – Bu, (un – yn) + (p – u)

〉
–μ

‖Bun – Bu‖]

≤ 

[‖xn – p‖ + ‖yn – p‖ – ∥∥(un – yn) + (p – u)

∥∥

+ μ
〈
Bun – Bu, (un – yn) + (p – u)

〉]
,
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which imply that

‖un – u‖ ≤ ‖xn – p‖ – ∥∥(zn – un) – (p – u)
∥∥

+ μ
〈
(zn – un) – (p – u),Bzn – Bp

〉
–μ

‖Bzn – Bp‖ (.)

and

‖yn – p‖ ≤ ‖xn – p‖ – ∥∥(un – yn) + (p – u)
∥∥

+ μ‖Bun – Bu‖∥∥(un – yn) + (p – u)
∥∥. (.)

It follows from (.) that

‖xn+ – p‖ ≤ αn
∥∥γ f (xn) –Ap

∥∥ + βn‖xn – p‖ + ( – βn – αnγ )‖yn – p‖

≤ αn
∥∥γ f (xn) –Ap

∥∥ + ( – αnγ )‖xn – p‖

– ( – βn – αnγ )
∥∥(un – yn) + (p – u)

∥∥

+ μ( – βn – αnγ )‖Bun – Bu‖∥∥(un – yn) + (p – u)
∥∥,

which gives

( – βn – αnγ )
∥∥(un – yn) + (p – u)

∥∥

≤ αn
∥∥γ f (xn) –Ap

∥∥ +
(‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖

+ μ( – βn – αnγ )‖Bun – Bu‖∥∥(un – yn) + (p – u)
∥∥.

Since αn → , ‖xn+ – xn‖ →  and ‖Bun – Bu‖ →  as n→ ∞, we have

lim
n→∞

∥∥(un – yn) + (p – u)
∥∥ = . (.)

Also, from (.) we have

‖xn+ – p‖ ≤ αn
∥∥γ f (xn) –Ap

∥∥ + βn‖xn – p‖ + ( – βn – αnγ )‖yn – p‖

≤ αn
∥∥γ f (xn) –Ap

∥∥ + βn‖xn – p‖ + ( – βn – αnγ )‖un – u‖

≤ αn
∥∥γ f (xn) –Ap

∥∥ + βn‖xn – p‖ + ( – βn – αnγ )
[‖xn – p‖

–
∥∥(zn – un) – (p – u)

∥∥ + μ
〈
(zn – un) – (p – u),Bzn – Bp

〉]
.

So, we have

( – βn – αnγ )
∥∥(zn – un) – (p – u)

∥∥

≤ αn
∥∥γ f (xn) –Ap

∥∥ +
(‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖

+ μ
∥∥(zn – un) – (p – u)

∥∥‖Bzn – Bp‖.
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Note that ‖Bzn – Bp‖ →  as n→ ∞. Then we have

lim
n→∞

∥∥(zn – un) – (p – u)
∥∥ = . (.)

In addition, from the firm nonexpansivity of T (θ ,ϕ)
δn , we obtain

‖zn – p‖ = ∥∥T (θ ,ϕ)
δn (xn – δnFxn) – T (θ ,ϕ)

δn (p – δnFp)
∥∥

≤ 〈
(xn – δnFxn) – (p – δnFp), zn – p

〉

=


[∥∥(xn – δnFxn) – (p – δnFp)

∥∥ + ‖zn – p‖

–
∥∥(xn – δnFxn) – (p – δnFp) – (zn – p)

∥∥]

≤ 

[‖xn – p‖ + ‖zn – p‖ – ∥∥xn – zn – δn(Fxn – Fp)

∥∥]

=


[‖xn – p‖ + ‖zn – p‖ – ‖xn – zn‖

+ δn〈Fxn – Fp,xn – zn〉 – δn‖Fxn – Fp‖],
which implies that

‖zn – p‖ ≤ ‖xn – p‖ – ‖xn – zn‖ + δn〈Fxn – Fp,xn – zn〉
≤ ‖xn – p‖ – ‖xn – zn‖ + δn‖Fxn – Fp‖‖xn – zn‖. (.)

From (.) and (.), we have

‖xn+ – p‖ ≤ αn
∥∥γ f (xn) –Ap

∥∥ + βn‖xn – p‖ + ( – βn – αnγ )‖yn – p‖

≤ αn
∥∥γ f (xn) –Ap

∥∥ + βn‖xn – p‖ + ( – βn – αnγ )‖zn – p‖

≤ αn
∥∥γ f (xn) –Ap

∥∥ + βn‖xn – p‖ + ( – βn – αnγ )
[‖xn – p‖

– ‖xn – zn‖ + δn‖Fxn – Fp‖‖xn – zn‖
]
.

It follows that

( – βn – αnγ )‖xn – zn‖ ≤ αn
∥∥γ f (xn) –Ap

∥∥ +
(‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖

+ ( – βn – αnγ )δn‖Fxn – Fp‖‖xn – zn‖.

Since ‖Fxn – Fp‖ →  as n→ ∞, we obtain

lim
n→∞‖xn – zn‖ = . (.)

Thus, from (.), (.), and (.) we obtain

lim
n→∞‖zn – yn‖ = lim

n→∞
∥∥(zn – un) – (p – u) + (un – yn) + (p – u)

∥∥
≤ lim

n→∞
∥∥(zn – un) – (p – u)

∥∥ + lim
n→∞

∥∥(un – yn) + (p – u)
∥∥

= 
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and

lim
n→∞‖xn – yn‖ ≤ lim

n→∞‖xn – zn‖ + lim
n→∞‖zn – yn‖

= .

Since JM,λ is -inverse strongly monotone, we have

‖wn – p‖ = ∥∥JM,λ(yn – λByn) – JM,λ(p – λBp)
∥∥

≤ 〈
(yn – λByn) – (p – λBp),wn – p

〉

=


[∥∥(yn – λByn) – (p – λBp)

∥∥ + ‖wn – p‖

–
∥∥(yn – λByn) – (p – λBp) – (wn – p)

∥∥]

≤ 

(‖yn – p‖ + ‖wn – p‖ – ∥∥(yn –wn) – λ(Byn – Bp)

∥∥)

≤ 

(‖yn – p‖ + ‖wn – p‖ – ‖yn –wn‖ + λ〈yn –wn,Byn – Bp〉

– λ‖Byn – Bp‖),
which implies that

‖wn – p‖ ≤ ‖yn – p‖ – ‖yn –wn‖ + λ‖yn –wn‖‖Byn – Bp‖. (.)

Substituting (.) into (.), we have

‖wn – p‖ ≤ ‖xn – p‖ – ∥∥(un – yn) + (p – u)
∥∥

+ μ‖Bun – Bu‖∥∥(un – yn) + (p – u)
∥∥

– ‖yn –wn‖ + λ‖yn –wn‖‖Byn – Bp‖. (.)

It follows from (.) that

‖xn+ – p‖

≤ αn
∥∥γ f (xn) –Ap

∥∥ + βn‖xn – p‖ + ( – βn – αnγ )‖wn – p‖

≤ αn
∥∥γ f (xn) –Ap

∥∥ + ( – αnγ )‖xn – p‖

– ( – βn – αnγ )
∥∥(un – yn) + (p – u)

∥∥

+ μ( – βn – αnγ )‖Bun – Bu‖∥∥(un – yn) + (p – u)
∥∥

– ( – βn – αnγ )‖yn –wn‖ + λ( – βn – αnγ )‖yn –wn‖‖Byn – Bp‖,

which gives

( – βn – αnγ )‖yn –wn‖

≤ αn
∥∥γ f (xn) –Ap

∥∥ + ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖)
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– ( – βn – αnγ )
∥∥(un – yn) + (p – u)

∥∥

+ μ( – βn – αnγ )‖Bun – Bu‖∥∥(un – yn) + (p – u)
∥∥

+ λ( – βn – αnγ )‖yn –wn‖‖Byn – Bp‖.

Since αn → , ‖xn+ – xn‖ → , ‖(un – yn) + (p – u)‖ → , ‖Byn – Bp‖ →  as n → ∞, we
have limn→∞ ‖yn –wn‖ = .
Step . We show limn→∞ ‖T(u)yn – yn‖ = .
Denote hn = 

tn

∫ tn
 T(u)wn du. From (.), limn→∞ αn = , and limn→∞ βn =  we have

‖xn+ – hn‖ =
∥∥αnγ f (xn) + βnxn +

(
( – βn)I – αnA

)
hn – hn

∥∥
≤ αn

∥∥γ f (xn) –Ahn
∥∥ + βn‖xn – hn‖

→  as n→ ∞. (.)

Let K = {w ∈ C : ‖w – p‖ ≤ 
γ–γ α

‖γ f (p) – Ap‖}. Then K is a nonempty bounded closed
convex subset ofC which isT(u)-invariant for each u ∈ [,∞) and contains {xn}. It follows
from Lemma . that

lim
n→∞

∥∥hn – T(u)hn
∥∥ = , u≥  (.)

and from (.) and (.), we have

∥∥xn+ – T(u)xn+
∥∥ ≤ ‖xn+ – hn‖ +

∥∥hn – T(u)hn
∥∥ +

∥∥T(u)hn – T(u)xn+
∥∥

≤ ‖xn+ – hn‖ +
∥∥hn – T(u)hn

∥∥
→  as n→ ∞.

Hence

lim
n→∞

∥∥xn – T(u)xn
∥∥ = . (.)

Furthermore, from Step  we have for every u ∈ [,∞) that

∥∥T(u)yn – T(u)xn
∥∥ ≤ ‖yn – xn‖ →  as n→ . (.)

So, we obtain from (.)

∥∥T(u)yn – xn
∥∥ ≤ ∥∥T(u)yn – T(u)xn

∥∥ +
∥∥T(u)xn – xn

∥∥
→  as n→ ∞. (.)

Hence, we have for every u ∈ [,∞) that

∥∥T(u)yn – yn
∥∥ ≤ ∥∥T(u)yn – xn

∥∥ + ‖xn – yn‖
→  as n→ ∞.
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Step . We show that lim supn→∞〈γ f (x∗) – Ax∗,xn – x∗〉 ≤  and lim supn→∞〈γ f (x∗) –
Ax∗, 

tn

∫ tn
 T(u)wn du – x∗〉 ≤ , where x∗ = PF (γ f (x∗) + (I –A)(x∗)).

Indeed, take a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
γ f

(
x∗) –Ax∗,xn – x∗〉 = lim

i→∞
〈
γ f

(
x∗) –Ax∗,xni – x∗〉. (.)

Since {yni} is bounded, we can assume that yni ⇀ w. First, we prove that w ∈ F(	).
Assume the contrary that w �= T(u)w for some u ∈ [,∞). Then by Opial’s condition, we

obtain from Step  that

lim inf
j→∞ ‖ynj –w‖ < lim inf

j→∞
∥∥ynj – T(u)w

∥∥
≤ lim inf

j→∞
(∥∥ynj – T(u)ynj

∥∥ +
∥∥T(u)ynj – T(u)w

∥∥)

≤ lim inf
j→∞ ‖ynj –w‖.

This is a contraction. Hence, w ∈ F(	).
Next, let us show that w ∈GMEP.
From zn = T (θ ,ϕ)

δn (xn – δnFxn), we obtain

θ (zn, y) + ϕ(y) – ϕ(zn) +

δn

〈
y – zn, zn – (xn – δnFxn)

〉 ≥ , ∀y ∈ C.

It follows from (H) that

ϕ(y) – ϕ(zn) +

δn

〈
y – zn, zn – (xn – δnFxn)

〉 ≥ θ (y, zn), ∀y ∈ C.

Replacing n by ni, we have

ϕ(y) – ϕ(zni ) + 〈y – zni ,Fxni〉 +
〈
y – zni ,

zni – xni
δni

〉
≥ θ (y, zni ), ∀y ∈ C. (.)

Let zt = ty + ( – t)w for all t ∈ [, ] and y ∈ C. Then we have zt ∈ C. It follows from (.)
that

〈zt – zni ,Fzt〉 ≥ 〈zt – zni ,Fzt〉 – ϕ(zt) + ϕ(zni ) – 〈zt – zni ,Fxni〉

–
〈
zt – zni ,

zni – xni
δni

〉
+ θ (zt , zni )

≤ 〈zt – zni ,Fzt – Fzni〉 + 〈zt – zni ,Fzni – Fxni〉

– ϕ(zt) + ϕ(zni ) –
〈
zt – zni ,

zni – xni
δni

〉
+ θ (zt , zni ).

Since ‖zni – xni‖ → , we have ‖Fzni – Fxni‖ →  as ni → ∞. From the monotonity of F ,
we have

〈Fzt – Fzni , zt – zni〉 ≥ .
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From (H), zni–xni
δni

→  and zni ⇀ w, we have

〈zt –w,Fzt〉 ≥ –ϕ(zt) + ϕ(w) + θ (zt ,w) (.)

as ni → ∞. By (H), (H), and (.), we obtain

 = θ (zt , zt) + ϕ(zt) – ϕ(zt)

≤ tθ (zt , y) + ( – t)θ (zt ,w) + tϕ(y) + ( – t)ϕ(w) – ϕ(zt)

≤ t
[
θ (zt , y) + ϕ(y) – ϕ(zt)

]
+ ( – t)〈zt –w,Fzt〉

= t
[
θ (zt , y) + ϕ(y) – ϕ(zt)

]
+ ( – t)t〈y –w,Fzt〉.

Hence we obtain

 ≤ θ (zt , y) + ϕ(y) – ϕ(zt) + ( – t)〈y –w,Fzt〉.

Putting t → , we have

 ≤ θ (w, y) + ϕ(y) – ϕ(w) + 〈y –w,Fw〉, ∀y ∈ C.

This implies that w ∈GMEP.
Next, we prove that w ∈ 
.
Utilizing Lemma ., we have for all x, y ∈ C

∥∥�(x) – �(y)
∥∥

=
∥∥T (G,φ)

μ

[
T (G,ψ)

μ (x –μBx) –μBT (G,ψ)
μ (x –μBx)

]
– T (G,φ)

μ

[
T (G,ψ)

μ (y –μBy) –μBT (G,ψ)
μ (y –μBy)

]∥∥

≤ ∥∥T (G,ψ)
μ (x –μBx) – T (G,ψ)

μ (y –μBy)

–μ
(
BT (G,ψ)

μ (x –μBx) – BT (G,ψ)
μ (y –μBy)

)∥∥

≤ ∥∥T (G,ψ)
μ (x –μBx) – T (G,ψ)

μ (y –μBy)
∥∥

+μ(μ – β)
∥∥BT (G,ψ)

μ (x –μBx) – BT (G,ψ)
μ (y –μBy)

∥∥

≤ ∥∥T (G,ψ)
μ (x –μBx) – T (G,ψ)

μ (y –μBy)
∥∥

≤ ∥∥x – y –μ(Bx – By)
∥∥

≤ ‖x – y‖ +μ(μ – β)‖Bx – By‖

≤ ‖x – y‖.

This shows that � : C → C is nonexpansive. Note that
∥∥yn – �(yn)

∥∥ =
∥∥�(zn) – �(yn)

∥∥
≤ ‖zn – yn‖
→  as n→ ∞.

According to Lemma . and Lemma ., we obtain w ∈ 
.
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Lastly, we show that w ∈ I(B,M).
In fact, since B is a β-inverse strongly monotone, B is monotone and Lipschitz con-

tinuous mapping. It follows from Lemma . that M + B is a maximal monotone map-
ping. Let (v, g) ∈ G(M + B). Then g – B(v) ∈ M(v). Since wni = JM,λ(yni – λByni ), we have
yni – λByni ∈ (I + λM)(wni ), i.e.,


λ
(yni – wni – λAyni ) ∈ M(wni ). By virtue of the maximal

monotonicity ofM + B, we have

〈
v –wni , g – B(v) –


λ
(yni –wni – λByni )

〉
≥ 

and hence

〈v –wni , g〉 ≥
〈
v –wni ,B(v) +


λ
(yni –wni – λByni )

〉

= 〈v –wni ,Bv – Bwni〉 + 〈v –wni ,Bwni – Byni〉

+
〈
v –wni ,


λ
(yni –wni )

〉
.

It follows from limn→∞ ‖wn – yn‖ =  that we have

lim
n→∞‖Bwn – Byn‖ = 

and

wni ⇀ w,

lim sup
n→∞

〈v –wni , g〉 = 〈v –w, g〉 ≥ .

It follows from themaximalmonotonicity ofM+B that θ ∈ (M+B)(w), that is,w ∈ I(B,M).
Therefore ω ∈F = F(	)∩GMEP ∩ 
 ∩ I(B,M).
By x∗ = PF (γ f + (I –A))(x∗), we obtain

lim sup
n→∞

〈
(γ f –A)x∗,xn – x∗〉 = lim

i→∞
〈
(γ f –A)x∗,xni – x∗〉

=
〈
(γ f –A)x∗,w – x∗〉

≤ 

and

lim sup
n→∞

〈
(γ f –A)x∗,


tn

∫ tn


T(u)wn du – x∗

〉

= lim
i→∞

〈
(γ f –A)x∗,


tni

∫ tni


T(u)wni du – x∗

〉

=
〈
(γ f –A)x∗,w – x∗〉

≤ ,

as required.
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Step . We prove xn → x∗ as n → ∞.
By using (.), we have

∥∥xn+ – x∗∥∥

=
∥∥∥∥αn

(
γ f (xn) –Ax∗) + βn

(
xn – x∗)

+
(
( – βn)I – αnA

)( 
tn

∫ tn


T(u)wn du – x∗

)∥∥∥∥


≤ α
n
∥∥γ f (xn) –Ax∗∥∥

+
∥∥∥∥βn

(
xn – x∗) + (

( – βn)I – αnA
)( 

tn

∫ tn


T(u)wn du – x∗

)∥∥∥∥


+ αn

〈
γ f (xn) –Ax∗,βn

(
xn – x∗) + (

( – βn)I – αnA
)( 

tn

∫ tn


T(u)wn du – x∗

)〉

≤ α
n
∥∥γ f (xn) –Ax∗∥∥ + β

n
∥∥xn – x∗∥∥ + ( – βn – αnγ )

∥∥wn – x∗∥∥

+ βn

〈
xn – x∗,

(
( – βn)I – αnA

)( 
tn

∫ tn


T(u)wn du – x∗

)〉

+ αnβn
〈
γ f (xn) – γ f

(
x∗),xn – x∗〉 + αnβn

〈
γ f

(
x∗) –Ax∗,xn – x∗〉

+ αn( – βn – αnγ )
〈
γ f (xn) – γ f

(
x∗), 

tn

∫ tn


T(u)wn du – x∗

〉

+ αn( – βn – αnγ )
〈
γ f

(
x∗) –Ax∗,


tn

∫ tn


T(u)wn du – x∗

〉
.

It follows from (.), (.), and (.) that

∥∥xn+ – x∗∥∥

≤ α
n
∥∥γ f (xn) –Ax∗∥∥ + β

n
∥∥xn – x∗∥∥ + ( – βn – αnγ )

∥∥xn – x∗∥∥

+ βn( – βn – αnγ )
∥∥xn – x∗∥∥

+ αnβnγα
∥∥xn – x∗∥∥ + αnβn

〈
γ f

(
x∗) –Ax∗,xn – x∗〉

+ αn( – βn – αnγ )γα
∥∥xn – x∗∥∥

+ αn( – βn – αnγ )
〈
γ f

(
x∗) –Ax∗,


tn

∫ tn


T(u)wn du – x∗

〉

≤ [
 – αn(γ – γα + αnγ γα)

]∥∥xn – x∗∥∥ + α
n
∥∥γ f (xn) –Ax∗∥∥

+ αnβn
〈
γ f

(
x∗) –Ax∗,xn – x∗〉

+ αn( – βn – αnγ )
〈
γ f

(
x∗) –Ax∗,


tn

∫ tn


T(u)wn du – x∗

〉

+ α
nγ

∥∥xn – x∗∥∥

= ( – αn)
∥∥xn – x∗∥∥ + βn,
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where

αn = αn(γ – γα + αnγ γα),

βn = α
n
∥∥γ f (xn) –Ax∗∥∥ + αnβn

〈
γ f

(
x∗) –Ax∗,xn – x∗〉

+ αn( – βn – αnγ )
〈
γ f

(
x∗) –Ax∗,


tn

∫ tn


T(u)wn du – x∗

〉

+ α
nγ

∥∥xn – x∗∥∥.

It is easily seen that αn →  as n → ∞,
∑∞

n= αn = +∞ and lim supn→∞
βn
αn

≤ . Hence,
applying Lemma . we immediately obtain xn → x∗ as n→ ∞. This completes the proof.

�

Remark . Let us consider the following sequences:

αn =

n 


, βn =


n

, δn =

n 


+



and tn = n, ∀n≥ .

It is easy to see that all hypotheses (C)-(C) of Theorem . are satisfied.

By Theorem ., we can obtain the following results immediately.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
θ ,G,G : C × C → R be three bifunctions which satisfy assumptions (H)-(H) and
ϕ,φ,ψ : C → R be three lower semicontinuous and convex functions with restriction (A)
or (A). Let B,B,B : C →H be β-inverse stronglymonotone, β-inverse stronglymonotone
and β-inverse strongly monotone, respectively and M : H → H be a maximal monotone
mapping. Let 	 = {T(u) :  ≤ u < ∞} be a one-parameter nonexpansive semigroup on H
such that F = F(	) ∩ MEP ∩ 
 ∩ I(B,M) �= φ. Let {tn} ⊂ (,∞) be a real sequence such
that limn→∞ tn = ∞. Let f be a contraction from C into itself with a constant α ( < α < )
and let A be a strongly positive linear bounded operator with coefficient γ >  such that
‖A‖ ≤ . Assume that  < γ < γ

α(–αnγ ) . Let x ∈ C and let {xn} be a sequence defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θ (zn, y) + ϕ(y) – ϕ(zn) + 
δn

〈y – zn, zn – xn〉 ≥ , ∀y ∈ C,

yn = T (G,φ)
μ [T (G,ψ)

μ (zn –μBzn) –μBT (G,ψ)
μ (zn –μBzn)],

xn+ = αnγ f (xn) + βnxn
+ (( – βn)I – αnA)[ 

tn

∫ tn
 T(u)(JM,λ(yn – λByn))]du, ∀n≥ ,

where αn ∈ (, ), μ ∈ (, β], μ ∈ (, β], λ ∈ (, β], δn ∈ (, ζ ] satisfy the following
conditions:

(i) limn→∞ αn = ,
∑∞

n= αn =∞ and
∑∞

n= |αn+ – αn| < ∞;
(ii)

∑∞
n= βn <∞ and

∑∞
n= |βn+ – βn| < ∞;

(iii) lim infn→∞ δn >  and
∑∞

n= |δn+ – δn| < ∞;
(iv) limn→∞ |tn–tn–|

tn


αn
= .
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Then {xn} converges strongly to x∗ = PF (γ f + (I – A))(x∗), which solves the following vari-
ational inequality:

〈
(A – γ f )x∗,x – x∗〉 ≥ , ∀x ∈F

and (x∗, y∗) is a solution of problem (.), where y∗ = T (G,ψ)
μ (x∗ –μBx∗).

Proof In Theorem ., for all n≥ , zn = T (θ ,ϕ)
δn (xn – δnFxn) is equivalent to

θ (zn, y) + ϕ(y) – ϕ(zn) + 〈Fxn, y – zn〉 + 
δn

〈y – zn, zn – xn〉 ≥ , ∀y ∈ C. (.)

Putting F = , we obtain

θ (zn, y) + ϕ(y) – ϕ(zn) +

δn

〈y – zn, zn – xn〉 ≥ , ∀y ∈ C.

By Theorem ., we can easily get the desired conclusion. �

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H .
Let G,G : C × C → R be two bifunctions which satisfy assumptions (H)-(H) and
φ,ψ : C → R be two lower semicontinuous and convex functions with restriction (A) or
(A). Let F ,B,B,B : C → H be ζ -inverse strongly monotone, β-inverse strongly mono-
tone, β-inverse strongly monotone and β-inverse strongly monotone, respectively, and let
M : H → H be a maximal monotone mapping. Let 	 = {T(u) :  ≤ u < ∞} be a one-
parameter nonexpansive semigroup on H such thatF = F(	)∩VI(F ,C)∩
∩ I(B,M) �= φ.
Let {tn} ⊂ (,∞) be a real sequence such that limn→∞ tn = ∞. Let f be a contraction from
C into itself with a constant α ( < α < ) and let A be a strongly positive linear bounded
operator with coefficient γ >  such that ‖A‖ ≤ . Assume that  < γ < γ

α(–αnγ ) . Let x ∈ C
and let {xn} be a sequence defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zn = PC(xn – δnFxn),

yn = T (G,φ)
μ [T (G,ψ)

μ (zn –μBzn) –μBT (G,ψ)
μ (zn –μBzn)],

xn+ = αnγ f (xn) + βnxn
+ (( – βn)I – αnA)[ 

tn

∫ tn
 T(u)(JM,λ(yn – λByn))du], ∀n≥ ,

where αn ∈ [, ], μ ∈ (, β], μ ∈ (, β], λ ∈ (, β], δn ∈ (, ζ ] satisfy the following
conditions:

(i) limn→∞ αn = ,
∑∞

n= αn =∞ and
∑∞

n= |αn+ – αn| < ∞;
(ii)

∑∞
n= βn <∞ and

∑∞
n= |βn+ – βn| < ∞;

(iii) lim infn→∞ δn >  and
∑∞

n= |δn+ – δn| < ∞;
(iv) limn→∞ |tn–tn–|

tn


αn
= .

Then {xn} converges strongly to x∗ = PF (γ f + (I – A))(x∗), which solves the following vari-
ational inequality:

〈
(A – γ f )x∗,x – x∗〉 ≥ , ∀x ∈F

and (x∗, y∗) is a solution of problem (.), where y∗ = T (G,ψ)
μ (x∗ –μBx∗).
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Proof Put θ =  and ϕ =  in Theorem .. Then we have from (.)

〈Fxn, y – zn〉 + 
δn

〈y – zn, zn – xn〉 ≥ , ∀y ∈ C,n ≥ .

That is,

〈y – zn,xn – δnFxn – zn〉 ≤ , ∀y ∈ C.

It follows that PC(xn – δnFxn) = zn for all n ≥ . We easily obtain the desired conclusion.
�

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
θ ,G,G : C × C → R be three bifunctions which satisfy assumptions (H)-(H) and
ϕ,φ,ψ : C → R be three lower semicontinuous and convex functions with restriction (A)
or (A). Let F ,B,B,B : C → H be ζ -inverse strongly monotone, β-inverse strongly mono-
tone, β-inverse strongly monotone, and β-inverse strongly monotone, respectively. Let
	 = {T(u) :  ≤ u < ∞} be a one-parameter nonexpansive semigroup on H such that
F = F(	) ∩ GMEP ∩ 
 ∩ VI(F ,C) �= φ. Let {tn} ⊂ (,∞) be a real sequence such that
limn→∞ tn = ∞. Let f be a contraction from C into itself with a constant α ( < α < ) and
let A be a strongly positive linear bounded operator with coefficient γ >  such that ‖A‖ ≤ .
Assume that  < γ < γ

α(–αnγ ) . Let x ∈ C and let {xn} be a sequence defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zn = T (θ ,ϕ)
δn (xn – δnFxn),

yn = T (G,φ)
μ [T (G,ψ)

μ (zn –μBzn) –μBT (G,ψ)
μ (zn –μBzn)],

xn+ = αnγ f (xn) + βnxn
+ (( – βn)I – αnA)[ 

tn

∫ tn
 T(u)(PC(yn – λByn))du], n ≥ ,

where αn ∈ (, ), μ ∈ (, β], μ ∈ (, β], λ ∈ (, β], δn ∈ (, ζ ] satisfy the conditions
(C)-(C). Then {xn} converges strongly to x∗ = PF (γ f + (I – A))(x∗), which solves the fol-
lowing variational inequality:

〈
(A – γ f )x∗,x – x∗〉 ≥ , ∀x ∈F,

and (x∗, y∗) is a solution of problem (.), where y∗ = T (G,ψ)
μ (x∗ –μBx∗).

Proof Taking JM,λ = PC in Theorem ., we can obtain desired conclusion immediately.
�

Remark . Theorem . generalizes and improves Theorem . of Kumam and Wat-
tanawitoon [], Theorem . of Plubtieng and Punpaeng [] and Theorem . of Shehu
[] in the following aspects:
() Algorithm of Theorem . is different from algorithms in [, , ].
() Theorem . includes Theorem . of Plubtieng and Punpaeng [] as a special case.
() Theorem . improves Theorem . of Kumam and Wattanawitoon [] since the

generalized equilibrium problem that is within [] is extended to the generalized
mixed equilibrium problem.
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