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Abstract
In this paper, we propose and analyze an explicit type algorithm for finding a
common element of the set of solutions of a finite family of generalized equilibrium
problems and the set of common fixed points of two countable families of total
quasi-ϕ-asymptotically nonexpansive mappings in a Banach space E. As an
application of our result, we suggest a framework for finding a common solution of a
finite family of generalized equilibrium problems and common zeros of two finite
families of maximal monotone operators on E.
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1 Introduction and preliminaries
Let E be a real Banach space with the norm ‖ · ‖ and E∗ be its dual. Let C be a nonempty
subset of E and T : C → C be a mapping. We denote by F(T) = {x ∈ C : x = Tx} the set of
fixed points of T . We symbolize weak convergence and strong convergence of a sequence
{xn} in E as xn ⇀ x and xn → x, respectively. Let f : C × C → R (the set of reals) be a
bifunction and A : C → E∗ be a nonlinear mapping. A generalized equilibrium problem is
to find the set

GEP(f ) =
{
x ∈ C : f (x, y) + 〈Ax, y – x〉 ≥  for all y ∈ C

}
, (.)

where 〈· , ·〉 stands for the duality product.
Note that:
(i) if A≡ , then problem (.) reduces to the following equilibrium problem EP(f ):

find x ∈ C such that f (x, y) ≥  for all y ∈ C;

(ii) if f ≡ , then problem (.) reduces to the classical variational inequality problem
VI(C,A):

find x ∈ C such that 〈Ax, y – x〉 ≥  for all y ∈ C.
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The equilibrium problem provides a unified approach to finding a solution of a large
number of problems arising in physics, optimization, economics and fixed point prob-
lems []. Moreover, the generalized equilibrium problem addresses monotone inclusion
problems, variational inequality problems,minimization problems and vector equilibrium
problem [–]. Since an algorithmic construction plays a key role in solving nonlinear
equations in various fields of investigation, numerous implicit and explicit algorithms have
been developed for the approximate solution of nonlinear equations as well as for the ap-
proximation of fixed points of various mappings [–].
Recall that a Banach space E is said to be:
(i) strictly convex if for all x, y ∈ SE := {z ∈ E : ‖z‖ = } with x 
= y, we have ‖x + y‖ < ;
(ii) uniformly convex if for any ε ∈ (, ], there exists δ >  such that

x, y ∈ SE , ‖x – y‖ ≥ ε �⇒
∥∥∥∥x + y



∥∥∥∥ ≤  – δ.

A Banach space E is said to have the Kadec-Klee property if for any sequence {xn} in E with
xn ⇀ x ∈ E and limn→∞ ‖xn‖ = ‖x‖, we have xn → x. Note that every uniformly convex
Banach space E is strictly convex and enjoys the Kadec-Klee property but the converse is
not true.
Furthermore, define h : SE × SE ×R \ {} →R by

h(x, y, t) =
‖x + ty‖ – ‖x‖

t

for x, y ∈ SE and t ∈ R \ {}. The norm of E is said to be Gâteaux differentiable if
limt→ h(x, y, t) exists for each x, y ∈ SE and in this case E is smooth.
The normalized duality mapping J : E → E∗ is defined by

Jx =
{
x∗ ∈ E∗ : ‖x‖ = 〈

x,x∗〉 = ∥∥x∗∥∥} (x ∈ E).

It is remarked that the set-valued mapping J is nonempty, closed and convex in a real
Banach space whereas J is single-valued in a reflexive, strictly convex and smooth Banach
space. Furthermore, J– : E∗ → E, the inverse of the normalized duality mapping J , is also
a duality mapping in a uniformly convex and smooth Banach space. Both J and J– are
uniformly norm-to-norm continuous on each bounded subset of E and E∗, respectively. If
E is reflexive and strictly convex, then J– is norm-to-weak continuous. For more details,
see [, ].
The Lyapunov functional ϕ : E × E →R is defined by

ϕ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖ for all x, y ∈ E.

It is obvious from the definition of ϕ that ϕ(x, y) ≥  for all x, y ∈ E. In a real Hilbert
space, ϕ(x, y) = ‖x – y‖ for all x, y ∈ E. For details, see [, ].
Let E be a reflexive, strictly convex and smooth Banach space, and let C be a nonempty,

closed and convex subset of E. Then, for arbitrarily fixed x ∈ E, there exists a unique point
yx ∈ C such that ϕ(x, yx) = miny∈C ϕ(x, y). Following the notation of [], we let �C(x) = yx
and call�C a generalized projection ontoC. Note that the generalized projection operator
coincides with the metric projection in a Hilbert space.
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A point x ∈ C is said to be an asymptotic fixed point [] of T : C → C if there exists a
sequence {xn} ⊂ C such that xn ⇀ x and limn→∞ ‖xn –Txn‖ = . The set of all asymptotic
fixed points of T is denoted by F̂(T).
Recall that a mapping T : C → C is:
(i) nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C;
(ii) relatively nonexpansive if F̂(T) = F(T) 
= ∅ and ϕ(p,Tx) ≤ ϕ(p,x) for all p ∈ F(T)

and x ∈ C;
(iii) quasi-ϕ-nonexpansive if F(T) 
= ∅ and ϕ(p,Tx) ≤ ϕ(p,x) for all p ∈ F(T) and x ∈ C;
(iv) quasi-ϕ-asymptotically nonexpansive if there exists a real sequence {kn} with

kn ≥ ; kn
n→∞→  and F(T) 
= ∅ such that ϕ(p,Tnx)≤ knϕ(p,x) for all n≥ , p ∈ F(T)

and x ∈ C;
(v) total quasi-ϕ-asymptotically nonexpansive if there exist nonnegative real sequences

{kn} and {ηn} with kn
n→∞→ , ηn

n→∞→  and F(T) 
= ∅ such that

ϕ
(
p,Tnx

) ≤ ϕ(p,x) + knξ
(
ϕ(p,x)

)
+ ηn for all n≥ ,p ∈ F(T) and x ∈ C,

where ξ :R+ → R
+ is a strictly increasing continuous function with ξ () = .

It is worth mentioning that the class of total quasi-ϕ-asymptotically nonexpansive map-
pings properly contains the mappings defined in (i)-(iv), but the converse is not true.
A mapping T : C → C is said to be uniformly L-Lipschitzian if

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖ for some L >  and x, y ∈ C.

Recently, numerous attempts have beenmade to guarantee strong convergence through
explicit and implicit algorithms for finding a common solution of the set of fixed points
of (relatively nonexpansive, quasi-ϕ-nonexpansive, quasi-ϕ-asymptotically nonexpansive,
total quasi-ϕ-asymptotically nonexpansive) mappings and the set of solutions of equilib-
rium problems; see [–] and the references cited therein.
In , Takahashi and Zembayashi [] introduced an explicit algorithm based on the

shrinking projection method for finding a common solution of the set of fixed points of
a relatively nonexpansive mapping T and the set of solutions of an equilibrium problem.
Their algorithm reads as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C = C,

yn = J–(αnJxn + ( – αn)JTxn),

un ∈ C such that f (un, y) + 
rn 〈y – un, Jun – Jyn〉 ≥  for all y ∈ C,

Cn+ = {z ∈ Cn : ϕ(z,un) ≤ ϕ(z,xn)},
xn+ =�Cn+x, n≥ ,

(.)

where J is the duality mapping on E and �C is the generalized projection from E onto C.
They proved that the sequence {xn} generated by (.) converges strongly to �F(T)∩EP(f )x
under some appropriate conditions.
In , Chang et al. [] proved a strong convergence theorem for finding a common

element of the set of solutions for generalized equilibrium problem (.) and the set of
common fixed points for a pair of relatively nonexpansive mappings in Banach spaces.
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Their algorithm reads as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

zn = J–(αnJxn + ( – αn)JTxn),

yn = J–(βnJxn + ( – βn)JSzn),

un ∈ C such that f (un, y) + 〈Aun, y – un〉 + 
rn 〈y – un, Jun – Jyn〉 ≥ 

for all y ∈ C,

Hn = {z ∈ C : ϕ(z,un)≤ βnϕ(z,xn) + ( – βn)ϕ(z, zn) ≤ ϕ(z,xn)},
Wn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ =�Hn∩Wnx, n≥ ,

(.)

where J , T , S and �C are as in (.). The authors showed that the sequence {xn} generated
by (.) converges strongly to �F(S)∩F(T)∩GEP(f )x under some appropriate conditions.
In , Wattanawitton and Kumam [] approximated a common solution for a pair

of relatively quasi-nonexpansive mappings and an equilibrium problem. Recently, Qin
et al. [] established strong convergence results for a pair of asymptotically quasi-ϕ-
nonexpansive mappings in a Banach space. It is worth mentioning that the hybrid algo-
rithms proposed in [, , ] are computationally complex. Therefore, it is natural to
have improved and computationally simpler counterparts.
Quite recently, Zuo et al. [] proposed a hybrid algorithm for total quasi-ϕ-asymp-

totically nonexpansive mappings and established strong convergence results in a Banach
space. Moreover, they characterized such strong convergence results by using the notion
of Mosco convergence; see also []. Inspired and motivated by the work of Takahashi
and Zembayashi [], Chang et al. [] and Zuo et al. [], we aim to introduce and an-
alyze a general algorithm based on the shrinking projection method for finding a com-
mon element of the set of common solutions of a finite family of generalized equilibrium
problems and the set of common fixed points of two countable families of total quasi-ϕ-
asymptotically nonexpansivemappings.We also characterize the set of common solutions
for families of total quasi-ϕ-asymptotically nonexpansivemappings and equilibriumprob-
lems in terms of Mosco convergence.
We now introduce the notion of Mosco convergence.
Let {Cn} be a sequence of nonempty closed convex subsets of a reflexive Banach space E.

We denote the set of all strong limit points of {Cn} by s – LinCn, that is, x ∈ s – LinCn if
and only if there exists {xn} ⊂ E such that {xn} converges strongly to x and that xn ∈ Cn

for all n. Similarly, we define the set of all weak subsequential limit points by w – LsnCn;
y ∈ w–LsnCn if and only if there exist a subsequence {Cni} of {Cn} and a sequence {yi} ⊂ E
such that {yi} converges weakly to y and yi ∈ Cni for all i. If C satisfies C = s – LinCn =
w – LsnCn, then we say that {Cn} converges to C in the sense of Mosco and we write
C = M-limn Cn. By definition, it always holds that s – LinCn ⊂ w – LsnCn. Therefore, to
prove C = M-limn Cn, it suffices to show that w – LsnCn ⊂ C ⊂ s – LinCn. One of the
simplest examples of Mosco convergence is a decreasing sequence {Cn} with respect to
inclusion. The Mosco limit of such a sequence is

⋂∞
n=Cn. For more details, we refer to

[, ].
For a relation between a sequence of closed convex sets and the corresponding general-

ized projections, we state the following lemma which plays a key role in our main result.
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Lemma . ([], Theorem .) Let E be a smooth, reflexive and strictly convex Banach
space having the Kadec-Klee property. Let {Cn} be a sequence of nonempty closed subset
of E. If C =M-limn Cn exists and is nonempty, then {�Cnx} converges strongly to �Cx for
each x ∈ C.

The following two results can be found as Remark . in [].

Lemma . Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E, let x ∈ E and let x ∈ C. Then �Cx = x if and only if

〈x – y, Jx – Jx〉 ≥  for all y ∈ C.

Lemma . Let E be a reflexive, strictly convex and smooth Banach space, let C be a
nonempty closed convex subset of E and let x ∈ E. Then

ϕ(y,�Cx) + ϕ(�Cx,x)≤ ϕ(y,x) for all y ∈ C.

The following well-known results are also needed in the sequel for the development of
our main result.

Lemma . ([], Proposition ) Let E be a uniformly convex and smooth Banach space
and let {xn}, {yn} be two sequences of E. If ϕ(xn, yn) →  and either {xn} or {yn} is bounded,
then xn – yn → .

Lemma . ([], Lemma .) Let E be a uniformly convex Banach space and let Br[]
be a closed ball in E. Then there exists a continuous strictly increasing convex function
g : [,∞) → [,∞) with g() =  such that

‖αx + βy + γ z‖ ≤ α‖x‖ + β‖y‖ + γ ‖z‖ – αβg
(‖x – y‖)

for all x, y ∈ Br[] and α,β ,γ ∈ [, ] with α + β + γ = .

For solving the equilibrium problem, let us assume that the bifunction f satisfies the
following conditions (cf. [, ]):
(A) f (x,x) =  for all x ∈ C;
(A) f is monotone, i.e., f (x, y) + f (y,x)≤  for all x, y ∈ C;
(A) lim supt↓ f (tz + ( – t)x, y)≤ f (x, y) for all x, y, z ∈ C;
(A) f (x, ·) is convex and lower semicontinuous for all x ∈ C.
The following result is stated as Lemma . in [] (see also []).

Lemma . Let C be a closed convex subset of a smooth, strictly convex and reflexive Ba-
nach space E, let f : C × C → R be a bifunction satisfying (A)-(A), let r >  and x ∈ E.
Then there exists z ∈ C such that

f (z, y) +

r
〈y – z, Jz – Jx〉 ≥  for all y ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2014/1/59
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Lemma . ([], Lemma .) Let C be a closed convex subset of a uniformly smooth,
strictly convex and reflexive Banach space E. Let f : C × C → R be a bifunction satisfy-
ing (A)-(A). For r >  and x ∈ E, define a mapping Vr : E → C by

Vr(x) =
{
z ∈ C : f (z, y) +


r
〈y – z, Jz – Jx〉 ≥  for all y ∈ C

}

for all x ∈ C. Then the following hold:
() EP(f ) is closed and convex;
() Vr is single-valued;
() Vr is firmly nonexpansive-type mapping, i.e.,

〈Vrx –Vry, JVrx – JVry〉 ≤ 〈Vrx –Vry, Jx – Jy〉 for all x, y ∈ E,

() F(Vr) = EP(f ).

2 Main results
Let C be a nonempty closed convex subset of a strictly convex, reflexive and smooth Ba-
nach space E having the Kadec-Klee property. Let Ti,Si : C → C be two countable fam-
ilies of uniformly L-Lipschitzian and uniformly total quasi-ϕ-asymptotically nonexpan-
sive mappings with sequences {kTn }, {ηT

n } and {kSn}, {ηS
n}, respectively. Let fn : C × C → R,

n = , , , . . . ,N , be a finite family of bifunctions such that fn ≡ fn(modN) (here themodN
function takes values in {, , , . . . ,N}).

Algorithm

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ∈ C = C,
yn,i = J–(αn,iJxn + βn,iJTn

i xn + γn,iJSni xn),
fn(un,i, y) + 〈Anun,i, y – un,i〉 + 

rn 〈y – un,i, Jun,i – Jyn,i〉 ≥  for all y ∈ C,
Cn+ = {z ∈ Cn : supi≥ ϕ(z,un,i)≤ ϕ(z,xn) +�n},
xn+ =�Cn+x, n≥ ,

(.)

where αn,i + βn,i + γn,i =  and �n := ( – αn,i){kn supu∈F ξ (ϕ(u,xn)) + ηn}.

Theorem . Let C be a nonempty closed convex subset of a strictly convex, reflexive and
smooth Banach space E having the Kadec-Klee property and let Ti,Si : C → C be two
countable families of uniformly L-Lipschitzian and uniformly total quasi-ϕ-asymptotically
nonexpansive mappings with sequences {kn} and {ηn}, where  < L :=max{LTi ,LSi } for each
i ≥ , {kn} := maxn≥{{kTn }, {kSn}} and {ηn} := maxn≥{{ηT

n }, {ηS
n}}. Let fn : C × C → R, n =

, , , . . . ,N , be a finite family of bifunctions satisfying (A)-(A) such that fn = fn(modN).
Let a ≤ αn,i,βn,i,γn,i ≤ b for some a,b ∈ (, ) and {rn} ⊂ (,∞) satisfying:
(C) lim infn→∞ rn > .
Assume that F := [

⋂∞
i= F(Ti)]∩ [

⋂∞
i= F(Si)]∩ [

⋂N
n=GEP(fn)] 
= ∅.Then the sequence {xn}

generated by (.) converges strongly to x =�Fx, where �F is the generalized projection of
E onto F .

Proof For each n = , , , . . . ,N , define Gn : C ×C →R by Gn(x, y) = fn(x, y) + 〈Anx, y – x〉.
Then Gn coincides with the classical equilibrium problem and satisfies (A)-(A). Now,

http://www.fixedpointtheoryandapplications.com/content/2014/1/59
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we show that algorithm (.) is well defined. By Lemma .() we have that F is closed
and convex. Next we show that Cn+ is closed and convex. Clearly, C = C is closed and
convex. Suppose that Ck is closed and convex for k ∈ N (set of naturals). For each z ∈ Ck ,
we observe that

Ck+ =
{
z ∈ Ck : sup

i≥
ϕ(z,uk,i) ≤ ϕ(z,xk) +�k

}

=
⋂
i≥

{
z ∈ Ck : ϕ(z,uk,i) ≤ ϕ(z,xk) +�k

}

=
⋂
i≥

{
z ∈ Ck : 〈z, Jxk – Juk,i〉 + ‖uk,i‖ – ‖xk‖ –�k ≤ 

} ∩Ck .

This implies that Ck+ is closed and convex. This implies, inductively, that Cn+ is closed
and convex for all n≥ . Now we prove that F ⊂ Cn+ for each n ≥ . Obviously, F ⊂ C =
C. Suppose that F ⊂ Ck for some k ∈ N. It follows from Lemma . that uk,i = Vrk yk,i and
Vrk is relatively nonexpansive. Hence, for any p ∈ F , we have

ϕ(p,uk,i) = ϕ(p,Vrk yk,i) ≤ ϕ(p, yk,i)

= ϕ
(
p, J–

(
αk,iJxk + βk,iJTn

i xk + γk,iJSni xk
))

= ‖p‖ – 
〈
p,αk,iJxk + βk,iJTn

i xk + γk,iJSni xk
〉

+
∥∥αk,iJxk + βk,iJTn

i xk + γk,iJSni xk
∥∥

≤ ‖p‖ – αk,i〈p, Jxk〉 – βk,i
〈
p, JTn

i xk
〉
– γk,i

〈
p, JSni xk

〉
+ αk,i‖xk‖ + βk,i

∥∥Tn
i xk

∥∥ + γk,i
∥∥Sni xk∥∥

= αk,i
(‖p‖ – 〈p, Jxk〉 + ‖xk‖

)
+ βk,i

(‖p‖ – 
〈
p, JTn

i xk
〉
+

∥∥Tn
i xk

∥∥)
+ γk,i

(‖p‖ – 
〈
p, JSni xk

〉
+

∥∥Sni xk∥∥)
= αk,iϕ(p,xk) + βk,iϕ

(
p,Tn

i xk
)
+ γk,iϕ

(
p,Sni xk

)
≤ αk,iϕ(p,xk) + βk,i

{
ϕ(p,xk) + kkξ

(
ϕ(p,xk)

)
+ ηk

}
+ γk,i

{
ϕ(p,xk) + kkξ

(
ϕ(p,xk)

)
+ ηk

}
.

That is,

ϕ(p,uk,i) ≤ ϕ(p,xk) + ( – αk,i)
{
kkξ

(
ϕ(p,xk)

)
+ ηk

}
= ϕ(p,xk) +�k , (.)

where �k := ( – αk,i){kk supu∈F ξ (ϕ(u,xk)) + ηk}. This shows that p ∈ Ck+; consequently,
F ⊂ Ck+. By induction, we also get that F ⊂ Cn+ for all n ≥  with �n := ( – αn,i)×
{kn supu∈F ξ (ϕ(u,xn)) + ηn}. Since F 
= ∅ and Cn+ is a nonempty closed convex subset of E,
hence both �Cn+x and {xn} are well defined.
Note that ϕ(xn,x∗) is nondecreasing. In fact, from the definition of Cn+, we conclude

that xn =�Cnx and xn+ =�Cn+x ∈ Cn+ ⊂ Cn; hence

ϕ
(
xn,x∗) ≤ ϕ

(
xn+,x∗).

http://www.fixedpointtheoryandapplications.com/content/2014/1/59
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Moreover, from Lemma . we get that

ϕ
(
xn,x∗) = ϕ

(
�Cnx,x

∗) ≤ ϕ
(
p,x∗) – ϕ(p,�Cnx)≤ ϕ

(
p,x∗)

for each p ∈ F .
So ϕ(xn,x∗) is nondecreasing and bounded. This implies that limn→∞ ϕ(xn,x∗) exists.
Let m ∈ Z

+ (a set of positive integers). Then Lemma . implies

ϕ(xn+m,xn) = ϕ(xn+m,�Cnx) ≤ ϕ
(
xn+m,x∗) – ϕ

(
�Cnx,x

∗)
= ϕ

(
xn+m,x∗) – ϕ

(
xn,x∗).

Letting n → ∞, we have ϕ(xn+m,xn) → . By Lemma ., we have

‖xn+m – xn‖ n→∞→ . (.)

Hence {xn} is Cauchy. Since C is a closed subset of the Banach space E, we can assume
that there exists a point x ∈ C such that

xn → x as n→ ∞. (.)

Note that {Cn} is a decreasing sequence of closed convex subsets of E with C =
⋂∞

n=Cn

is nonempty. That is,

M-lim
n
Cn = C =

∞⋂
n=

Cn 
= ∅.

Hence Lemma . asserts that {�Cnx} converges to �Cx.
In what follows, we show that:
Step . x ∈ [

⋂∞
i= F(Ti)]∩ [

⋂∞
i= F(Si)];

Step . x ∈ [
⋂N

n= EP(Gn)];
Step . x =�Fx.
Proof of Step . As xn+ ∈ Cn+, so supi≥ ϕ(xn+,un,i) ≤ ϕ(xn+,xn) + �n. It follows from

(.) and the fact that �n
n→∞→ , we get limn→∞ ϕ(xn+,un,i) =  for all i ≥ . Again by

Lemma ., we have

lim
n→∞‖xn+ – un,i‖ = , i≥ . (.)

Observe that the following implication of the triangle inequality

‖xn – un,i‖ ≤ ‖xn – xn+‖ + ‖xn+ – un,i‖

yields that

lim
n→∞‖xn – un,i‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/59
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As J is uniformly norm-to-norm continuous on bounded sets, so we have

lim
n→∞‖Jxn – Jun,i‖ = . (.)

Moreover, it follows from (.) and (.) that

lim
n→∞‖un,i – x‖ =  for all i≥ . (.)

From (.), we know that ϕ(p, yn,i) ≤ ϕ(p,xn) + �n for all i ≥  and for all p ∈ F . So, by
Lemma ., we have

ϕ(un,i, yn,i) = ϕ(Vrnyn,i, yn,i)≤ ϕ(p, yn,i) – ϕ(p,Vrnyn,i)

≤ ϕ(p,xn) +�n – ϕ(p,Vrnyn,i)

= ϕ(p,xn) – ϕ(p,un,i) +�n

= ‖xn‖ – ‖un,i‖ – 〈p, Jxn – Jun,i〉 +�n

≤ ‖xn – un,i‖
(‖xn‖ + ‖un,i‖

)
– 〈p, Jxn – Jun,i〉 +�n.

Letting n → ∞ in the above estimate and using (.), we have limn→∞ ϕ(un,i, yn,i) =  for
all i≥ ; consequently, Lemma . asserts that

lim
n→∞‖un,i – yn,i‖ = , i ≥ . (.)

From (.) and (.), we have

lim
n→∞‖xn – yn,i‖ = , i≥ .

Hence, we conclude that

yn,i
n→∞→ x for all i≥ . (.)

On the other hand, from Lemma ., we have

ϕ(p,un,i) = ϕ(p,Vrn yn,i) ≤ ϕ(p, yn,i)

= ϕ
(
p, J–

(
αn,iJxn + βn,iJTn

i xn + γn,iJSni xn
))

= ‖p‖ – 
〈
p,αn,iJxn + βn,iJTn

i xn + γn,iJSni xn
〉

+
∥∥αn,iJxn + βn,iJTn

i xn + γn,iJSni xn
∥∥

≤ ‖p‖ – αn,i〈p, Jxn〉 – βn,i
〈
p, JTn

i xn
〉
– γn,i

〈
p, JSni xn

〉
+ αn,i‖xn‖ + βn,i

∥∥Tn
i xn

∥∥ + γn,i
∥∥Sni xn∥∥ – αn,iβn,ig

(∥∥Jxn – JTn
i xn

∥∥)
= αn,iϕ(p,xn) + βn,iϕ

(
p,Tn

i xn
)
+ γn,iϕ

(
p,Sni xn

)
– αn,iβn,ig

(∥∥Jxn – JTn
i xn

∥∥)
≤ αn,iϕ(p,xn) + ( – αn,i)ϕ(p,xn) + ( – αn,i)�n – αn,iβn,ig

(∥∥Jxn – JTn
i xn

∥∥)
.
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Since a≤ αn,i,βn,i, re-arranging the terms of the above estimate and simplifying, we get

ag
(∥∥Jxn – JTn

i xn
∥∥) ≤ ϕ(p,xn) – ϕ(p,un,i) + ( – αn,i)�n.

Reasoning as above and then utilizing (.), we get that

lim
n→∞ g

(∥∥Jxn – JTn
i xn

∥∥)
= , i≥ .

Note that g is a continuous function and g() = , so we have

lim
n→∞

∥∥Jxn – JTn
i xn

∥∥ = , i ≥ . (.)

In view of estimate (.), we conclude that Jxn
n→∞→ Jx. Hence, from (.) we obtain

JTn
i xn

n→∞→ Jx, i≥ . (.)

Since J– is uniformly norm-to-norm continuous, (.) implies that

lim
n→∞

∥∥xn – Tn
i xn

∥∥ = , i≥ . (.)

Observe that

∥∥Tn
i xn – x

∥∥ ≤ ∥∥Tn
i xn – xn

∥∥ + ‖xn – x‖.

So, we conclude from (.) and (.) that

lim
n→∞

∥∥Tn
i xn – x

∥∥ = , i≥ .

Since each Ti is uniformly L-Lipschitzian, we have

∥∥Tn+
i xn – Tn

i xn
∥∥ ≤ ∥∥Tn+

i xn – Tn+
i xn+

∥∥ +
∥∥Tn+

i xn+ – xn+
∥∥

+ ‖xn+ – xn‖ +
∥∥xn – Tn

i xn
∥∥

≤ (L + )‖xn+ – xn‖ +
∥∥Tn+

i xn+ – xn+
∥∥ +

∥∥xn – Tn
i xn

∥∥.
Hence, from (.) and (.), we obtain that

lim
n→∞

∥∥Tn+
i xn – Tn

i xn
∥∥ = , i≥ .

Moreover, it yields that limn→∞ ‖Tn+
i xn – x‖ = , i ≥ ; consequently, we have

Ti(Tn
i xn)

n→∞→ x, i≥ . So we infer that x ∈ ⋂∞
i= F(Ti).

Reasoning as above, one can also show that x ∈ ⋂∞
i= F(Si).

Proof of Step . We first show that x ∈ EP(G), where G =Gnj for some j ≥ . In view of
estimate (.) and (C), i.e., lim infn→∞ rn > , we observe that

lim
j→∞

‖Junj ,i – Jynj ,i‖
rnj

= , i≥ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/59
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From unj ,i = Vrnj ynj ,i, for all n≥  and i≥ , we have

G(unj ,i, y) +

rnj

〈y – unj ,i, Junj ,i – Jynj ,i〉 ≥  for all y ∈ C.

Using (A), the above estimate yields that


rnj

〈y – unj ,i, Junj ,i – Jyn,i〉 ≥ –G(unj ,i, y) ≥G(y,unj ,i) for all y ∈ C.

From unj ,i → x and (A), we obtain G(y,x) ≤  for all y ∈ C. Let yt = ty + ( – t)x for
 < t <  and y ∈ C. Then yt ∈ C and hence G(yt ,x) ≤ . From (A) and (A), we have
 = G(yt , yt) ≤ tG(yt , y) + ( – t)G(yt ,x) ≤ tG(yt , y). Thus, G(yt , y) ≥ . From (A), we
have G(x, y) ≥  for all y ∈ C. Hence x ∈ EP(G). In a similar fashion, we have some k ≥ 
such that G =Gnk and x ∈ EP(G). Therefore, x ∈ ⋂N

n= EP(Gn) and hence x ∈ F .
Proof of Step . Lemma . asserts that the sequence {xn} = {�Cnx} converges to�Cx.

Let p = �Cx ∈ F and F is a nonempty closed convex subset of C =
⋂∞

n=Cn. Therefore
p =�Fx. It suffices to show that x = p. For this, we reason as follows:
Since xn =�Cnx and p ∈ F ⊂ Cn, we have

ϕ(xn,x) ≤ ϕ(p,x).

Since the norm is weakly lower semicontinuous, we have

ϕ(x,x) = ‖x‖ – 〈x, Jx〉 + ‖x‖

≤ lim inf
k→∞

(‖xnk‖ – 〈xnk , Jx〉 + ‖x‖
)

≤ lim inf
k→∞

ϕ(xnk ,x)

≤ lim sup
k→∞

ϕ(xnk ,x) ≤ ϕ(p,x).

From the definition of �F , we have x = p. Hence limk→∞ ϕ(xnk ,x) = ϕ(p,x). Therefore,
we have

 = lim
k→∞

(
ϕ(xnk ,x) – ϕ(x,x)

)
= lim

k→∞
(‖xnk‖ – ‖x‖ + 〈xnk – x, Jx〉

)
= lim

k→∞
(‖xnk‖ – ‖x‖).

Since E has the Kadec-Klee property, we have that limk→∞ xnk = x =�Fx.
The arbitrariness of {xnk } implies that {xn} converges strongly to x =�Fx. �

Remark . If {Ti}Ni= and {Si}Ni= are finite families in Theorem ., then its conclusion
can be strengthened as follows:

The sequence {xn} generated by (.) converges strongly to some x ∈ F if and only if
limn→∞ d(xn,F) = , where x =�Fx and d(q,F) = inf{d(q, y) : y ∈ F}.
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Proof The necessity is obvious. Conversely, suppose that limn→∞ d(xn,F) = . Since
ϕ(xn,x∗) is bounded and limn→∞ ϕ(xn,x∗) exists (established above).Moreover, Lemma .
and the following estimate

ϕ(xn+m,xn) = ϕ(xn+m,�Cnx) ≤ ϕ
(
xm,x∗) – ϕ

(
�Cnx,x

∗)
= ϕ

(
xn+m,x∗) – ϕ

(
xn,x∗)

imply ϕ(xn+m,xn) →  when m,n → ∞. Hence, Lemma . asserts that ‖xn+m – xn‖ → .
Thus, {xn} is a Cauchy sequence. Therefore, there exists a point x ∈ C such that xn → x as
n→ ∞. Thus,

d(x,F) = lim
n→∞d(xn,F) = .

Since F is closed, this implies x ∈ F . Now, as in the proof of Step  in Theorem ., we
have x =�Fx. �

To proceed further, we need the following concept.
Let f be a nondecreasing self-mapping on [,∞) with f () =  and f (t) >  for all t ∈

(,∞). Let {Ti : i ∈ I} and {Si : i ∈ I} be two finite families of total quasi-ϕ-asymptotically
nonexpansive mappings on C with F 
= ∅. Then the two families are said to satisfy condi-
tion (I) on C if

‖x – Tx‖ ≥ f
(
d(x,F)

)
or ‖x – Sx‖ ≥ f

(
d(x,F)

)
for all x ∈ C.

As an application of Theorem . to the case of finite families of mappings {Ti}Ni= and
{Si}Ni=, we obtain the following new strong convergence result.

Theorem . Let C be a nonempty closed convex subset of a strictly convex, reflexive and
smooth Banach space E having the Kadec-Klee property and let Ti,Si : C → C be two fi-
nite families of uniformly L-Lipschitzian and uniformly total quasi-ϕ-asymptotically non-
expansive mappings with sequences {kn} and {ηn}, where  < L := max{LTi ,LSi } for each
i ≥ , {kn} := maxn≥{{kTn }, {kSn}} and {ηn} := maxn≥{{ηT

n }, {ηS
n}}. Let fn : C × C → R, n =

, , , . . . ,N , be a finite family of bifunctions satisfying (A)-(A) such that fn = fn(modN).
Let a ≤ αn,i,βn,i,γn,i ≤ b for some a,b ∈ (, ) and {rn} ⊂ (,∞) satisfying
(C) lim infn→∞ rn > .
Assume that Ti and Si satisfy condition (I) and F 
= ∅. Then the sequence {xn} generated

by (.) converges strongly to some x ∈ F , where x =�Fx.

Proof It follows from Theorem . that

lim
n→∞

∥∥xn – Tn
i xn

∥∥ =  = lim
n→∞

∥∥xn – Sni xn
∥∥.

Since {Tn
i : i ∈ I} and {Sni : i ∈ I} satisfy condition (I), so we have either

lim
n→∞ f

(
d(un,i,F)

) ≤ lim
n→∞

∥∥xn – Tn
i xn

∥∥ = ,
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or

lim
n→∞ f

(
d(xn,F)

) ≤ lim
n→∞

∥∥xn – Sni xn
∥∥ = .

This implies that limn→∞ f (d(un,i,F)) = . Since f is nondecreasing and f () = , we have
limn→∞ d(un,i,F) = . The rest of the proof follows fromRemark . and is, therefore, omit-
ted. �

As another application of Theorem ., we establish a result for finding a common ele-
ment in the set of solutions of a finite family of generalized equilibrium problems and the
set of common zeros of two finite families of maximal monotone operators on a Banach
space.
First we recall some preliminary concepts as follows.
Amulti-valued operator T : E → E∗ is said to bemonotone if for any x, y ∈ E and x∗, y∗ ∈

E∗ with x∗ ∈ Tx and y∗ ∈ Ty it holds that

〈
x∗ – y∗,x – y

〉 ≥ .

A point u ∈ E satisfying  ∈ Tu is called a zero of T and the set of all such points is denoted
by T–. T is said to be maximal monotone if T has no monotone extension. Equivalently,
T is maximal monotone if the graph of T , i.e., G(T) = {(x, y) : y ∈ Tx}, is not properly con-
tained in the graph of any other monotone operator (cf. [], p.).
Let E be a strictly convex, reflexive and smooth Banach space and let T : E → E∗ be a

maximal monotone operator. For a positive real number r, we can define a single-valued
mapping Jr : E → D(T) by Jr(x) = (J + rT)–Jx for each x ∈ E. This mapping is called resol-
vent of T for r > . It is known that if T is maximal monotone, then T– = F(Jr) for each
r > . Moreover, T– is a closed convex subset of E. For each r > , we can define Yosida
approximation of T by Yrx = 

r (Jx– JJrx) for all x ∈ E. We know that Yrx ∈ T(Jrx); for more
details, see [].

Theorem . Let C be a nonempty closed convex subset of a strictly convex, reflexive and
smooth Banach space E having the Kadec-Klee property. Let Ti,Si : E → E∗, i = , , , . . . ,N ,
be two finite families of maximal monotone operators and let JTir,i and JSir,i be the correspond-
ing finite families of resolvents of Ti and Si, respectively, where r > . Let fn : C × C → R,
n = , , , . . . ,N , be a finite family of bifunctions satisfying (A)-(A). Let {αn,i}, {βn,i} and
{γn,i} be three sequences in [, ] such that αn,i + βn,i + γn,i =  and {rn} ⊂ (,∞) satisfying
(C) lim infn→∞ rn > .
Assume that F := [

⋂N
i=T–

i ] ∩ [
⋂N

i= S–i ] ∩ [
⋂N

n=GEP(fn)] 
= ∅. Then the sequence {xn}
generated by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ∈ C = C,
yn,i = J–(αn,iJxn + βn,iJJ

Ti
rn,i xn + γn,iJJ

Si
rn,i xn),

fn(un,i, y) + 〈Anun,i, y – un,i〉 + 
rn 〈y – un,i, Jun,i – Jyn,i〉 ≥  for all y ∈ C,

Cn+ = {z ∈ Cn : supi≥ ϕ(z,un,i)≤ ϕ(z,xn) +�n},
xn+ =�Cn+x, n≥ ,

(.)

converges strongly to �Fx, where �F is the generalized projection of E onto F and �n :=
( – αn,i){kn supu∈F ξ (ϕ(u,xn)) + ηn}.
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Proof The first part of this proof - JTirn,i (resp. J
Si
rn,i ) are relatively nonexpansive mappings

for each i ≥  - is essentially due to Matsushita and Takahashi (cf. [, p.]) which
we include for completeness. Note that F̂(JTirn,i ) ⊂ T–

i  for each i = , , , . . . ,N . Let p ∈
F̂(JTirn,i ). Then there exists {zn} ⊂ E such that zn ⇀ p and limn→∞ ‖zn – JTirn,i zn‖ = . Since
lim infn→∞ rn > , we have


rn,i

∥∥Jzn – JJTirn,i zn
∥∥ → .

It follows from 
rn,i

(Jzn – JJTirn,i zn) ∈ Ti(JTirn,i zn) and the monotonicity of Ti that

〈
w – JTirn,i zn,w

∗ –

rn

(
Jzn – JJTirn,i zn

)〉 ≥ 

for all w ∈D(Ti) and w∗ ∈ Tiw. Letting n→ ∞, we have

〈
w – p,w∗〉 ≥ 

for all w ∈ D(Ti) and w∗ ∈ Tiw. Therefore, from the maximality of Ti, we obtain that p ∈
T–
i . On the other hand, T–

i  = F(JTir,i ) and F(JTir,i ) ⊂ F̂(JTir,i ), so we have T–
i  = F(JTir,i ) =

F̂(JTir,i ) for each i = , , , . . . ,N . Similarly, we can show that p ∈ S–i  and S–i  = F(JSir,i) =
F̂(JSir,i) for each i = , , , . . . ,N . Moreover, the resolvent JTir,i of Ti (resp. JSir,i of Si) with r > 
satisfies ϕ(u, JTir,i x) ≤ ϕ(u,x) for all u ∈ F(JTir,i ) and x ∈ E (resp. ϕ(u, JSir,ix) ≤ ϕ(u,x) for all u ∈
F(JSir,i) and x ∈ E). Hence JTir,i and JSir,i are relatively nonexpansive mappings. Since the class
of relatively nonexpansive mappings is properly contained in the class of total quasi-ϕ-
asymptotically nonexpansive mappings, for a finitely many mappings case, one can derive
the desired result from Theorem .. �

Remark . It is worth to mention that Theorem . and Theorem . improve and gen-
eralize various results available in the current literature. In particular, we highlight some
significant features of both these theorems as follows.

(i) Algorithm (.) is comparatively more general and computationally simpler than
the algorithms which appeared in [, ] and [], respectively, in the context of
(two) countable families of total quasi-ϕ-asymptotically nonexpansive mappings.

(ii) Theorem . improves and extends [, Theorem .], [], [, Theorem .] and
[, Theorem .] for two countable families of total quasi-ϕ-asymptotically
nonexpansive mappings and a finite family of generalized equilibrium problems.

(iii) Theorem . improves and extends [, Theorem .] for two finite families of
maximal monotone operators. Moreover, our algorithm (.) is computationally
simpler in comparison with algorithm (.) in [, Theorem .].

(iv) Theorem . improves and extends [, Theorem .] for two finite families of
maximal monotone operators in the more general domain of a strictly convex,
reflexive and smooth Banach space E.

(v) In the context of an approximate common solution for an equilibrium problem, a
maximal monotone operator and a countable family of relatively nonexpansive
mappings, algorithms (.) and (.) are more general and computationally
simpler in comparison with algorithms (.) and (.), respectively, in [].
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(vi) Algorithm (.) is computationally simpler in comparison with algorithms (.) in
[] and (.) in []. Moreover, Theorem . improves [, Theorem .] and [,
Theorem .] by removing the Hn andWn conditions in the corresponding
algorithms.

(vii) Theorem . is an analogue of [, Theorem .] for the approximation of a
common zero for a finite family of maximal monotone operators.
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