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1 Introduction
Let H be a real Hilbert space with inner product (-, -) and norm || - ||. Let C be a nonempty
closed convex subset of H. Recall that a mapping 7 : C — C is said to be nonexpansive if

ITx - Tyl < llx-yll, VxyeC.

We denote by F(T) the set of fixed points of T. Let Pc be the projection of H onto the
convex subset C. Moreover, we also denote by R the set of all real numbers.

A one-parameter family I = {T'(£) : 0 < ¢ < oo} is said to be a nonexpansive semigroup
on C if it satisfies the following conditions:

(1) T(0)x =« forallx € C;

(2) T(s+t)=T(s)T(¢) foralls,t > 0;

B) IT®x-TE)yll <llx—y| forallx,y € Cand t > 0;

(4) forallx € C, t— T(f)x is continuous.
We denote by F(3) the set of all common fixed points of 3, that is, F(J) ={x € C: T(¢)x =
x,0 <t < oo}. It is well known that F(3) is closed and convex.
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A mapping A of C into H is called monotone if (Ax—Ay,x—y) > 0 forallx,y € C. A map-
ping A is called a-inverse strongly monotone if there exists a positive real number « such
that (Ax — Ay, x—y) > a||Ax— Ay||* for all x,y € C. A mapping A is called «-strongly mono-
tone if there exists a positive real number « such that (Ax — Ay,x —y) > a|lx — y|| for all
x,y € C.Itis obvious that any a-inverse strongly monotone mappings A is a monotone and
é-Lipschitz continuous mapping. A linear bounded operator A is called strongly positive
if there exists a constant ¥ > 0 with the property (Ax,x) > 7 |x||* for all x € H.

Let B: H — H be a single-valued nonlinear mapping and M : H — 2! be a set-valued
mapping. The variational inclusion problem is to find x € H such that

0 € B(x) + M(x), (1.1)

where 0 is the zero vector in H.

The set of solutions of (1.1) is denoted by (B, M) (see [1-3] and the reference therein).

A set-valued mapping M : H — 2/ is called monotone if for all x,y € H, f € M(x)
and g € M(y) imply (x — y,f — g) > 0. A monotone mapping M is maximal if its graph
GM) ={(f,x) € H x H: f € M(x)} of M is not properly contained in the graph of any
other monotone mapping. It is well known that a monotone mapping M is maximal if and
only if for (x,f) e H x H, (x —y,f — g) > 0 for all (y,g) € G(M) imply f € M(x).

Let M : H — 2" be a set-valued maximal monotone mapping. Then the single-valued
mapping Ju,, : H — H defined by

Jos () =+ M) (x), x€H,

is called the resolvent operator associated with M, where A is any positive number and /
is the identity mapping. It is well known that the resolvent operator /s, is nonexpansive,
1-inverse strongly monotone and that a solution of problem (1.1) is a fixed point of the
operator Jy;; (I — AB) for all A > 0, where I denotes the identity operator on H (see [4]).

Peng and Yao [5] considered the following generalized mixed equilibrium problem of
finding x € C such that

0(x,y) + (y) — p(x) + (Fx,y —x) >0, VyeC, (1.2)

where F : C — H is a nonlinear mapping, ¢ : C — Ris a functionand 8 : C x C — R isa
bifunction. The set of solutions of problem (1.2) is denoted by GMEP.

In the case of F = 0, problem (1.2) reduces to the following mixed equilibrium problem
of finding x € C such that

O@x,y) + o) —pkx) =0, VyeC,

which was considered by Ceng and Yao [6]. GMEP is denoted by MEP.
In the case of ¢ = 0, problem (1.2) reduces to the following generalized equilibrium prob-
lem of finding x € C such that

O(x,y) + (Fx,y—x) >0, VyeC,

which was studied by Takahashi and Takahashi [7].
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In the case of ¢ = 0 and F = 0, problem (1.2) reduces to the equilibrium problem of
finding x € C such that

O(x,y) >0, VyeC. (1.3)

The set of solution of (1.3) is denoted by EP(0).
In the case § = 0 and ¢ = 0, problem (1.2) reduces to the classical variational inequality
of finding x € C such that

(Fx,y—x)>0, VyeC. (1.4)

The set of solutions of problem (1.4) is denoted by VI(F, C).

The problem (1.2) is very general in the sense that it includes, as special cases, optimiza-
tion problem, variational inequalities, minimax problems, the Nash equilibrium problem
in noncooperative games and others (see [6, 8-10]).

Peng and Yao [5] considered iterative methods for finding a common element of the
set of solutions of problem (1.2), the set of solutions of problem (1.4), and the set of fixed
points of a nonexpansive mapping.

Let G, Gy : C x C — R be two bifunctions, ¢, ¥ : C — R be two functions and By, B; :
C — H be two nonlinear mappings. We consider the generalized mixed equilibria prob-
lem of finding (¥,7) € C x C such that

Gi(%%) + p(x) - p(®) + (Biy,x —X) + - (X-§,x—X) =0, VxeC,

(1.5)
G2@,y)+¢()’)—l/f@)+(Bzx,y—y>+t@—9_€yy—7) 201 VyGC,
where 1 > 0 and u; > 0 are two constants.
In the case ¢ = ¥ = 0, problem (1.5) reduces to the following problem of the general
system of generalized equilibria of finding (,y) € C x C such that

Gi(%,%) + (B1y,x — %) + - (X -5,x-%) =0, VxeC,

(1.6)
G2(559) + (Ba%,y =9) + s (-%y-5) 20, VyeC,
which was considered by Ceng and Yao [9].
In the case G; = G, = 0, problem (1.6) reduces to the following problem of the general

system of variational inequalities of finding (x,y) € C x C such that

(B1y+x—-y,x—x)>0, VxeC, 17)
(112BX +T-F,y-7) =0, VyeC, ’

which was considered by Ceng, Wang and Yao [11].
In particular, if B; = B, = D: C — H is a nonlinear mapping, then problem (1.7) reduces

to the following problem of the system of variational inequalities of finding (¥,y) € C x C
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such that

(muDy+x-y,x-x)>0, VxeC, (1.8)
(12Dx+5-%y-7) 20, VyeC, '

which was studied by Verma [12].

If x =y in (1.8), then (1.8) reduces to the classical variational inequality (1.4).

For solving the mixed equilibrium problem, let us give the following assumptions for the
bifunction 0, ¢ and the set C:

(H1) 6(x,y)=0forallx € C;

(H2) 6 is monotone, i.e., O(x,y) + 0(y,x) <0 for all x,y € C;

(H3) foreachw,y,zeC

limsup6(tz + (1 - t)x,y) < 0(x,9);

t—0

(H4) for eachx € C, y > 6(x,y) is convex and lower semicontinuous;
(Al) for each x € H and r > 0, there exist a bounded subset D C C and y € C such that
for any z € C\D

1
0@) +90) -9l + _{y-22-2) <0;
(A2) Cisabounded set.
Recently, Shehu [13] studied the problem of finding a common element of the set of
common fixed points of a one-parameter nonexpansive semigroup, the set of solutions
to a variational inclusion, and the set of solutions to a generalized equilibrium problem.

More precisely, the author proved the following theorem.

Theorem 1.1 Let C be a nonempty closed and convex subset of a real Hilbert space H. Let
0 be a bifunction from C x C to R satisfying (H1)-(H4), ¥ a w-inverse strongly monotone
mapping of C into H, B an a-inverse strongly monotone mapping of C into H and M :
H — 21 a maximal monotone mapping. Let S = {T(u) : 0 < u < 0o} be a one-parameter
nonexpansive semigroup on H such that F = F(I) N I(B,M) N EP(0) # ¢ and suppose f :
H — H is a contraction mapping with a constant y € (0,1). Let {t,} C (0,00) be a real

sequence such that lim,,_, «, t, = 00. Suppose {x,};2, and {u,}52, are generated by x, € H,

1
Q(Mn,y) + (UXy — ) + — Y — U,y — %) 20, VyeC,
s

X+l = ,ann + (1 - ,Brl)(tl /0 ' T(M)[Ol,‘f(xn) + (1 - an)]M,A(Mn - )"Aun)] du)

forall n > 1, where {a,, )02, and {B,}.°; are sequences in (0,1) and {r,};°, C (0,00) satisfy-
ing:
(1) limy—oo By =0, Z;ﬁl | Biu+1 — Bul < 00,

(i) limyoo00t, =0, Y 02 0y =00, D ey otys1 — aty| < 00,
(iii) A € (0,2a],
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(iv) 0<a<ry <b<2p, Y o2 |Fu1 —Tul <00,

: [tn—tn-1l 1 _
(v) lim,_, o0 . i = 0.

Then {x, )}, converges strongly to z, where z = Prf (z).

In this paper, motivated by Shehu [13], Kumam and Wattanawitoon [14], Li et al. [15],
Plubtieng and Punpaeng [10], Plubtieng and Wangkeeree [16], we introduce the following
general iterative scheme for finding a common element of the set of common fixed points
of a one-parameter nonexpansive semigroup, the set of solutions of the generalized mixed
equilibrium problem (1.2), the set of solutions to a variational inclusion (1.1), and the set
of solutions of the generalized mixed equilibria problem (1.5), which solves the variational

inequality

(A-yfat,x-x*)>0, VxeF,
where F = F(I) N GMEP N QN I(B,M) and Q is the set of solutions of the generalized
equilibria problem (1.5).

The results obtained in this paper improve and extend the recent results announced by

[10, 13-16] and many others.
2 Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert space H. For every point x € H
there exists a unique nearest point of C, denoted by Pcx such that ||x — Pcx|| < [|x — y||
for all y € C. Such a P is called the metric projection of H onto C. We know that P¢ is a
firmly nonexpansive mapping of H onto C, i.e.,

(x =9, Pcx ~ Pcy) = ||IPcx — Peyll®,  Vay € H.
Further, for any x € H and z € C, z = Pcx if and only if

x—z,z-y9)>0, VyeC.

It is also known that H satisfies Opial’s condition [17], that is, if for each sequence {x,}°,

in H which converges weakly to a point x € H, we have
liminf ||x, — x| <liminf||x, —y|, VyeH,y#x.
n—00 n—00
In order to prove our main results in the next section, we need the following lemmas.

Lemma 2.1 ([6]) Let C be a nonempty closed convex subset of H. Let 6 : C x C — R be
a bifunction satisfying conditions (H1)-(H4) and let ¢ : C — R be a lower semicontinuous

and convex function. For r > 0 and x € H define a mapping
1
T (x) = 1z2€ C:0(z,9) + 9(y) —9(2) + ~(y—z,z2—x) > 0,Vy € C}
r

for all x € H. Assume that either (A1) or (A2) holds.
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Then the following results hold:
() T9x) # ¢ for each x € H and T s single-valued,;

(i) T is firmly nonexpansive, i.e., for any x,y € H
| T - Tr<6,wy||2 <(T9x - TOOy,x —y);

(iii) F(T"") = MEP(9, p);
(iv) MEP(8, @) is closed and convex.

By similar argument as in the proof of Lemma 2.2 in [6], we have the following result.

Lemma 2.2 Let C be a nonempty closed convex subset of H. Let G1, Gy : C x C — R be two
bifunctions satisfying conditions (H1)-(H4). Let ¢, ¥ : C — R be two lower semicontinuous
and convex functions with restriction (Al) or (A2) and let the mappings B1,By : C - H
be By-inverse strongly monotone and B,-inverse strongly monotone, respectively. Let p, €
(0,261) and s € (0,2B,). Then for given x,y € C, (x,5) is a solution of problem (1.5) if and
only ifx is a fixed point of the mapping I : C — C defined by

P(x) = T[T (& = paBox) — i BI TS (6 — naBax)],  Vxe C,

M1 n2
wherey = Tl(gz"”)(% — w2 BoX).

Remark 2.1 Under the conditions of Lemma 2.2, the set of fixed points of the mapping I
is denoted by €.

Proposition 2.1 ([7]) Let C, H, 6, ¢ and T,(W) be as in Lemma 2.1. Then the following
holds:
s—t

—<TS(9"")x - Tt(e"”)x, TO9)x — x)

0= 10 <

foralls,t >0 andx € H.

Lemma 2.3 ([18]) Assume that T is a nonexpansive self-mapping of a nonempty closed
convex subset of C of a real Hilbert space H. If T has a fixed point, then I — T is demiclosed,
that is, when {x,}5°, is a sequence in C converging weakly to some x € C and the sequence
{( = T)x,}32, converges strongly to some y, it follows that (I — T)x = y.

Lemma 2.4 ([4]) Let M : H — 2" be a maximal monotone mapping and let B: H — H
be a monotone and Lipschitz continuous mapping. Then the mapping M + B: H — 2" isa

maximal monotone mapping.

Lemma 2.5 ([19]) Let C be a nonempty bounded closed convex subset of a Hilbert space H

and let I ={T(s): 0 < s < 0o} be a nonexpansive semigroup on C. Then for any h > 0,

%fot T(s)xds - T(h)(% /Ot T(s)xds)

lim sup
t—00 xeC

-o
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Lemma 2.6 ([12]) Let {a,}5, be a sequence of nonnegative real numbers such that
an+1§(1_8n)an+bn+0n: neN,

where {6,}7°, C (0,1) and {b,};°,, {on}52, are sequences in R such that
() limy— 08, =0, Y o) 8, = 00;
(ii) limsup,_, [g—: <0;
(i) 0,>0,) 0, 0y < 0.

Then lim,_, o a,, = 0.

Lemma 2.7 ([19]) Assume that A is a strongly positive linear bounded operator on a Hilbert
space H with coefficient y >0 and 0 < p < ||A||™}. Then ||I — pA|| <1-p¥y.

3 Main results
Now we state and prove our main results.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
0,G1,Gy : C x C — R be three bifunctions which satisfy assumptions (H1)-(H4) and
©, ¢, ¥ : C — R be three lower semicontinuous and convex functions with restriction (Al)
or (A2). Let F, B, By, B, : C — H be ¢ -inverse strongly monotone, B-inverse strongly mono-
tone, Pi-inverse strongly monotone and P,-inverse strongly monotone, respectively and
M : H — 2" be a maximal monotone mapping. Let I = {T(u) : 0 < u < 00} be a one-
parameter nonexpansive semigroup on H such that F = F(I) N GMEP N QN I(B,M) # ¢.
Let {t,} C (0,00) be a real sequence such that lim,_, » t,, = co. Let f be a contraction from
C into itself with a constant a (0 < « < 1) and let A be a strongly positive linear bounded
operator with coefficient y > 0 such that ||A|| <1. Assume that 0 <y < a(l—Laﬁ) Letx; € C
and let {x,} be a sequence defined by

0,
2y = T (0 — 8,F,),

Yu = T[TV (2, — 113By2,) — 1 BL TSV (2, — 112 Boz,), 51

Xntl = ‘Xnyf(xn) + Bnn
+ (L= B = AL fo" T st (n = ABy,)) dul, n=1,

where o, € (0,1), 1 € (0,261], 2 € (0,285], » € (0,281, 8, € (0,2¢] satisfy the following
conditions:

(C1) im0y =0, Y ooy =00 and Y ey lotys1 — oty < 00;

(C2) Y02 Bu<ooand Y02, |Bunt — Bul < 00;

(C3) liminf, 008, >0 and Y o1 |81 — 8, < 00;

(C4) lim, oo 'f;;ll Lo

Then {x,} converges strongly to x* = Px(yf + (I — A))(x*), which solves the following varia-

tional inequality:
((A —yf)x*,x —x*) >0, VxelF,

and (x*,y*) is a solution of problem (1.5), where y* = T\3>¥)(x* — 13 Byx*).


http://www.fixedpointtheoryandapplications.com/content/2014/1/57

Jeong Fixed Point Theory and Applications 2014, 2014:57 Page 8 of 25
http://www.fixedpointtheoryandapplications.com/content/2014/1/57

Proof Since F is a ¢ -inverse strongly monotone mapping, we have

| = 8,F)x = (I = 8,F)y||* = % = yI* = 28, (x — y, Fx — Fy) + 82| Fx — Fy|

< Ilx=y1% + 84(8, — 20) | Fx - Fy|)*. (3.2)
In similar way, we can obtain

| = 2B)x — (I = B)y| < llx = y1I* + 2(x = 28)[1Bx — By|”,
|7 = paBr)x = (1 = By | < llx =11 + a1 ~ 2801 Bix — Buyll, (33)

[ = paB2)x — (I = waBo)y| < llx = ylI* + palaa — 282) | Bax — Byl

Noticing that lim,,_, &, = 0 = lim,_, » B, We may assume, with no loss of generality, that

An

5 < |A|| ™ forall # > 1. From Lemma 2.7 we know that if 0 < p < ||A||™}, then ||[I- pA| <

1- py. Since A is a strongly positive bounded linear operator on H, we have
IA|l = sup{|(Ax,x)| :x € H, |lx]| = 1}.

Observe that
(=B - apA)x,x) =1 - B, — (A, %) = 1= B, — at,||A]| > 0.

This shows that (1 — 8,)] — «,A is positive. It follows that

(1= B = auA|| = sup{{((1 = B - ctuA)x, %) : x € H, ||x]| =1}
= sup{l - By —a,(Ax,x) :x € H, || x| = 1}
<1-B,-a,y.
We divide the proof into several steps.
Step 1. {x,,} is bounded.
Indeed, take p € F arbitrarily. Since p = Ts(s"p)(p — 8,Fp), F is ¢ -inverse strongly mono-
tone and 0 < §,, < 2¢, we obtain for any n > 1
2 _ || 70.) (0.9) 2
lzn = pII> = | TE9 (x, = 8,F,) = TV (p - 8,Ep) |
2
=< H(xn —P) - 5,,(ny, —FP)”
= 1%, = pII¥ = 28, (% — p, Fx, — Ep) + 8,.|| Fx,, — Ep|?
< %0 = pII* + 8,(8, = 2¢) | Fx — Epl|?

< Ilx. - pI*. (3:4)
Putting u,, = T}(gz"/’)(zn —w2B2zy), Wy = Jara (¥n — ABy,), and u = T}(gz"/’)(p — U2 Bop), we have

2
et = ull® = | T35 (e~ 2Baz) = T3 (p — 12Bop) |

n2 n2

< ||z - p) - 2Bz, - Bop) |
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= ||z, — plI* = 2142(2s — P, Bozn — Bop) + 1431 Bazs — Bop||?

< llzn = pII* + 212 — 2B2)1B2z,, — Bopl|*

2
<z —pll

and
2
W, = pI* = | /a1, = ABy») = Jar.(p — ABp) |

= ”()/n - p) — MByn — Bp) ”2

= llyn = P> = 2A(yu — p, By, — Bp) + A*|| By, — Bp|*

<Ilyx = pII* + A( = 28)|| By, — Bp|*

<Ily. - pI*

And since

p= T(Gl'¢ [T (©29)(p — urByp) — w1 By T(fz'w)(p — 12Bop)]

T (u - pByw),

we know that for any n > 1

lyn = pI? = | T — p1Bran) = TSP (u - iy By |

< || (et — ) = 1 By —Blu)”

2
= lup — ull” =21 {1y — u, B1uy,

<ty — ull* + pa (a1 — 281) | Batty, — Byul|*
<ty —u)?
<llzx - plI*.

— Byu) + 15| Buuy, — Buul|*

Page 9 of 25

3.7)

Since A is a strongly positive linear bounded operator with coefficient 7 > 0, we have

%1 =PIl

<o, |vf () = Ap| + Bullxn — pll + A = By — atu¥) Wy — p

= o (1)~ Ap) + Bl =) + (1= B~ ) - /0 [T @w, - T(u)p] du

<any|[f () —f@)| + | vf ) = Ap|| + Bull%u — Pl + A = Bu — 0ta¥) 154 — Pl

< [1-a,@ -yl - pll + o} v () - Ap] -

By induction, we obtain for all n > 1

||xn—p||smax{||x1 pn,_ ||yf(p) Apn}

Hence {x,}5, is bounded. So are {y,}°1, {zn}521, (Walooq.
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Step 2. We show that lim,,_, o [|%,11 — %, =0
We estimate [|y,+1 — yx|l. From (3.1), we have

2
||yn+1 _yn ”2 || T Gl 2 (un+l - MlBlunH) - Gl ¢)( Uy — MlBlun) ||

IA

| nar = ) = 11 (Brttsa — Buiay) H
< |lttp41 = un||2 + (= 28)1Bi1tgyn —Bllfin”2
< ltn1 = un”2

2
= || T G2 ]/J Zn+1 - I’LZBZZVH-I) - T,(J,gz’]/f)(zn - /’L2BZZn) ||

IA

|(zns1 = 21) = 12 (Bazus1 — Baza) | 2

< NZu1 = zull® + 12 (2 = 282) | Baznar — Bozall®

< 121 = zull?, (3.8)
|1 = 81 Fxns1) = (6n — 8uFx) |

= ”xm—l —Xn — 8n+1(Fxn+l - Fxn) + (6;’1 - 8n+l)Fxn “

IA

”xn+1 —Xn — 6n+1(Fxn+1 - Fxn)H + |8n - 8n+1| ”Fxn”

= a1 = Xull + 18, = S [ 1 Foxp |
and

”Zn+1 - Zn” = || Tg (xn+1 - 8n+1Fxn+1) '90 (xn -9 Fxn ||

el
< | 75 Gt = SprF) - Té" )@ = 8uF) |
+ | T = 84Fx) = T (0 — 8, Fc) |
< || Gonar = 8ni1Fne1) — (0 — 8uFxn) |
+ | T ot — 8,Fx) — T (n — 80F i) |
< i1 = Xull + 18541 — Sl Il Exn |
+ | T o~ 84F) = Too® (0 — 8, F) | (3.9)

Without loss of generality, let us assume that there exists a real number a such that §, >
a > 0 for all n. Utilizing Proposition 2.1 we have

| T (e — 80 F) = T (6 — 84F) |

< 1 =3 ||| T — 8,F)ty —
n+1
< 87041 — 8l “ Téiﬁ)(l_ 8, F)%,, — %y ” (3.10)

It follows from (3.8)-(3.10) that

Wit = Wall = [ Jaa Onst = ABtns1) = Jars (v — ABy,) |
=< || (ym—l - )\Bynﬂ) - (yn - )\Byn)”

< yne1 = Yull (3.11)
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and

Yni1 = Yull < 1Zne1 = 2l
= e = Xull + 1841 = Sl | x|
1)
Gt gl ||T9“’ 1= 8,F)x, — . (3.12)

Put &, = é fot” T (u)w,, du for all n > 1. We note that

1 tn 1 tp-1
— / T(u)w, du — / T(u)wy,_1 du
tn 0 tn—l 0

tl /otn[T(u)wn — T()wy_1] du

n

”hn - hn—l ” =

=

1 1

i /0 [T(u)w,,,l - T(u)p] du

/ ' [T()Wus — T(w)p] du

tp1

+

+ —
n

2|tn - tn—1|
= “yn _ynfln + tillyn—l —P” (313)

Using (3.12) and (3.13) we get

%1 = %l
= | [enyf () + Bun + (1 = B — ctuA) 11y ]
= o1 v @n1) + Buadns + (A = Buo)] — 2y A) b ]|
< oy alln — %l + ¥ 1ot = ot | [ @na) | + Bull®n — s |
+ 1B = Bu-al Il + (L= V) 11y = Bya || + lety — et || AR |l
+1Bn = Bu-alllhy = hya |
<oy atllotn — xuotll + ¥ 1etn — ot || @ua) | + Bull%n — uoa

thn - tn—1|
—— Y -l
Ly

2|tn _tn—ll
t,

n

+ 81— Bu-il %y |l + (1 - an?)l:”yn = Ynall +

+loty — apa|[[[ARu || + 1By — Bua [Ilyn = Yn-1ll + Y1 —pll]

Sapyolxy —xpall + yla, -yl “f(xnfl)” + Bullxn — %41l
+1Bn = Buallln-all + (1 - an?)[ﬂxn = %1l + 185 = Sna || Fxpa

e |

2|ty =ty
+(1- any)”t—’“nyn_l —pll + oty = s || ARy |

n

+|Bn — Bul I:”xn = Xp-1ll + 185 = Spa || Foxpa |
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185 — 81l
# | T = 81 F )ty =0 |
2|ty =ty
+1Bu = Brot| ——— llyu-1 - P
ty
_ 4ty — ty|
= [1 - (V - )/(X)Ol,,] ”xn _xn—ln + % ”yn—l —P||
n

+ et = | (v [f @) | + 1A 1) + Bl llall + 160-111]
1B = Bua [0l + 211001 1]

1
+2[8, = 8y [ann_ln +| T = 851 F)on = X H]

_ 4\t — ty1|
= [1 -y - )/Ol)()ln] ll%cn — %1 +D|:nt7nl + oy — oy ] + By

n

+ |:3n _,Bn—ll + 2|8n _Sn—1|j|,

where D = max{3 sup,, [ sup,.o1 (v If @) | + 14724 1), SUP, oy (1] + LI TS0 (1~ 8,F) x
% — %), SUP,1 1Y% — plI}. From Lemma 2.6, taking 6, = (¥ — yo)ay,, b, = A‘”%;‘“‘”D, o, =
Doy = a1l + B + | Bn = Bu-1l + 218, — 8y11), it follows that limy,, oo %441 — x| = 0.

Step 3. lim,, . ||Fx, — Fp|| = 0, lim,,, o || B1t4y, — B1ut|| = 0, lim,,—, || B2z, — Bop|l = 0 and
limy,—, ¢ | By» — Bp|| = 0.

Indeed, from (3.1), (3.4), (3.5), and (3.7) we get

2
%01 = pl

an(yf(xn) _Ap) + Bulxn —p) + ((1 - Bl

2

~aA) T /0 (700 (it O — 2By,)) = T(0) s (p — Bp)) |

n

< o[V @) = AP|)* + Balln = P12 + (A = B = 0¥) 3 — 11>
< || yf () = Ap|* + Bullxs — pI?
+ (1= B = a )| lttw — > + pa (1 = 280 |Brsts, — Brue|*]
< o[y @) = Ap|) + Balltn = P12 + (= By — cu¥)[l12n - P12
+ pa(ta = 2B2)1Bazn — Bopl* + pa (11 — 280 || Brisy — Byu|| ]
< | yf () = Ap|* + Ballx = pI* + (L= B — )10 - pII?
+ 8u(8n = 20) | Fxtw — Ep|1* + pa(1a2 — 2) 1 Baz — Bop|®

+ (1 = 281) | Brty — Byul*].

Therefore

84(2¢ = 8,)I1Fxy = Epl1* + p2(22 — 142) 1Bz, — Bop||?

+ 11281 — 1) | Bruy, — Byu)?

Page 12 of 25
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< au|| v f (o) = Ap||” + 1% = pII = [%na1 — pII>

< o]y () = Ap||* + (1% = Pl + 1201 =PI 1 = Kt |-

Since @, — 0 and ||x, — x,,1]] = 0 as n — oo, we have lim,_, , ||Fx, — Fp|| = 0,
limy,—, o0 || B2z, — Bopll = 0 and limy,—. [|Bitt,, — Biu|| = 0. Similarly, from (3.4), (3.6), and
(3.7) we have

2 .
%1 =PI < 0|y f ) = Ap|” + Bullxn = pII* + (L= By — ct¥)lwy - plI>

< o]y f (o) = Ap|)* + (1 = @, 7)lI%, — pII* + 21 = 28) 1By, — Bpl%,
which implies that
2
A2B = MIByy — Bpll* < o | vf(xn) = Ap|” + (1% = pIl + 041 = PII) 10 = X |-

We also have lim,,_, « || By, — Bp|| = 0.
Step 4. We claim that lim,,_, o [|%, — 4|l = 0, lim,,—, o [|%, — 24|l = 0 and lim,,_,  ||w,, —

yall = 0.
Indeed, from Lemma 2.1, (3.4), (3.5), and (3.7) we have

I 2
litn = ul® = | TSV (2, — 2 Bazy) = TS (p — paBop)||

2

< ((zn — 12Bozy) — (p — 12 Bop), tty — u4)
- %[H (zn — 142B22s) = (p — p2Bop)|* + It — ]
~ ||z = 12Baza) — (p — 112Brz) — (1t — 1) | ]
< 2 [ =l + =l ~ | =)~ (p =20
+2412((zn — ) = (p — ), Byzy — Bop) — 14311 Bazs — Bop||*]
and
= pI* = | T3 (1t — s Bussy) = T3 (= s By |
<{(tn — uB114y) = (6 = p11By1a), y = p)
= S U= Bue) = e B | + iy~ pI?
|/t = paBraea) — (= 1 Br) = (3~ p)|°]
T (AR R
+2401(Bitty = Bust, (= y) + (p = ) = 143 | Biuay, = Byut||*]
< 5 [ =1 + s = 1P = Gty =30 + =20

+ 21 (Brtty, — Byus, (= y,) + (p — w)],
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which imply that

Nt = 1l < 120 = PI? = || (20 = 1) = (0 — )|

+22((2n = tn) = (p — 1), Bazy — Bop) — 13 |1 Bazw — Bap||” (3.14)

and

19 = pI? < %0 = 2% = || = 3) + 0 — ) ||*
+ 21| Bitty — Byutll ||t = y) + (p — 1) (3.15)

It follows from (3.15) that

%1 = 2I% < | v Gen) = Ap|* + Bullx = pI> + (1= By — )y - pII?
< ||y fGen) — Ap|)* + (1 = 0, 7)1, - pI?
— (1= By = )|t = 3) + (0 - )|

+2p1(1 = By — V)| Biuy, — Bru| ” (Un = yn) + (p— 1)

’

which gives

(1= By — ¥ |t = y) + (0 — ) ||*
< o) yf () = Ap|)* + (1% =PIl + %1 =PI 196 — Ko |

+ zﬂl(l_ﬂn _an7)|lBlun _Blu” ”(un _yn) + (P— Lt)“

Since o, = 0, ||%,41 —%,|| = 0 and ||Biu,, — Biu|| — 0 as n — o0, we have

nlLrIgo||(un )+ (p—u) H =0. (3.16)
Also, from (3.14) we have

%1 =PI < a1 Gon) = Ap||* + Bullxw = pII* + (1= By = sy — I
< a,|yf @) - Ap|” + Bulltn — pI* + (1= By — )|ty — ue])>
< || yf @) = Ap||” + Bulltn =PI + (1= By — ) I1% - pII?

|| @ = ) = (0 = w)|* + 2002((20 — 14) — (0 — 1), Boz — Bop)]-

So, we have

(1= By — ¥ @0 — 1) — (p— )|
<a,|lyf @) = Ap|* + (120 = pll + %001 = plI) 120 = %

+ 2:“/2 || (Zn - un) - (P - u) || ”BZZn - BZP”

Page 14 of 25
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Note that ||Byz, — Bop|| — 0 as n — oo. Then we have

lim | (z, — ua) — (p — )| = 0. (3.17)

In addition, from the firm nonexpansivity of Tg:)"p), we obtain
lzs = plI? = | T (s = 8,Fx,) = TP (p - 8,Ep) ||
= ((xn = 8nFxy) — (P = 8,Fp), 2y _p)
= 650 - 805 — (0= 80 + 20— P
2
|| Gen = 84E) = (p = 8, Fp) — (2 — )| "]

< (120 =PI + 120 =PI = %0 = 20 — 84 (Fx — Ep)|°]

— N =

2 2 2
= =[lxn =PI + llzu =PI = %0 — 24l

N

+ 28, (Fxy — Ep, % — 2) — 82| % — Epl|*],
which implies that

”Zn —P||2 = ”xn —P||2 - ”xn _Zn||2 + 25n<Fxn _Fp’xn _Zn>

< 1% = pI* = %0 = 2|1 + 28,11 Fxty, — Epll 126 — 2, - (3.18)
From (3.7) and (3.18), we have
2 2 2 — 2
%1 =PI < ||y f ) = Ap| ™ + Bulln = pII* + (1= By — ct¥)llyn — Pl

< oy fGen) = Ap|) + Bullxw — pII* + (1 = By — P12 - pI>

< a,|yf @) = Ap|” + Bulltn — pI* + (1= By — ) I — 1>
= [lxn _Zn||2 + 28, || Fxy — Epl|[|l%, _Zn||]~

It follows that

— 2
(L= By — V) l%n _Zn”2 = oy ” vf (xn) —AP” + (”xn =pll + l%n4 _p”)”xn = X1l
+2(1 = By — ax¥V)8ull Fxp — Fpll %0 — 24 |-

Since ||Fx,, — Fp|| — 0 as n — 00, we obtain
lim ||x, —z,|| = 0. (3.19)
n—00
Thus, from (3.16), (3.17), and (3.19) we obtain
Tim [z, — yull = 1im [ (zn = t0) = (p = ) + (s = y) + (p = )|
< lim || (25— ) = (p = )| + 1im ||t = y) + (p = )|

=0
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and
lim ”xn _yn” = lim ”xn _Zn” + lim ”Zn _yn”
n—00 n—00 n—00
=0.
Since Jj,; is 1-inverse strongly monotone, we have

1wy = D% = [Tt 0w = ABy) = Jas (0 = ABp) ||*
=< <(yn - )\Byn) - (17 - )‘Bp): Wh _p)
1
= 5 L1 = 2By) (0 = 2Bp)[* + lw, —p I

— |3 = ABy) = (0 = ABp) = (W = p)|*]

1 2
< E(nyn =pI* + lw, = plI* = | n — W) = A(By,, — Bp)|")
1 2 2 2
= 5 Iy =PI + 1w =PI = s = wall® + 2.9 = Wi, By, — Bp)
- 2%||By, - Bp|*),
which implies that
W, = pI* < N1y =PI = 1190 = Wall® + 2219 = w,ll I By, — Bpll. (3.20)

Substituting (3.15) into (3.20), we have

W, = plI? < Il = pI* = ||t = 3) + (0 - )|
+ 241 || Byt — Byul| || = y) + (p — 1) |

= 1y = wall* + 24119 = wull 1By, — Bpl. (3.21)

It follows from (3.21) that

i1 = pII?
< |7 (n) = Ap|)* + Ballxn = I + (U= B — 07wy — pII?
< |y Gn) = Ap|” + - @ 7) I — pI?
~ (1= By = )| (@t~ y) + (0~ )|
+2p1(1 = By — @) | Butd — Buul||| (s = y) + (0 — ) |

-(1- Bu— an?)”)’n - Wn||2 +2A(1 - B — O‘n?)”}’n — wullllBy, — Bpll,

which gives

(L= Bn— V) llyn —wa ”2

< o) yf () = Ap||* + 120 = %t I (1120 = 21l + %1 — P

Page 16 of 25
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— 2
_(1_,3n_any)“(un_yn)"'(p_u)”
+2u1(1 = By — a0, ¥) | Biuty — Bru| ”(un _yn) +(p—u) “
+20(1 = By — au¥) |y = wullll By — Bpll.
Since cty — 0, [ s = 3nll = O, [t = y) + (2 = )]l > O, [ By — Bpll — 0 as 11— o0, we
have lim,—, o0 [y — wu| = 0.

Step 5. We show lim,,—, oo || T(6)y, — yull = 0.
Denote k1, = é Ot” T (u)w, du. From (3.1), lim,,_, o, ¢, = 0, and lim,,_, o, B, = 0 we have

”xn+1 - hn” = ||anyf(xn) + ,ann + ((1 - /Sn)l - anA)hn - hn ||
=ay ”Vf(xn) - Ahy, H + Bullxn — Ml

—0 asun— oo. (3.22)

Let K= {we C:||w-p| < =% |yf(p) - Ap|l}. Then K is a nonempty bounded closed

- Y-va
convex subset of C which is T'(#)-invariant for each u € [0, 00) and contains {x,,}. It follows

from Lemma 2.5 that
lim ||, = T(why,| =0, u>0 (3.23)
Hn—0Q

and from (3.22) and (3.23), we have

%1 = T@) %1 | < Wotnar = Ball + | w = T @) | + || T 001 — T (00)o6001 |
= 2”xn+1 - hn” + ”hn - T(u)hn H

— 0 asn— oo.
Hence
lim || %, — T()x, | = 0. (3.24)
n— 00
Furthermore, from Step 4 we have for every u € [0, co) that
|| Tw)y, — T(u)x, || <|lyn—%x4| >0 asn— 0. (3.25)
So, we obtain from (3.24)

” T(M)yn —Xn || = || T(u)yn - T(u)xn H + || T(u)xn —Xn ||

—0 asn— 0. (3.26)
Hence, we have for every u € [0, 00) that

| T @)y =y < | T@)yn = 20| + 60 =yl

— 0 asn— oo.
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Step 6. We show that limsup,,_, .. (yf(x*) — Ax*,x, — x*) < 0 and limsup,_, . (yf(x*) -
Ax*, i Ot" T (u)w, du —x*) <0, where x* = Pr(yf(x*) + (I — A)(x*)).
Indeed, take a subsequence {x,,} of {x,} such that

limsup(yf(x*) — Ax*, x, — x*) = lim (yf (x*) — Ax*, x,,, — x*). (3.27)
11— 00

n—00

Since {y,,} is bounded, we can assume that y,, — w. First, we prove that w € F(3).
Assume the contrary that w # T'(1)w for some u € [0, 00). Then by Opial’s condition, we
obtain from Step 5 that

tim inf ly,; = wil <liminflly,, - T(w]|
< timint(|, ~ Ty | + |70, - T
< limin |y, ~wl.
This is a contraction. Hence, w € F(3).

Next, let us show that w € GMEP.
From z, = Téi'w)(xn —8,Fx,), we obtain

1
Q(Zn,_j/) + (P(y) - QD(ZVI) + 5—<)’ —ZpyZy — (xn - 871Fxn)> 2 07 Vy € C

n

It follows from (H2) that

1
() - p(z,) + 6—(}/ — Zu Zn — (% — 8,F%n)) > 0(3,24), Vy€C.

n

Replacing n by n;, we have

0() = 9(zn,) + (¥ — 20, Fxn,) + <y—z,,i, Z"’(S_ x"i> >0(y,2y), VyeC. (3.28)

nj

Letz, =ty+(1—¢t)wforall £ € [0,1] and y € C. Then we have z; € C. It follows from (3.28)
that

(2t — zn;, Fze) > (21 — 2w Fze) — 0(20) + 0(20,) — (20 — 2y FXn,)

Zy, — Xy,
_<Zt_zn,-: : l>+9(zt’zni)
S

i

<Azt — z;, Fzt — Fzy;) + (2t — 2n;, Fzy; — Fxy;)

Zn: —Xn.
—w(zt)+<0(zni)—<zt—zn,-,%>+9(zpzni)-
nj

Since ||z,; — %y, || = 0, we have ||Fz,, — Fx,, || — 0 as n; — 0o. From the monotonity of F,

we have

(Fzy — Fzy;, 20 — 2zy,) > 0.

Page 18 of 25


http://www.fixedpointtheoryandapplications.com/content/2014/1/57

Jeong Fixed Point Theory and Applications 2014, 2014:57
http://www.fixedpointtheoryandapplications.com/content/2014/1/57

From (H4), % — 0 and z,; = w, we have
(2t —w, Fzs) > —p(z) + o(W) + 0(z;, W)
as n; — 0o. By (H1), (H4), and (3.29), we obtain
0=0(z1,2) + ¢(z:) — 9(z:)
<t0(z,y) + (1= )0(ze, W) + tp(y) + (1 = )p(w) — p(z¢)
=< t[@(zt,y) +(y) - w(zt)] + (1= t)(z, —w, Fz)
=1[0(z:9) + () — 0(z) ]| + A - )t (y - w, Fzy).
Hence we obtain
0 <0(z1,y) + p(y) — 0(ze) + 1 = O)(y — w, Fzy).
Putting t — 0, we have
059(W»)’)+<ﬂ(y)—<ﬂ(w)+()’—W:FW)» VyGC.

This implies that w € GMEP.
Next, we prove that w € Q.
Utilizing Lemma 2.1, we have for all x,y € C

[re-rol’
= | TSP [ TS (x = paBox) — B Toa" (x — 112 Bax) |
= TETEV (y — 1yByy) — i BIT S (y — paBoy)] I°
< || T2V (o - paBax) = TSV (y — 142Bay)
— 1 (BITS) (x = pyBox) = B TGV (y — s Boy)) ||

<| T G2 V(o — uaBax) - G2 Yy - p2Bay) ”2

2
+ a(py = 280) | BITS>Y) (% — paBox) = BIT S (y — 2By |

<| T, G2 V(& — 112Box) — GZ Yy - uaBay) ||
< |lx -y - 2(Box - By)|?
< llx=II* + 2(2 — 2B2) 1 Bax — Boy

2
< lx—yl%

This shows that I' : C — C is nonexpansive. Note that

Hyn - F()’n)” = ”F(Zn) - F(yn)H
=< l1zn = yull

— 0 asn— oo.

According to Lemma 2.2 and Lemma 2.3, we obtain w € Q.

(3.29)
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Lastly, we show that w € I(B, M).

In fact, since B is a B-inverse strongly monotone, B is monotone and Lipschitz con-
tinuous mapping. It follows from Lemma 2.4 that M + B is a maximal monotone map-
ping. Let (v,g) € G(M + B). Then g — B(v) € M(v). Since w,,, = Ja11 (¥, — ABy»,;), we have
Yu; — AByy, € (I + AM)(wy,), i.e., %(y,,i — Wy, — My,,) € M(w,,,). By virtue of the maximal
monotonicity of M + B, we have

1
<V— Wn, & — B(v) — X(y"‘ - Wy, — AByni)> >0
and hence

1
<V - Wni1g> Z <V - WnirB(V) + X(yni - Wn,' - )\B)’n,)>
= (v—w,,,Bv—Bw,,) + (v—-w,,,Bw,, — By,,)
1
+{V—wy, X(ym —Wy,) )

It follows from lim,,, oo ||W, — ¥4 || = O that we have

lim |[Bw,, — By,|l =0
and

WVI,‘ - W,

limsup(v —w,,,g) = (v-w,g) > 0.
n—00

It follows from the maximal monotonicity of M + B that 6 € (M + B)(w), thatis, w € I(B, M).
Therefore w € F = F(I) N GMEPN QN I(B,M).
By x* = Pr(yf + (I - A))(x*), we obtain

limsup<(yf — A", x, —x*) = lim ((yf—A)x*,xn, —x*)
11— 00

n—o0

= <(yf —-A)x*,w —x*)

<0

and

1 [
lim sup<(yf —A)x*, - / T(u)w, du — x*>
0

n—00 n

= lim <(yf—A)x*, 1 /tni T (u)wy, du—x*>
0

i—00 t”i

=((yf - A)x*,w—x*)

=0,

as required.
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Step 7. We prove x,, — x* as n — o0.

By using (3.1), we have

2
*
a1 =]

an(yf(xn) —Ax*) + B (xy, —x*)

2

+((1 - B - ,A) <tl /tn T(w)w, du —x*)

n JO

<a?|yfx) - Axt|’
2
+

Bl — ) + (1= B — 0, A) (tl /Ot” T (u)w, du _x*>

n

+ 20{,,<yf(xn) — Ax®, B (%0 —x*) + (L= B — uA) (tl /Otn T (u)w, du —x*>>

n

<o) yfGen) = A |+ B = 2|+ (= B = 7w ="

+ 2,3,,<x,, —x", ((1 — B — a,,A) <tl /Otn T(u)w, du —x*)>

n

+ 20{,,/3,,<yf(x,,) —vf (x*), %, — x*) + 2a,,/3,,<yf(x*) - Ax*, x, —x*)

+2a,(1- B, - Otn7)<l/f(xn) - vf ("), tl /0 ’ T(u)w, du —x*>

1 [
+20,(1- B, - an7)<yf(x*) — Ax*, . f T(w)w, du — x*>
n JO
It follows from (3.4), (3.6), and (3.7) that

e =
<a?|yf@n) - Ax|* + B2 an —* | + (1 = By — 0, 7)? || — 2
+26,(1- By - 0,7 |00 — [
20, By al|x, — | + 20, By f (x*) - Ax*, 5, — x°)

+ 20‘}1(1 - ,Bn - an?)ya “xn _x* “2
1 [

+20,(1- B, - an7)<yf(x*) —Ax*, — / T(u)w, du —x*>
ty 0

< [1-20,(7 - ya + a7y o) [on — 2" |* + 2] yf () - Ax*

+ 20, Bu(vf (x7) — Ax™, 2, — x¥)
tn
+200,(1 = B, — an7)<yf(x*) - Ax", tl / T(u)w, du — x*>
n JO
+a2y? ||x,, —x* ||2

= (L=a) |, —2*||* + Boy
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where
oy = 205?1(7 —ya+ O(nV)/O(),
- 2
B, = (xi || yf(x,) — Ax* || + 2anﬂn(yf(x*) —Ax*, x, —x*)
1[4
+ 20,1 - B, - oty,7)<yf(x*) — Ax*, - / T(uw)w, du —x*>
n Jo
22 |2
+ a2y o — x|
It is easily seen that @, — 0 as n — 00, Y .-, @, = +00 and limsup,,_, g—;' < 0. Hence,

applying Lemma 2.6 we immediately obtain x,, — x* as n — oo. This completes the proof.
O

Remark 3.1 Let us consider the following sequences:
and t,=n, Vn>1.

a, = +

Ny
4>|~| -
=
S
I
o
N
I
N
|-
N~

It is easy to see that all hypotheses (C1)-(C4) of Theorem 3.1 are satisfied.
By Theorem 3.1, we can obtain the following results immediately.

Corollary 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
0,G1,Gy : C x C — R be three bifunctions which satisfy assumptions (H1)-(H4) and
©, ¢, ¥ : C — R be three lower semicontinuous and convex functions with restriction (Al)
or(A2).Let B, B1, By : C — H be B-inverse strongly monotone, B, -inverse strongly monotone
and B,-inverse strongly monotone, respectively and M : H — 2" be a maximal monotone
mapping. Let I = {T'(4) : 0 < u < 0o} be a one-parameter nonexpansive semigroup on H
such that F1 = F(Q)NMEPN QN I(B,M) # ¢. Let {t,} C (0,00) be a real sequence such
that lim,,_, o t, = 00. Let f be a contraction from C into itself with a constant o (0 <« <1)
and let A be a strongly positive linear bounded operator with coefficient y > 0 such that

IAIl < 1. Assume that 0 < y < =

Let x; € C and let {x,} be a sequence defined by
0(2n,9) +9(9) = 9(24) + 5- (V=220 = %) 20, Vy€C,
Yu = TOT 2V (2, — 13 Bazy) — nBL TV (2 — 112 Boz,)],

Xp+l = anyf(xn) + Buxn
+ (1= B = auA) & [o" T@) s 0n — 1Byl du,  ¥n>1,

where a,, € (0,1), uq € (0,281], 2 € (0,28,], » € (0,28], 8, € (0,2¢] satisfy the following
conditions:
(i) limyooay =0, Y oy, =00 and y oo |0 — oyl < 00;
(i) D02y Bu<o0and 3207 |Bust = Bal < 00;
(i) liminf, 008, >0 and > oo 18,1 — 8] < 00;

)
(iv) lim,— e @ +=0.
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Then {x,} converges strongly to x* = Pr,(yf + (I — A))(x*), which solves the following vari-
ational inequality:

((A —yf)x*,x —x*) >0, VxeFH
and (x*,y*) is a solution of problem (1.5), where y* = T\5>V)(x* — 11,Bx).

Proof In Theorem 3.1, foralln> 0, z, = T;:)’“’)(x,, — 8,Fx,) is equivalent to

1
9(Zmy) + (0()’) - @(Zn) + (Fxmy_zn> + S_W_Zn:zn —%,) >0, Vy eC. (3.30)

Putting F = 0, we obtain

1
0(zn,y) + 9() — 0(z4) + 8—<y—zn,zn -%,) >0, VyeC.

n

By Theorem 3.1, we can easily get the desired conclusion. O

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H.
Let G1,G; : C x C — R be two bifunctions which satisfy assumptions (H1)-(H4) and
¢,V : C — R be two lower semicontinuous and convex functions with restriction (Al) or
(A2). Let F,B,By,B; : C — H be ¢-inverse strongly monotone, B-inverse strongly mono-
tone, Bi-inverse strongly monotone and B,-inverse strongly monotone, respectively, and let
M : H — 2" be a maximal monotone mapping. Let I = {T(u) : 0 < u < 00} be a one-
parameter nonexpansive semigroup on H such that 7, = F(S)NVI(F,C)NQNI(B,M) # ¢.
Let {t,} C (0,00) be a real sequence such that lim,_, » t,, = co. Let f be a contraction from
C into itself with a constant a (0 < « < 1) and let A be a strongly positive linear bounded

operator with coefficient y > 0 such that ||A|| < 1. Assume that 0 < y < a(% Letx, € C

any)”

and let {x,} be a sequence defined by

2y = Pc(xn — 6, Fxn),
Y= TST G2V (2, — uaByz,) — B TS (2 — 12 Baz,)],
Xne1 = Y f (%n) + Pu
+ (L= B -, A) = o T)mpn — AByn)) dul, ¥n>1,

where o, € [0,1], 11 € (0,281], 2 € (0,28,], A € (0,281, 8, € (0,2¢] satisfy the following
conditions:
(i) limyooay =0, Y ooy, =00 and Y oo, |01 — oty| < 00;

(ii) Yooy Bu<ooand Y 2 |But — Bul < 00;

(i) Himinf, 008y >0 and Y o) 18441 — 8ul < 00;

(iv) lim, s @ +=0.
Then {x,} converges strongly to x* = Pr,(yf + (I — A))(x*), which solves the following vari-
ational inequality:

((A—'}/f)x*,x—x*>20, Vx € Fy

and (x*,y*) is a solution of problem (1.5), where y* = T\5>V)(x* — 11,Box™).


http://www.fixedpointtheoryandapplications.com/content/2014/1/57

Jeong Fixed Point Theory and Applications 2014, 2014:57 Page 24 of 25
http://www.fixedpointtheoryandapplications.com/content/2014/1/57

Proof Put 0 =0 and ¢ = 0 in Theorem 3.1. Then we have from (3.30)
1
(Fxp,y —zy) + 8—0/—2,,,zn -x,) >0, VyeCn>1.
n
That is,
(J’—men—fsann—Zn) <0, VyEC

It follows that Pc(x, — 8,Fx,) = z, for all n > 1. We easily obtain the desired conclusion.
a

Corollary 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
0,G1,Gy : C x C — R be three bifunctions which satisfy assumptions (H1)-(H4) and
©, ¢, ¥ : C — R be three lower semicontinuous and convex functions with restriction (Al)
or (A2). Let F, B, By, B, : C — H be ¢ -inverse strongly monotone, B-inverse strongly mono-
tone, By-inverse strongly monotone, and B,-inverse strongly monotone, respectively. Let
S ={T(u):0 < u < oo} be a one-parameter nonexpansive semigroup on H such that
F3=F(X)NGMEPN QN VI(F,C) # ¢. Let {t,} C (0,00) be a real sequence such that
lim,_, oo t, = 00. Let f be a contraction from C into itself with a constant o (0 < @ <1) and
let A be a strongly positive linear bounded operator with coefficienty > 0 such that ||A|| <1.
Assume that 0 <y < Y . Letx; € C and let {x,} be a sequence defined by

l-ayy)”

Zp = Ts(f“p)(xn - 8,Fxy,),
Y = TST G2V (2, — uaByz,) — B TS (2 — 112 Baz,)],
Xns1 = AV [ (%) + Bukn

+ (1= B =, AL [o" T@)(Pclyn — 1By,) dul, n>1,

where a,, € (0,1), u1 € (0,261], o € (0,28,], 1 € (0,28], 8, € (0,2¢] satisfy the conditions
(C1)-(C4). Then {x,} converges strongly to x* = Pr,(yf + (I — A))(x*), which solves the fol-
lowing variational inequality:

((A —yf)x*,x - x*) >0, VxeFs,
and (x*,y*) is a solution of problem (1.5), where y* = ngb‘”)(x* — w2 Box™).

Proof Taking Jy, = Pc in Theorem 3.1, we can obtain desired conclusion immediately.
O

Remark 3.2 Theorem 3.1 generalizes and improves Theorem 3.1 of Kumam and Wat-
tanawitoon [14], Theorem 3.3 of Plubtieng and Punpaeng [10] and Theorem 3.1 of Shehu
[13] in the following aspects:
(1) Algorithm of Theorem 3.1 is different from algorithms in [10, 13, 14].
(2) Theorem 3.1 includes Theorem 3.3 of Plubtieng and Punpaeng [10] as a special case.
(3) Theorem 3.1 improves Theorem 3.1 of Kumam and Wattanawitoon [14] since the
generalized equilibrium problem that is within [14] is extended to the generalized
mixed equilibrium problem.
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