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Abstract
An optimal existing method for the approximation of common fixed points of
countable families of nonlinear operators is introduced, by which a relaxed hybrid
shrinking iterative algorithm is developed for the class of totally
quasi-φ-asymptotically nonexpansive mappings, and a strong convergence theorem
for solving generalized mixed equilibrium problems is established in the framework of
Banach spaces. Since there is no need to impose the uniformity assumption on the
involved countable family of mappings and no need to compute a complex series at
each step in the iteration process, the result is more widely applicable than those of
other authors with related interests.
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1 Introduction
Throughout this paper we assume that E is a real Banach space with its dual E∗, C is a
nonempty closed convex subset of E and J : E → E∗ is the normalized duality mapping
defined by

Jx =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E.

In the sequel, we use F(T) to denote the set of fixed points of a mapping T .

Definition . [] () A mapping T : C → C is said to be totally quasi-φ-asymptotically
nonexpansive, if F(T) 	= ∅ and there exist nonnegative real sequences {νn}, {μn} with
νn,μn →  (as n → ∞) and a strictly increasing continuous function ζ : R+ ∪ {} →
R

+ ∪ {} with ζ () =  such that

φ
(
p,Tnx

) ≤ φ(p,x) + νnζ
(
φ(p,x)

)
+μn, ∀n≥ ,x ∈ C,p ∈ F(T), (.)

where φ : E × E →R
+ ∪ {} denotes the Lyapunov functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E. (.)
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It is obvious from the definition of φ that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖), ∀x, y ∈ E (.)

and

φ
(
x, J–

(
λJy + ( – λ)Jz

)) ≤ λφ(x, y) + ( – λ)φ(x, z), ∀x, y ∈ E,λ ∈ [, ]. (.)

() A countable family of mappings {Ti}∞i= : C → C said to be uniformly quasi-φ-
asymptotically nonexpansive, if F :=

⋂∞
i= F(Ti) 	= ∅ and there exists a nonnegative real

sequence {kn} ⊂ [,∞) with kn →  (as n → ∞) such that

φ
(
p,Tn

i x
) ≤ knφ(p,x), ∀n≥ , i≥ ,x ∈ C,p ∈ F(T). (.)

() A countable family of mappings {Ti}∞i= : C → C said to be uniformly totally quasi-
φ-asymptotically nonexpansive, if F :=

⋂∞
i= F(Ti) 	= ∅ and there exist nonnegative real se-

quences {νn}, {μn} with νn,μn →  (as n→ ∞) and a strictly increasing continuous func-
tion ζ :R+ ∪ {} →R

+ ∪ {} with ζ () =  such that

φ
(
p,Tn

i x
) ≤ φ(p,x) + νnζ

(
φ(p,x)

)
+μn, ∀n≥ , i ≥ ,x ∈ C,p ∈ F(T). (.)

() A mapping T : C → C is said to be uniformly L-Lipschitz continuous, if there exists
a constant L >  such that

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖, ∀n≥ ,x, y ∈ C. (.)

Let θ : C × C → R be a bifunction, ψ : C → R a real valued function and A : C → E∗

a nonlinear mapping. The so-called generalized mixed equilibrium problem (GMEP) is to
find an u ∈ C such that

θ (u, y) + 〈Au, y – u〉 +ψ(y) –ψ(u)≥ , ∀y ∈ C, (.)

whose set of solutions is denoted by �. The equilibrium problem is an unifying model for
several problems arising in physics, engineering, science optimization, economics, trans-
portation, network and structural analysis, Nash equilibrium problems in noncoopera-
tive games, and others. It has been shown that variational inequalities and mathematical
programming problems can be viewed as a special realization of the abstract equilibrium
problems. Many authors have proposed some useful methods to solve the EP (equilib-
rium problem), GEP (generalized equilibrium problem), MEP (mixed equilibrium prob-
lem), and GMEP. Concerning the weak and strong convergence of iterative sequences to a
common element of the set of solutions for the GMEP, the set of solutions for variational
inequality problems, and the set of common fixed points for relatively nonexpansive map-
pings, quasi-φ-nonexpansive mappings, quasi-φ-asymptotically nonexpansive mappings
and total quasi-φ-asymptotically nonexpansive mappings have been studied by many au-
thors in the setting ofHilbert or Banach spaces (see, for example, [–] and the references
therein).
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In , Qin et al. [] proposed the following shrinking projection method to find a
common element of the set of solutions of an equilibrium problem and the set of com-
mon fixed points of a finite family of quasi-φ-nonexpansive mappings in the framework
of Banach spaces:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C; C = C,
yn = J–[αn,Jxn +

∑N
i= αn,iJTixn],

un ∈ C such that ∀y ∈ C,
θ (un, y) + 

rn 〈y – un, Jun – Jyn〉 ≥ ,
Cn+ = {v ∈ Cn : φ(v,un) ≤ φ(v,xn)},
xn+ =
Cn+x, ∀n≥ ,

(.)

where 
Cn+ is the generalized projection (see (.)) of E onto Cn+.
In , Saewan and Kumam [] introduced a modified new hybrid projection method

to find a common element of the set of solutions of the generalized mixed equilibrium
problems and the set of common fixed points of an infinite family of closed and uniformly
quasi-φ-asymptotically nonexpansive mappings in an uniformly smooth and strictly con-
vex Banach spaces E with the Kadec-Klee property:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C; C = C,
yn = J–[αnJxn + ( – αn)Jzn],
zn = J–[βn,Jxn +

∑∞
i= βn,iJTn

i xn],
un ∈ C such that un = Krnyn,
Cn+ = {z ∈ Cn : φ(z,un) ≤ φ(z,xn) + ξn},
xn+ =
Cn+x, ∀n≥ ,

(.)

where ξn := (kn – ) supp∈F ζ (φ(p,xn)).
However, it is obviously a quite strong condition that the involved mappings are assumed

to be a countable family of uniformly ({νn}, {μn}, ζ )-quasi-φ-asymptotically nonexpansive
ones, which is a special case of totally quasi-φ-asymptotically nonexpansive mappings (see
[]). In addition, the accurate computation of the series

∑∞
i= βn,iJTn

i yn at each step of the
iteration process is not easily attainable, which will lead to gradually increasing errors.
Inspired andmotivated by the studiesmentioned above, by using a special way of choos-

ing the indices, we propose a relaxed hybrid shrinking iteration scheme for approximating
common fixed points of a countable family of totally quasi-φ-asymptotically nonexpan-
sivemappings and obtain a strong convergence theorem for solving the generalizedmixed
equilibrium problems under suitable conditions, namely, there is no need to assume uni-
formity for the totally quasi-φ-asymptotic property of the involved mappings, and no need
to compute complex series in the iteration process. The results extend and improve those
of other authors with related interests.

2 Preliminaries
Wesay that a Banach spaceE is strictly convex if the following implication holds for x, y ∈ E:

‖x‖ = ‖y‖ = , x 	= y ⇒
∥∥∥∥x + y



∥∥∥∥ < . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/63
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It is also said to be uniformly convex if for any ε > , there exists a δ >  such that

‖x‖ = ‖y‖ = , ‖x – y‖ ≥ ε ⇒
∥∥∥∥x + y



∥∥∥∥ ≤  – δ. (.)

It is well known that if E is a uniformly convex Banach space, then E is reflexive and strictly
convex. A Banach space E is said to be smooth if

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for each x, y ∈ S(E) := {x ∈ E : ‖x‖ = }. E is said to be uniformly smooth if the limit
(.) is attained uniformly for x, y ∈ S(E).
Following Alber [], the generalized projection 
C : E → C is defined by


C = arg inf
y∈C φ(y,x), ∀x ∈ E. (.)

Lemma . [] Let E be a smooth, strictly convex and reflexive Banach space and C be a
nonempty closed convex subset of E. Then the following conclusions hold:
() φ(x,
Cy) + φ(
Cy, y) ≤ φ(x, y) for all x ∈ C and y ∈ E;
() If x ∈ E and z ∈ C, then z =
Cx ⇔ 〈z – y, Jx – Jz〉 ≥ , ∀y ∈ C;
() For x, y ∈ E, φ(x, y) =  if and only if x = y.

Remark . The following basic properties for a Banach space E can be found in
Cioranescu [].

(i) If E is uniformly smooth, then J is uniformly continuous on each bounded subset
of E;

(ii) If E is reflexive and strictly convex, then J– is norm-weak-continuous;
(iii) If E is reflexive smooth and strictly convex, then the normalized duality mapping J

is single-valued, one-to-one and onto;
(iv) A Banach space E is uniformly smooth if and only if E∗ is uniformly convex;
(v) Each uniformly convex Banach space E has the Kadec-Klee property, i.e., for any

sequence {xn} ⊂ E, if xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x as n → ∞.

Lemma . [] Let E be a real uniformly smooth and strictly convex Banach space with
Kadec-Klee property, and C be a nonempty closed convex subset of E. Let {xn} and {yn} be
two sequences in C such that xn → p and φ(xn, yn) → , where φ is the function defined by
(.), then yn → p.

Lemma . [] Let E and C be the same as in Lemma .. Let T : C → C be a closed and
totally quasi-φ-asymptotically nonexpansive mappings with nonnegative real sequences
{νn}, {μn} and a strictly increasing continuous function ζ : R+ ∪ {} → R

+ ∪ {} such that
νn,μn →  and ζ () = . If μ = , then the fixed point set F(T) of T is a closed and convex
subset of C.

Lemma . [] Let E be a real uniformly convex Banach space and let Br() be the
closed ball of E with center at the origin and radius r > . Then for any for any sequence
{xi} ⊂ Br() and for any sequence {λi} of positive numbers with

∑∞
i= λi = , there exists a

http://www.fixedpointtheoryandapplications.com/content/2014/1/63
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continuous strictly increasing convex function g : [,∞) → [,∞) with g() =  such that
such that for any positive integer i 	= , the following hold:

∥∥∥∥∥
∞∑
i=

λixi

∥∥∥∥∥


≤
∞∑
i=

λi‖xi‖ – λλig
(‖x – xi‖

)
, (.)

and for all x ∈ E,

φ

(
x, J–

( ∞∑
i=

λiJxi

))
≤

∞∑
i=

λiφ(x,xi) – λλig
(‖Jx – Jxi‖

)
. (.)

Assume that, to obtain the solution of GMEP, the function ψ : C → R is convex and
lower semicontinuous, the nonlinear mapping A : C → E∗ is continuous and monotone,
and the bifunction θ : C ×C →R satisfies the following conditions:

(A) θ (x,x) = ;
(A) θ is monotone, i.e., θ (x, y) + θ (y,x) ≤ ;
(A) lim supt↓ θ (x + t(z – x), y) ≤ θ (x, y);
(A) the mapping y �→ θ (x, y) is convex and lower semicontinuous.

Lemma . [] Let E be a smooth, strictly convex, and reflexive Banach space, and C
be a nonempty closed convex subset of E. Let A : C → E∗ be a continuous and monotone
mapping, ψ : C → R a lower semicontinuous and convex function, and θ : C × C → R

a bifunction satisfying the conditions (A)-(A). Let r >  and x ∈ E. Then, the following
hold:
() There exists an u ∈ C such that

θ (u, y) + 〈Au, y – u〉 +ψ(y) –ψ(u) +

r
〈y – u, Ju – Jx〉 ≥ , ∀y ∈ C.

() A mapping κr : C → C is defined by

κr(x) =
{
u ∈ C : θ (u, y)+ 〈Au, y–u〉+ψ(y)–ψ(u)+


r
〈y–u, Ju– Jx〉 ≥ ,∀y ∈ C

}
.

Then, the mapping κr has the following properties:
(i) κr is single-valued;
(ii) κr a firmly nonexpansive-type mapping, i.e.,

〈κrz – κry, Jκrz – Jκry〉 ≤ 〈κrz – κry, Jz – Jy〉;

(iii) F(κr) = � = F̃(κr);
(iv) � is a closed convex set of C;
(v) φ(p,κrz) + φ(κrz, z) ≤ φ(p, z), ∀p ∈ F(κr), z ∈ E,

where F̃(κr) denotes the set of asymptotic fixed points of κr , i.e.,

F̃(κr) :=
{
x ∈ C : ∃{xn} ⊂ C, s.t.,xn ⇀ x,‖xn – κrxn‖ →  (n→ ∞)

}
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/63
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Lemma . [] The unique solutions to the positive integer equation

n = i +
(m – )m


, m ≥ i,n = , , . . . , (.)

are

i = n –
(m – )m


, m = –

[


–

√
n +




]
, n = , , . . . , (.)

where [x] denotes the maximal integer that is not larger than x.

3 Main results
Recall that a mapping T on a Banach space is closed if xn → x and Txn → y as n → ∞,
then Tx = y.

Theorem . Let E be a real uniformly smooth and strictly convex Banach space with
Kadec-Klee property and C a nonempty closed convex subset of E. Let θ : C × C → R be
a bifunction satisfying the conditions (A)-(A), A : C → E∗ a continuous and monotone
mapping, and ψ : C →R a lower semicontinuous and convex function. Let {Ti}∞i= : C → C
be a countable family of closed and totally quasi-φ-asymptotically nonexpansivemappings
with nonnegative real sequences {ν(i)

n }, {μ(i)
n } satisfying ν

(i)
n →  and μ

(i)
n →  (as n → ∞

and for each i ≥ ) and a sequence of strictly increasing and continuous functions {ζi} :
R

+∪{} →R
+∪{} satisfying condition (.).Assume that each Ti is uniformly Li-Lipschitz

continuous with μ
(i)
 =  for each i ≥ . Let {αn} be a sequence in [, ε] for some ε ∈ (, )

and {βi} be a sequence in (, ). Let {xn} be the sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C; C = C,
yn = J–[αnJxn + ( – αn)Jzn],
zn = J–[βin Jxn + ( – βin )JT

mn
in xn],

un ∈ C such that ∀y ∈ C,
θ (un, y) + 〈Aun, y – un〉 +ψ(y) –ψ(un) + 

rn 〈y – un, Jun – Jyn〉 ≥ ,
Cn+ = {v ∈ Cn : φ(v,un) ≤ φ(v,xn) + ξn},
xn+ =
Cn+x, n ∈N,

(.)

where ξn := ν
(in)
mn supp∈F ζin (φ(p,xn)) +μ

(in)
mn and 
Cn+ is the generalized projection of E onto

Cn+; in and mn are the solutions to the positive integer equation: n = i + (m–)m
 (m ≥ i,

n = , , . . .), that is, for each n ≥ , there exist unique in and mn such that

i = , i = , i = , i = ,

i = , i = , i = , i = , . . . ;

m = , m = , m = , m = ,

m = , m = , m = , m = , . . . .

If G := F ∩ � 	= ∅ and F :=
⋂∞

i= F(Ti) is bounded, then {xn} converges strongly to 
Gx.

http://www.fixedpointtheoryandapplications.com/content/2014/1/63


Deng Fixed Point Theory and Applications 2014, 2014:63 Page 7 of 13
http://www.fixedpointtheoryandapplications.com/content/2014/1/63

Proof Two functions τ : C ×C →R and κr : C → C are defined by

τ (x, y) = θ (x, y) + 〈Ax, y – x〉 +ψ(y) –ψ(x);

κr(x) =
{
u ∈ C : τ (u, y) +


r
〈y – u, Ju – Jx〉 ≥ ,∀y ∈ C

}
.

By Lemma ., we know that the function τ satisfies the conditions (A)-(A) and κr has
the property (i)-(v). Therefore, (.) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C; C = C,
yn = J–[αnJxn + ( – αn)Jzn],
zn = J–[βin Jxn + ( – βin )JT

mn
in xn],

un ∈ C such that τ (un, y) + 
rn 〈y – un, Jun – Jyn〉 ≥ ,∀y ∈ C,

Cn+ = {v ∈ Cn : φ(v,un) ≤ φ(v,xn) + ξn},
xn+ =
Cn+x, ∀n≥ .

(.)

We divide the proof into several steps.
(I) F and Cn (∀n≥ ) both are closed and convex subsets in C.
In fact, it follows from Lemma . that each F(Ti) is a closed and convex subset of C, so

is F . In addition, with C (= C) being closed and convex, we may assume that Cn is closed
and convex for some n≥ . In view of the definition of φ we have

Cn+ =
{
v ∈ C : ϕ(v)≤ a

} ∩Cn,

where ϕ(v) = 〈v, Jxn – Jyn〉 and a = ‖xn‖ – ‖yn‖ + ξn. This shows that Cn+ is closed and
convex.
(II) G is a subset of

⋂∞
n=Cn.

It is obvious that G ⊂ C. Suppose that G ⊂ Cn for some n ≥ . Since un = κrnyn, by
Lemma ., it is easily shown that κrn is quasi-φ-nonexpansive. Hence, for any p ∈ G ⊂ Cn,
it follows from (.) that

φ(p,un) = φ(p,κrnyn) ≤ φ(p, yn)

= φ
(
p, J–

[
αnJxn + ( – αn)Jzn

])
≤ αnφ(p,xn) + ( – αn)φ(p, zn). (.)

Furthermore, it follows from Lemma . that for any p ∈G ⊂ Cn,

φ(p, zn) = φ
(
p, J–

[
βin Jxn + ( – βin )JT

mn
in xn

])
≤ βinφ(p,xn) + ( – βin )φ

(
p,Tmn

in xn
)
– βin ( – βin )g

(∥∥Jxn – JTmn
in xn

∥∥)
≤ βinφ(p,xn) + ( – βin )

[
φ(p,xn) + ν(in)

mn ζin
(
φ(p,xn)

)
+μ(in)

mn

]
– βin ( – βin )g

(∥∥Jxn – JTmn
in xn

∥∥)
≤ φ(p,xn) + ν(in)

mn sup
p∈F

ζin
(
φ(p,xn)

)
+μ(in)

mn – βin ( – βin )g
(∥∥Jxn – JTmn

in xn
∥∥)

= φ(p,xn) + ξn – βin ( – βin )g
(∥∥Jxn – JTmn

in xn
∥∥)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/63
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Substituting (.) into (.) and simplifying it, we have

φ(p,un) ≤ φ(p, yn) ≤ φ(p,xn) + ( – αn)ξn – ( – αn)βin ( – βin )g
(∥∥Jxn – JTmn

in xn
∥∥)

≤ φ(p,xn) + ξn – ( – αn)βin ( – βin )g
(∥∥Jxn – JTmn

in xn
∥∥)

≤ φ(p,xn) + ξn. (.)

This implies that p ∈ Cn+, and so G ⊂ Cn+.
(III) xn → x∗ ∈ C as n→ ∞.
In fact, since xn = 
Cnx, from Lemma .() we have 〈xn – y, Jx – Jxn〉 ≥ , ∀y ∈ Cn.

Again since F ⊂ ⋂∞
n=Cn, we have 〈xn – p, Jx – Jxn〉 ≥ , ∀p ∈ F . It follows from Lem-

ma .() that for each p ∈ F and for each n≥ ,

φ(xn,x) = φ(
Cnx,x) ≤ φ(p,x) – φ(p,xn) ≤ φ(p,x),

which implies that {φ(xn,x)} is bounded, so is {xn}. Since for all n ≥ , xn = 
Cnx and
xn+ = 
Cn+x ∈ Cn+ ⊂ Cn, we have φ(xn,x) ≤ φ(xn+,x). This implies that {φ(xn,x)} is
nondecreasing, hence the limit

lim
n→∞φ(xn,x) exists.

Since E is reflexive, there exists a subsequence {xni} of {xn} such that xni ⇀ x∗ ∈ C as
i→ ∞. Since Cn is closed and convex and Cn+ ⊂ Cn, this implies that Cn is weakly closed
and x∗ ∈ Cn for each n≥ . In view of xni =
Cni

x, we have

φ(xni ,x) ≤ φ
(
x∗,x

)
, ∀i≥ .

Since the norm ‖ · ‖ is weakly lower semicontinuous, we have

lim inf
i→∞ φ(xni ,x) = lim inf

i→∞
(‖xni‖ – 〈xni , Jx〉 + ‖x‖

)
≥ ∥∥x∗∥∥ – 

〈
x∗, Jx

〉
+ ‖x‖

= φ
(
x∗,x

)
,

and so

φ
(
x∗,x

) ≤ lim inf
i→∞ φ(xni ,x) ≤ lim sup

i→∞
φ(xni ,x) ≤ φ

(
x∗,x

)
.

This implies that limi→∞ φ(xni ,x) = φ(x∗,x), and so ‖xni‖ → ‖x∗‖ as i→ ∞. Since xni ⇀
x∗, by virtue of the Kadec-Klee property of E, we obtain

lim
i→∞xni = x∗.

Since {φ(xn,x)} is convergent, this, together with limi→∞ φ(xni ,x) = φ(x∗,x), shows that
limn→∞ φ(xn,x) = φ(x∗,x). If there exists some subsequence {xnj} of {xn} such that xnj →

http://www.fixedpointtheoryandapplications.com/content/2014/1/63
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y as j → ∞, then from Lemma .() we have

φ
(
x∗, y

)
= lim

i,j→∞φ(xni ,xnj ) = lim
i,j→∞φ(xni ,
Cnj

x)

≤ lim
i,j→∞

(
φ(xni ,x) – φ(
Cnj

x,x)
)

= lim
i,j→∞

(
φ(xni ,x) – φ(xnj ,x)

)
= φ

(
x∗,x

)
– φ

(
x∗,x

)
= ,

that is, x∗ = y and so

lim
n→∞xn = x∗. (.)

(IV) x∗ is a member of F .
Set Ki = {k ∈ N : k = i + (m–)m

 ,m ≥ i,m ∈ N} for each i ∈ N. Note that ν
(ik )
mk = ν

(i)
mk ,

μ
(ik )
mk = μ

(i)
mk and ζik = ζi whenever k ∈Ki for each i≥ . For example, by Lemma . and the

definition of K, we have K = {, , , , , , . . .} and i = i = i = i = i = i = · · · = .
Then we have

ξk = ν(i)
mk

sup
p∈F

ζi
(
φ(p,xk)

)
+μ(i)

mk
, ∀k ∈Ki. (.)

Note that {mk}k∈Ki = {i, i + , i + , . . .}, i.e., mk ↑ ∞ as Ki � k → ∞. It follows from (.)
and (.) that

lim
Ki�k→∞

ξk = , ∀i≥ . (.)

Since xn+ ∈ Cn+, it follows from (.), (.), and (.) that

φ(xk+, yk) ≤ φ(xk+,xk) + ξk →  (Ki � k → ∞). (.)

Since xk → x∗ as Ki � k → ∞, it follows from (.) and Lemma . that

lim
Ki�k→∞

yk = x∗, ∀i≥ . (.)

Note that Tmk
ik = Tmk

i and βik = βi whenever k ∈Ki for each i ≥ . From (.), for any p ∈ F ,
we have

φ(p, yk) ≤ φ(p,xk) + ξk – ( – αk)βi( – βi)g
(∥∥Jxk – JTmk

i xk
∥∥)
, ∀k ∈Ki,

that is,

( – αk)βi( – βi)g
(∥∥Jxk – JTmk

i xk
∥∥) ≤ φ(p,xk) + ξk – φ(p, yk) →  (Ki � k → ∞).

This shows that limKi�k→∞ g(‖Jxk – JTmk
i xk‖) = . In view of the property of g , we have

lim
Ki�k→∞

∥∥Jxk – JTmk
i xk

∥∥ = , ∀i≥ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/63
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In addition, Jxk → Jx∗ (Ki � k → ∞) implies that limKi�k→∞ JTmk
i xk = Jx∗. From Re-

mark .(ii) it yields that, as Ki � k → ∞,

Tmk
i xk ⇀ x∗, ∀i≥ . (.)

Again since for each i≥ , as Ki � k → ∞,

∣∣∥∥Tmk
i xk

∥∥ –
∥∥x∗∥∥∣∣ = ∣∣∥∥JTmk

i xk
∥∥ –

∥∥Jx∗∥∥∣∣ ≤ ∥∥JTmk
i xk – Jx∗∥∥ → ,

this, together with (.) and the Kadec-Klee property of E, shows that

lim
Ki�k→∞

Tmk
i xk = x∗, ∀i≥ . (.)

We use the assumptions that for each i≥ , Ti is uniformly Li-Lipschitz continuous. Not-
ing again that {mk}k∈Ki = {i, i + , i + , . . .}, i.e.,mk+ –  =mk for all k ∈Ki, we then have

∥∥Tmk+
i xk – Tmk

i xk
∥∥ ≤ ∥∥Tmk+

i xk – Tmk+
i xk+

∥∥ +
∥∥Tmk+

i xk+ – xk+
∥∥

+ ‖xk+ – xk‖ +
∥∥xk – Tmk

i xk
∥∥

≤ (Li + )‖xk+ – xk‖ +
∥∥Tmk+

i xk+ – xk+
∥∥

+
∥∥xk – Tmk

i xk
∥∥. (.)

From (.) and xk → x∗ as Ki � k → ∞ we have limKi�k→∞ ‖Tmk+
i xk – Tmk

i xk‖ =  and
limKi�k→∞ Tmk+

i xk = x∗, i.e., limKi�k→∞ Ti(T
mk+–
i xk) = x∗. It then follows that, for each

i≥ ,

lim
Ki�k→∞

Ti
(
Tmk
i xk

)
= x∗, ∀i≥ . (.)

In view of the closedness of Ti, it follows from (.) that Tix∗ = x∗, i.e., for each i ≥ ,
x∗ ∈ F(Ti) and hence x∗ ∈ F .
(V) x∗ is also a member of G.
Since xn+ =
Cn+x, it follows from (.) and (.) that

φ(xk+,uk) ≤ φ(xk+,xk) + ξk →  (Ki � k → ∞).

Since xk → x∗ as Ki � k → ∞, by virtue of Lemma . we have

lim
Ki�k→∞

uk = x∗, ∀i≥ . (.)

This, together with (.), shows that limKi�k→∞ ‖uk – yk‖ =  and limKi�k→∞ ‖Juk –
Jyk‖ = . By the assumption that {rk}k∈Ki ⊂ [a,∞) for some a > , we have

lim
Ki�k→∞

‖Juk – Jyk‖
rk

= , ∀i≥ . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/63
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Since τ (uk , y) + 
rk

〈y – uk , Juk – Jyk〉 ≥ , ∀y ∈ C, by condition (A), we have


rk

〈y – uk , Juk – Jyk〉 ≥ –τ (uk , y) ≥ τ (y,uk), ∀y ∈ C. (.)

By the assumption that the mapping y �→ τ (x, y) is convex and lower semicontinuous, let-
ting Ki � k → ∞ in (.), from (.) and (.), we have τ (y,x∗) ≤ , ∀y ∈ C. For any
t ∈ (, ] and any y ∈ C, set yt = ty+ ( – t)x∗. Then τ (yt ,x∗) ≤  since yt ∈ C. By conditions
(A) and (A), we have

 = τ (yt , yt) ≤ tτ (yt , y) + ( – t)τ
(
yt ,x∗) ≤ tτ (yt , y).

Dividing both sides of the above equation by t, we have τ (yt , y) ≥ , ∀y ∈ C. Letting t ↓ ,
from condition (A), we have τ (x∗, y) ≥ , ∀y ∈ C, i.e., x∗ ∈ � and so x∗ ∈G.
(VI) x∗ =
Gx, and so xn → 
Gx as n→ ∞.
Put u = 
Gx. Since u ∈ G ⊂ Cn and xn = 
Cnx, we have φ(xn,x) ≤ φ(u,x), ∀n ≥ .

Then

φ
(
x∗,x

)
= lim

n→∞φ(xn,x) ≤ φ(u,x), (.)

which implies that x∗ = u since u = 
Gx , and hence xn → x∗ = 
Fx as n → ∞. This
completes the proof. �

We now provide a nontrivial family of mappings satisfying the conditions of Theo-
rem ..

Example . Let E =R
 with the standard norm ‖·‖ = | · | andC = [–, ]. Let {Ti} : C → C

be a countable family of mappings defined by

Tix =

{
–x
i+ , x ∈ (, ],
x, x ∈ [–, ].

We first show that {Ti} is uniformly L-Lipschitzian. If x ∈ (, ] and y ∈ [–, ], then

∣∣Tn
i x – Tn

i y
∣∣ = ∣∣∣∣ (–)n

(i + )n
x – y

∣∣∣∣ ≤ |x| + |y| ≤ |x – y|.

The rest is trivial. Second, we claim that {Ti} is a family of closed and totally quasi-φ-
asymptotically nonexpansive mappings. In fact, for any x ∈ (, ] and p ∈ ⋂∞

i= F(Ti) =
[–, ], we have, for all n≥ ,

φ
(
p,Tn

i x
)
=

∣∣Tn
i x – p

∣∣ = ∣∣∣∣ (–)n

(i + )n
x – p

∣∣∣∣


≤
[
|p| + 

(i + )n
|x|

]

≤
[
|x – p| + 

(i + )n

]

= φ(x,p) + ν(i)
n ζ

(
φ(x,p)

)
+μ(i)

n ,

http://www.fixedpointtheoryandapplications.com/content/2014/1/63
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where φ(x,p) = |x – p|, ν(i)
n = 

(i+)n , μ
(i)
n = 

(i+)n and ζ (x) =
√
x. Note that |Tix – p| ≤

|x – p|, that is, μ(i)
 =  for each i≥ .

Next, we define a bifunction θ : C ×C →R satisfying the conditions (A)-(A) by

θ (x, y) = y – x.

Let A =  and ψ = . Then the set of solutions � to the generalized mixed equilibrium
problem for θ , A and ψ is obviously {}. Since G :=� ∩ F 	= ∅ and F is bounded, it follows
from Theorem . that the sequence {xn} defined by (.) converges strongly to 
Gx.
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