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Abstract
Convergence theorems are established in a hyperbolic space for the modified Noor
iterations with errors of asymptotically nonexpansive mappings. The obtained results
extend and improve the several known results in Banach spaces and CAT(0) spaces
simultaneously.
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1 Introduction
Nonexpansive mappings are Lipschitzian with Lipschitz constant equal to . The class of
nonexpansive mappings enjoys the fixed point property and even the approximate fixed
point property in the general setting of metric spaces. The importance of this class lies
in its powerful applications in initial value problems of the differential equations, game-
theoretic model, image recovery andminimax problems. The class of asymptotically non-
expansivemappings was introduced byGoebel andKirk [] as an important generalization
of the class of nonexpansive mappings. Therefore, it is natural to extend powerful results
for nonexpansive mappings to the class of asymptotically nonexpansive mappings. Itera-
tive construction of fixed points of various nonlinear mappings emerged as themost pow-
erful tool for solving such nonlinear problems. Approximation of fixed points of asymp-
totically nonexpansive mappings has been studied extensively by many authors; see for
example [–] and the references cited therein.
In , Glowinski and Le Tallec [] used a three-step iterative process to find approxi-

mate solutions of elastoviscoplasticity problem, liquid crystal theory and eigenvalue com-
putation. They observed that the three-step iterative process gives better numerical com-
putations than two-step and one-step iterative processes. In , Haubruge et al. []
studied convergence analysis of a three-step iterative process of Glowinski and Le Tallec
[] and applied this process to obtain new splitting type iterations for solving variational
inequalities, separable convex programming and minimization of a sum of convex func-
tions. They also proved that the three-step iterative process leads to highly parallel iter-
ations under certain conditions. Thus we conclude that the three-step iterative process
plays an important and significant role in solving various numerical problems which arise
in pure and applied sciences.
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In , Noor [] introduced a three-step iterative process and studied the approximate
solutions of variational inclusion in Hilbert spaces. In , Xu and Noor [] presented
a three-step iterative process to approximate fixed points of asymptotically nonexpansive
mappings in a Banach space. Cho et al. [] extended Xu and Noor’s iterative process to
a three-step iterative process with errors in Banach spaces and used it to approximate
fixed points of asymptotically nonexpansive mappings. In , Suantai [] proposed and
analyzed the modified three-step Noor iterative process. This process was further stud-
ied for different kinds of mappings by Khan and Hussain [] and Khan [] for example.
Nammanee et al. [] extended this process to the one with errors as follows.
Let C be a nonempty convex subset of a Banach space X and let T : C → C be a given

mapping. For given x ∈ C, compute the sequences {xn}, {yn} and {zn} by

zn = anTnxn + ( – an – γn)xn + γnun,

yn = bnTnzn + cnTnxn + ( – bn – cn –μn)xn +μnvn, ()

xn+ = αnTnyn + βnTnzn + ( – αn – βn – λn)xn + λnwn, n ≥ ,

where {an}, {bn}, {cn}, {αn}, {βn}, {γn}, {μn} and {λn} are sequences in [, ]; {un}, {vn} and
{wn} are bounded sequences in C.
By different choices of parameters an, bn, cn, αn, βn, γn,μn, λn to be zero, one can see that

one-step iterations of Mann [], two-step iterations of Ishikawa [], three-step iterations
of Xu and Noor [], three-step iterations with errors of Cho et al. [] andmodified three-
step iterations of Suantai [] all are the special cases of iteration process ().
Most of phenomena in nature are nonlinear. Therefore, mathematicians and scientists

are always in pursuit of finding methods to solve nonlinear real world problems. So trans-
lating a linear version of known problems into its equivalent nonlinear version has a great
importance.
Keeping in mind the occurrence of such phenomena, we translate modified three-step

Noor iterations with errors in a nonlinear domain, namely, hyperbolic spaces and study
their convergence analysis in a new setup.
A metric space (X,d) is hyperbolic [] if there is a mappingW : X × I → X such that

(a) d
(
u,W (x, y,α)

) ≤ αd(u,x) + ( – α)d(u, y),

(b) d
(
W (x, y,α),W (x, y,β)

)
= |α – β|d(x, y),

(c) W (x, y,α) =W (y,x,  – α),

(d) d
(
W (x, z,α),W (y,w,α)

) ≤ αd(x, y) + ( – α)d(z,w)

()

for all u,w,x, y, z ∈ X and α,β ∈ I = [, ] (see also []); the space is convex [] if only (a)
is satisfied. A subset C of the hyperbolic space X is convex ifW (x, y,α) ∈ C for all x, y ∈ C
and α ∈ I . Normed spaces and their subsets are linear hyperbolic spaces while Hadamard
manifolds [], the Hilbert open unit ball equipped with the hyperbolic metric [] and
the CAT() spaces qualify for the criteria of nonlinear hyperbolic spaces [–].
Throughout the paper, a hyperbolic space (X,d,W ) will simply be denoted by X. A hy-

perbolic space X is uniformly convex (UC) [] if for any u,x, y ∈ X, r >  and ε ∈ (, ],
there exists δ ∈ (, ] such that d(W (x, y,  ),u) ≤ (–δ)r < r, whenever d(x,u)≤ r,d(y,u) ≤
r and d(x, y) ≥ rε.
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Amapping η : (,∞)× (, ]→ (, ] such that η(r, ε) = δ for a given r >  and ε ∈ (, ]
(as in the definition of UC) is known as a modulus of uniform convexity. We call η mono-
tone if it decreases with respect to r (for a fixed ε).
Let C be a nonempty subset of a metric space X. Amapping T : C → C is asymptotically

nonexpansive if there exists a sequence {kn ≥ } with limn→∞ kn =  such that

d
(
Tnx,Tny

) ≤ knd(x, y) for x, y ∈ C,n ≥ ;

it becomes nonexpansive if kn =  for all n≥ . It was shown in [] that an asymptotically
nonexpansive mapping on a nonempty, bounded, closed and convex subset of a (UC) hy-
perbolic space has a fixed point.
We translate () in a hyperbolic space as follows.
LetC be a nonempty convex subset of a hyperbolic space X and T : C → C be an asymp-

totically nonexpansive mapping. Then, for arbitrarily chosen x ∈ C, we construct the se-
quences {xn}, {yn} and {zn} in C as

zn =W
(
Tnxn,W (xn,un, θn ),an

)
,

yn =W
(
Tnzn,W

(
Tnxn,W (xn, vn, θn ),

cn
 – bn

)
,bn

)
, ()

xn+ =W
(
Tnyn,W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

)
,αn

)
,

where {an}, {bn}, {cn}, {αn}, {βn}, {γn}, {μn}, {λn} are sequences in [, ] and {un}, {vn} and
{wn} are bounded sequences in C and θn =  – γn

–an , θn =  – μn
–bn–cn and θn =  – λn

–αn–βn
.

Using Proposition .(a) []: W (x, y, ) = y for x, y ∈ X, the iteration process in () re-
duces to:

(i) modified Noor iterations (with γn = μn = λn = ):

zn =W
(
Tnxn,xn,an

)
,

yn =W
(
Tnzn,W

(
Tnxn,xn,

cn
 – bn

)
,bn

)
, ()

xn+ =W
(
Tnyn,W

(
Tnzn,xn,

βn

 – αn

)
,αn

)
;

(ii) Noor iterations with errors (with cn =  = βn):

zn =W
(
Tnxn,W

(
xn,un,  –

γn

 – an

)
,an

)
,

yn =W
(
Tnzn,W

(
xn, vn,  –

μn

 – bn

)
,bn

)
, ()

xn+ =W
(
Tnyn,W

(
xn,wn,  –

λn

 – αn

)
,αn

)
;

(iii) Noor iterations (with cn = βn = γn = μn = λn ≡ ):

zn =W
(
Tnxn,xn,an

)
,

yn =W
(
Tnzn,xn,bn

)
,

xn+ =W
(
Tnyn,xn,αn

)
;

()
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(iv) Ishikawa iterations (with an = cn = βn = γn = μn = λn = ):

yn =W
(
Tnxn,xn,bn

)
,

xn+ =W
(
Tnyn,xn,αn

)
;

()

(v) Mann iterations (with an = bn = cn = βn = γn = μn = λn = ):

xn+ =W
(
Tnxn,xn,αn

)
. ()

The purpose of this paper is to establish convergence results of iteration process () for
asymptotically nonexpansive mappings on a nonlinear domain ((UC) hyperbolic spaces)
which includes both (UC) Banach spaces andCAT() spaces. Therefore, our results extend
and improve the corresponding ones proved by Suantai [], Xu and Noor [] and others
in a (UC) Banach space and are also valid in CAT() spaces, simultaneously.
In the sequel, we need the following lemmas.

Lemma . ([]) Let {an}, {δn} and {θn} be sequences of non-negative real numbers such
that

∑∞
n= θn < ∞ and

∑∞
n= δn < ∞. If an+ ≤ ( + δn)an + θn, n≥ , then limn→∞ an exists.

Lemma . ([]) Let X be a (UC) hyperbolic space with monotone modulus of uniform
convexity η. Let x ∈ X and {αn} be a sequence in [b, c] for some b, c ∈ (, ). If {xn} and
{yn} are sequences in X such that lim supn→∞ d(xn,x) ≤ r, lim supn→∞ d(yn,x) ≤ r and
limn→∞ d(W (xn, yn,αn),x) = r for some r ≥ , then limn→∞ d(xn, yn) = .

2 Main results
The following lemma is crucial for proving the convergence results.

Lemma . Let X be a (UC) hyperbolic space with monotone modulus of uniform con-
vexity η, and let C be a nonempty, bounded, closed and convex subset of X. Let T be an
asymptotically nonexpansive self-mapping on C with a sequence {kn} ⊂ [,∞) such that∑∞

n=(kn – ) < ∞. For a given x ∈ C, compute {xn}, {yn} and {zn} as in () satisfying
 < a≤ αn,βn,an,bn ≤ b < ,

∑∞
n= γn < ∞,

∑∞
n= μn < ∞ and

∑∞
n= λn < ∞.

Then we have the following conclusions:
(i) If q is a fixed point of T , then limn→∞ d(xn,q) exists.
(ii) If  < lim infn→∞ αn ≤ lim supn→∞(αn + βn + λn) < , then

lim
n→∞d

(
Tnyn,W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

))
= .

(iii) If  < lim infn→∞ αn ≤ lim supn→∞(αn + βn + λn) <  and
 < lim infn→∞ bn ≤ lim supn→∞(bn + cn +μn) < , then

lim
n→∞d

(
Tnzn,W

(
Tnxn,W (xn, vn, θn ),

cn
 – bn

))
= .

(iv) If  < lim infn→∞ bn ≤ lim supn→∞(bn + cn +μn) <  and
 < lim infn→∞ an ≤ lim supn→∞(an + γn) < , then

lim
n→∞d

(
Tnxn,W (xn,un, θn )

)
= .
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Moreover, if  < lim infn→∞ αn ≤ lim supn→∞(αn + βn + λn) < ,  < lim infn→∞ bn ≤
lim supn→∞(bn + cn +μn) <  and  < lim infn→∞ an ≤ lim supn→∞(an + γn) < , then

lim
n→∞d

(
Tnxn,xn

)
= lim

n→∞d
(
Tnzn,xn

)
= lim

n→∞d
(
Tnyn,xn

)
= .

Proof (i) Applying ()(a) with u = q ∈ F(T) to the sequence {zn} in (), we obtain

d(zn,q) = d
(
W

(
Tnxn,W (xn,un, θn ),an

)
,q

)
≤ and

(
Tnxn,q

)
+ ( – an)d

(
W (xn,un, θn ),q

)
≤ and

(
Tnxn,q

)
+ ( – an – γn)d(xn,q) + γnd(un,q)

≤ anknd(xn,q) + kn( – an – γn)d(xn,q) + γnd(un,q)

≤ kn( – γn)d(xn,q) + γnd(un,q). ()

Again applying ()(a) to the sequence {yn} in () and inserting (), we have

d(yn,q) = d
(
W

(
Tnzn,W

(
Tnxn,W (xn, vn, θn ),

cn
 – bn

)
,bn

)
,q

)

≤ bnd
(
Tnzn,q

)
+ ( – bn)d

(
W

(
Tnxn,W (xn, vn, θn ),

cn
 – bn

)
,q

)

≤ bnd
(
Tnzn,q

)
+ cnd

(
Tnxn,q

)
+ ( – bn – cn)d

(
W (xn, vn, θn ),q

)
≤ bnd

(
Tnzn,q

)
+ cnd

(
Tnxn,q

)
+ ( – bn – cn –μn)d(xn,q) +μnd(vn,q)

≤ bnkn
[
kn( – γn)d(xn,q) + γnd(un,q)

]
+ cnknd(xn,q)

+ ( – bn – cn –μn)d(xn,q) +μnd(vn,q)

≤ bnkn( – γn)d(xn,q) + bnknγnd(un,q) + cnknd(xn,q)

+ ( – bn – cn –μn)d(xn,q) +μnd(vn,q)

≤ bnkn( – γn)d(xn,q) + cnknd(xn,q) + ( – bn – cn –μn)d(xn,q)

+ bnknγnd(un,q) +μnd(vn,q)

≤ (
bnkn – bnknγn + cnkn

)
d(xn,q) + kn( – bn – cn –μn)d(xn,q)

+ bnknγnd(un,q) +μnd(vn,q)

≤ (
bnkn – bnknγn + cnkn + kn – bnkn – cnkn –μnkn

)
d(xn,q)

+ bnknγnd(un,q) +μnd(vn,q)

≤ (
kn – bnknγn –μnkn

)
d(xn,q) + bnknγnd(un,q) +μnd(vn,q)

≤ kn( – bnγn –μn)d(xn,q) + bnknγnd(un,q) +μnd(vn,q).

That is,

d(yn,q) ≤ kn( – bnγn –μn)d(xn,q)

+ bnknγnd(un,q) +μnd(vn,q). ()
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Now it follows from () and () that

d(xn+,q) = d
(
W

(
Tnyn,W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

)
,αn

)
,q

)

≤ αnd
(
Tnyn,q

)
+ ( – αn)d

(
W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

)
,q

)

≤ αnd
(
Tnyn,q

)
+ βnd

(
Tnzn,q

)
+ ( – αn – βn – λn)d(xn,q) + λnd(wn,q)

≤ αnknd(yn,q) + βnknd(zn,q) + ( – αn – βn – λn)d(xn,q) + λnd(wn,q)

≤ αnkn
[
kn( – bnγn –μn)d(xn,q) + bnknγnd(un,q) +μnd(vn,q)

]
+ βnkn

[
kn( – γn)d(xn,q) + γnd(un,q)

]
+ ( – αn – βn – λn)d(xn,q) + λnd(wn,q)

≤ (
αnkn – αnknbnγn – αnknμn

)
d(xn,q) + αnknbnγnd(un,q)

+ αnknμnd(vn,q) +
(
βnkn – βnknγn

)
d(xn,q) + βnknγnd(un,q)

+ ( – αn – βn – λn)d(xn,q) + λnd(wn,q)

≤ (
αnkn – αnknbnγn – αnknμn

)
d(xn,q) +

(
βnkn – βnknγn

)
d(xn,q)

+ kn( – αn – βn – λn)d(xn,q) + αnknbnγnd(un,q)

+ αnknμnd(vn,q) + βnknγnd(un,q) + λnd(wn,q)

≤ [
αnkn – αnknbnγn – αnknμn + βnkn

– βnknγn + kn – αnkn – βnkn – λnkn
]
d(xn,q)

+ αnknbnγnd(un,q) + αnknμnd(vn,q) + βnknγnd(un,q) + λnd(wn,q)

≤ [
kn – αnknbnγn – αnknμn – βnknγn – λnkn

]
d(xn,q)

+
(
αnknbnγn + βnknγn

)
d(un,q) + αnknμnd(vn,q) + λnd(wn,q)

≤ knd(xn,q) +
(
kn + kn

)
γnd(un,q) + knμnd(vn,q) + λnd(wn,q).

Therefore, we have

d(xn+,q) ≤ knd(xn,q) + γnA +μnB + λnC,

where A = sup{(kn + kn)d(un,q) : n ≥ }, B = sup{knd(vn,q) : n ≥ } and C = sup{d(wn,q) :
n≥ }.
If we let K =max{A,B,C}, then we have

d(xn+,q) ≤ knd(xn,q) +K (γn +μn + λn).

Since
∑∞

n=(kn – ) < ∞,
∑∞

n= γn < ∞,
∑∞

n= μn < ∞ and
∑∞

n= λn < ∞, it follows from
Lemma . that limn→∞ d(xn,q) exists.
(ii) Since C is bounded, there exists M >  such that max{d(xn,un),d(xn, vn),d(xn,

wn)} ≤M.
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If  < lim infn→∞ αn ≤ lim supn→∞(αn + βn + λn) < , then there exist σ,σ ∈ (, ) such
that  < σ ≤ αn ≤ αn + βn + λn ≤ σ <  for all n ≥ . We have shown in part (i) that
limn→∞ d(xn,q) exists, therefore limn→∞ d(xn+,q) = c >  (say).
That is,

lim
n→∞W

(
Tnyn,W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

)
,αn

)
= c. ()

From (), we have that

lim sup
n→∞

d
(
Tnyn,q

) ≤ c. ()

Also

d
(
W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

)
,q

)

≤ βn

 – αn
d
(
Tnzn,q

)
+

(
 –

βn

 – αn

)
d
(
W (xn,wn, θn ),q

)

≤ βn

 – αn
d
(
Tnzn,q

)
+
 – αn – βn – λn

 – αn
d(xn,q) +

λn

 – αn
d(wn,q)

≤ βn

 – αn

[
knd(xn,q) + knγnM

]
+ kn

(
 –

βn

 – αn
–

λn

 – αn

)
d(xn,q)

+
λn

 – αn
kn

[
d(xn,q) + d(xn,wn)

]

≤ βn

 – αn
knγnM + knd(xn,q) +

λn

 – αn
knd(xn,wn)

≤ βn

 – αn
knγnM + knd(xn,q) +

λn

 – αn
knd(xn,wn)

≤ βn

 – αn
knγnM + knd(xn,q) +


 – αn

knλnM

≤ b
 – b

knγnM + knd(xn,q) +


 – b
knλnM

gives that

lim sup
n→∞

d
(
W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

)
,q

)
≤ c. ()

The hypothesis of Lemma . is satisfied in (), () and (), therefore we conclude

lim
n→∞d

(
Tnyn,W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

))
= . ()

(iii) If  < lim infn→∞ αn ≤ lim supn→∞(αn + βn + λn) < , then there exist σ,σ ∈ (, )
such that  < σ ≤ αn ≤ αn + βn + λn ≤ σ <  for all n ≥ . Similarly,  < lim infn→∞ bn ≤
lim supn→∞(bn + cn + μn) <  gives that there exist ρ,ρ ∈ (, ) such that  < ρ ≤ bn ≤
bn + cn +μn ≤ ρ <  for all n≥ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/64
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Since

d(xn+,q) = d
(
W

(
Tnyn,W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

)
,αn

)
,q

)

≤ knd(yn,q) + ( – a)d
(
W

(
Tnyn,Tnzn,W (xn,wn, θn ),

βn

 – αn

))
,

with the help of (), we have

c≤ lim inf
n→∞ d(yn,q) ≤ lim sup

n→∞
d(yn,q) ≤ c.

That is,

lim
n→∞d(yn,q) = c. ()

Obviously,

lim sup
n→∞

d
(
Tnzn,q

) ≤ c ()

and

d
(
W

(
Tnxn,W (xn, vn, θn ),

cn
 – bn

)
,q

)

≤ cn
 – bn

d
(
Tnxn,q

)
+

(
 –

cn
 – bn

)
d
(
W (xn, vn, θn ),q

)

≤ cn
 – bn

knd(xn,q) +
(
 – bn – cn –μn

 – bn

)
d(xn,q) +

(
μn

 – bn

)
d(vn,q)

≤ cn
 – bn

knd(xn,q) + d(xn,q) –
cn

 – bn
knd(xn,q) –

μn

 – bn
d(xn,q)

+
(

μn

 – bn

)
d(xn,q) +

(
μn

 – bn

)
d(xn, vn)

≤ d(xn,q) +
(

μn

 – bn

)
d(xn, vn) ≤ d(xn,q) +

(
μn

 – b

)
M

gives that

lim sup
n→∞

d
(
W

(
Tnxn,W (xn, vn, θn ),

cn
 – bn

)
,q

)
≤ c. ()

Again the hypothesis of Lemma . is satisfied in (), () and (), therefore we get

lim
n→∞d

(
Tnzn,W

(
Tnxn,W (xn, vn, θn ),

cn
 – bn

))
= . ()

(iv) If  < lim infn→∞ bn ≤ lim supn→∞(bn + cn + μn) <  and  < lim infn→∞ an ≤
lim supn→∞(an + γn) < , then there exist ρ,ρ, τ, τ ∈ (, ) such that  < ρ ≤ bn ≤
bn + cn +μn ≤ ρ <  and  < τ ≤ an ≤ an + γn ≤ τ <  for all n≥ .
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Since

d(yn,q) ≤ d
(
W

(
Tnzn,W

(
Tnxn,W (xn, vn, θn ),

cn
 – bn

)
,bn

)
,q

)

≤ ( – a)d
(
Tnzn,W

(
Tnxn,W (xn, vn, θn ),

cn
 – bn

))
+ knd(zn,q),

with the help of (), we have

c≤ lim inf
n→∞ d(zn,q) ≤ lim sup

n→∞
d(zn,q) ≤ c.

That is,

lim
n→∞d(zn,q) = lim

n→∞d
(
W

(
Tnxn,W (xn,un, θn ),an

)
,q

)
= c. ()

Obviously,

lim sup
n→∞

d
(
Tnxn,q

) ≤ c ()

and

d
(
W (xn,un, θn ),q

) ≤
(
 – an – γn

 – an

)
d(xn,q) +

(
γn

 – an

)
d(xn,un)

≤
(
 –

γn

 – an

)
d(xn,q) +

(
γn

 – an

)
d(xn,un)

≤ d(xn,q) –
γn

 – an
d(xn,q) +

(
γn

 – an

)
d(xn,un)

≤ d(xn,q) +
(

γn

 – b

)
M

provide that

lim sup
n→∞

d
(
W (xn,un, θn ),q

) ≤ c. ()

Finally, appealing to Lemma . (using (), (), and ()), we get that

lim
n→∞d

(
Tnxn,W (xn,un, θn )

)
= . ()

Then

d
(
Tnxn,xn

) ≤ d
(
Tnxn,W (xn,un, θn )

)
+ d

(
W (xn,un, θn ),xn

)

≤ d
(
Tnxn,W (xn,un, θn )

)
+

(
γn

 – an

)
d(un,xn)

≤ d
(
Tnxn,W (xn,un, θn )

)
+

(
γn

 – b

)
M
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together with () gives that

lim
n→∞d

(
Tnxn,xn

)
= . ()

Next we show that limn→∞ d(Tnzn,xn) =  and limn→∞ d(Tnyn,xn) = .
The inequality

d
(
Tnzn,xn

) ≤ d
(
Tnzn,W

(
Tnxn,W (xn, vn, θn ),

cn
 – bn

))

+ d
(
W

(
Tnxn,W (xn, vn, θn ),

cn
 – bn

)
,xn

)

≤ d
(
Tnzn,W

(
Tnxn,W (xn, vn, θn ),

cn
 – bn

))

+
cn

 – bn
d
(
Tnxn,xn

)
+

(
 – bn – cn
 – bn

)
d
(
W (xn, vn, θn ),xn

)

≤ d
(
Tnzn,W

(
Tnxn,W (xn, vn, θn ),

cn
 – bn

))

+
cn

 – bn
d
(
Tnxn,xn

)
+

μn

 – bn
d(xn, vn)

≤ d
(
Tnzn,W

(
Tnxn,W (xn, vn, θn ),

cn
 – bn

))

+
cn

 – bn
d
(
Tnxn,xn

)
+

μn

 – bn
M

together with () gives that

lim
n→∞d

(
Tnzn,xn

)
= .

Similarly,

d
(
Tnyn,xn

) ≤ d
(
Tnyn,W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

))

+ d
(
W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

)
,xn

)

≤ d
(
Tnyn,W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

))

+
βn

 – αn
d
(
Tnzn,xn

)
+

(
λn

 – αn

)
d(xn,wn)

≤ d
(
Tnyn,W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

))

+
b

 – b
d
(
Tnzn,xn

)
+

(
λn

 – b

)
M

provides that

lim
n→∞d

(
Tnyn,xn

)
= .
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Hence

lim
n→∞d

(
Tnxn,xn

)
= lim

n→∞d
(
Tnyn,xn

)
= lim

n→∞d
(
Tnzn,xn

)
= . �

Theorem. Let C be a nonempty bounded, closed and convex subset of a (UC) hyperbolic
spacewithmonotonemodulus of uniform convexity η.Let T be a completely continuous and
asymptotically nonexpansive self-mapping on C with {kn ≥ } satisfying ∑∞

n=(kn – ) < ∞.
Let {an}, {bn}, {cn}, {αn}, {βn}, {γn}, {μn} and {λn} be control sequences in [, ] satisfying
the following conditions:

(i)  < lim infn→∞ αn ≤ lim supn→∞(αn + βn + λn) < ,
(ii)  < lim infn→∞ bn ≤ lim supn→∞(bn + cn +μn) < ,
(iii)  < lim infn→∞ an ≤ lim supn→∞(an + γn) < ,
(iv)

∑∞
n= γn < ∞,

∑∞
n= μn <∞ and

∑∞
n= λn < ∞.

Then {xn}, {yn} and {zn} in () converge to the same fixed point of T .

Proof By Lemma ., we have

lim
n→∞d

(
Tnxn,xn

)
= lim

n→∞d
(
Tnyn,xn

)
= lim

n→∞d
(
Tnzn,xn

)
= .

Since

d(xn+,xn) = d
(
W

(
Tnyn,W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

)
,αn

)
,xn

)

≤ αnd
(
Tnyn,xn

)

+ ( – αn)d
(
W

(
Tnzn,W (xn,wn, θn ),

βn

 – αn

)
,xn

)

≤ αnd
(
Tnyn,xn

)
+ βnd

(
Tnzn,xn

)
+ λnd(xn,wn),

we have

d
(
xn+,Tnxn+

) ≤ d(xn+,xn) + d
(
Tnxn+,Tnxn,

)
+ d

(
Tnxn,xn

)
≤ d(xn+,xn) + knd(xn+,xn) + d

(
Tnxn,xn

)
≤ ( + kn)d(xn+,xn) + d

(
Tnxn,xn

)
≤ ( + kn)αnd

(
Tnyn,xn

)
+ ( + kn)βnd

(
Tnzn,xn

)
+ ( + kn)λnd(xn,wn) + d

(
Tnxn,xn

)
.

This together with Lemma . implies that

lim
n→∞d

(
xn+,Tnxn+

)
= .

Moreover, the estimate

d(xn+,Txn+) ≤ d
(
xn+,Tn+xn+

)
+ d

(
Txn+,Tn+xn+

)
≤ d

(
xn+,Tn+xn+

)
+ kd

(
xn+,Tnxn+

)
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implies that

lim
n→∞d(xn,Txn) = . ()

Since T is completely continuous and {xn} ⊂ C is bounded, there exists a subsequence
{xnk } of {xn} such that {Txnk } converges. Therefore from (), {xnk } converges. Let
limk→∞ xnk = q. By the continuity of T and (), we have that Tq = q, so q is a fixed
point of T . By Lemma .(i), limn→∞ d(xn,q) exists. But limk→∞ d(xnk ,q) = . Thus
limn→∞ d(xn,q) = . Further the inequalities d(yn,xn) ≤ bnd(Tnzn,xn) + cnd(Tnxn,xn) +
μnd(vn,xn) and d(zn,xn) ≤ and(Tnxn,xn) + γnd(un,xn) give that limn→∞ d(yn,xn) =  and
limn→∞ d(zn,xn) = , respectively.
That is,

lim
n→∞ yn = q and lim

n→∞ zn = q. �

For γn = μn = λn = , Theorem . reduces to the following.

Corollary . Let C be a nonempty bounded, closed and convex subset of a (UC) hy-
perbolic space with monotone modulus of uniform convexity η. Let T be a completely
continuous and asymptotically nonexpansive self-mapping on C with {kn ≥ } satisfying∑∞

n=(kn – ) < ∞. Let {an}, {bn}, {cn}, {αn} and {βn} be in [, ] with bn + cn,αn + βn ∈ [, ]
for all n ≥  and

(i)  < lim infn→∞ bn ≤ lim supn→∞(bn + cn) < ,
(ii)  < lim infn→∞ αn ≤ lim supn→∞ αn < .

Then {xn}, {yn} and {zn} in () converge to the same fixed point of T .

For cn = βn = γn = μn = λn ≡  in Theorem ., we obtain the following result.

Corollary . Let C be a nonempty bounded, closed and convex subset of a (UC) hy-
perbolic space with monotone modulus of uniform convexity η. Let T be a completely
continuous and asymptotically nonexpansive self-mapping on C with {kn ≥ } satisfying∑∞

n=(kn – ) < ∞. Let {an}, {bn} and {αn} be in [, ] satisfying
(i)  < lim infn→∞ bn ≤ lim supn→∞ bn < , and
(ii)  < lim infn→∞ αn ≤ lim supn→∞ αn < .

Then {xn}, {yn} and {zn} in () converge to the same fixed point of T .

For an = cn = βn = γn = μn = λn ≡  in Theorem ., we can obtain the Ishikawa-type
convergence result.

Corollary . Let C be a nonempty bounded, closed and convex subset of a (UC) hyper-
bolic space with monotone modulus of uniform convexity η. Let T be a completely continu-
ous asymptotically nonexpansive self-mapping of C with {kn ≥ } satisfying ∑∞

n=(kn – ) <
∞. Let {αn} and {bn} be real sequences in [, ] satisfying

(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < , and
(ii)  < lim infn→∞ bn ≤ lim supn→∞ bn < .

Then {xn} and {yn} in () converge to the same fixed point of T .

http://www.fixedpointtheoryandapplications.com/content/2014/1/64
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For an = bn = cn = βn = γn = μn = λn ≡ , Theorem . reduces to the Mann-type con-
vergence result.

Corollary . Let C be a nonempty bounded, closed and convex subset of a uniformly
convex hyperbolic space with monotone modulus of uniform convexity η. Let T be a com-
pletely continuous asymptotically nonexpansive self-map of C with {kn} satisfying kn ≥ 
and

∑∞
n=(kn – ) < ∞. Let {αn} be real sequences in [, ] satisfying  < lim infn→∞ αn ≤

lim supn→∞ αn < . Then {xn} in () converge to a fixed point of T .

As a direct consequence of Theorem ., we formulate the following result in CAT()
spaces.

Corollary . Let C be a nonempty bounded, closed and convex subset of a CAT() space.
Let T be a completely continuous and asymptotically nonexpansive self-mapping on C with
{kn ≥ } satisfying ∑∞

n=(kn – ) < ∞. Let {an}, {bn}, {cn}, {αn}, {βn}, {γn}, {μn} and {λn} be
control sequences in [, ] satisfying the following conditions:

(i)  < lim infn→∞ αn ≤ lim supn→∞(αn + βn + λn) < ,
(ii)  < lim infn→∞ bn ≤ lim supn→∞(bn + cn +μn) < ,
(iii)  < lim infn→∞ an ≤ lim supn→∞(an + γn) < ,
(iv)

∑∞
n= γn < ∞,

∑∞
n= μn <∞ and

∑∞
n= λn < ∞.

For a given x ∈ C, compute {xn}, {yn} and {zn} as

zn = anTnxn ⊕ ( – αn)
[(

 –
γn

 – an

)
xn ⊕ γn

 – an
un

]
,

yn = bnTnzn ⊕ ( – bn)
[(

cn
 – bn

Tnxn ⊕
(
 –

cn
 – bn

)

×
[(

 –
μn

 – bn – cn

)
xn ⊕

(
μn

 – bn – cn

)
vn

])]
,

xn+ = αnTnyn ⊕ ( – αn)
[(

βn

 – αn
Tnzn ⊕

(
 –

βn

 – αn

)[
θnxn ⊕ ( – θn )wn

])]
,

where λx ⊕ ( – λ)y is the geodesic path between x and y in X . Then {xn}, {yn} and {zn}
converge to the same fixed point of T .

Proof Any CAT() space is a (UC) hyperbolic space (takeW (x, y,λ) = λx⊕ (–λ)y), there-
fore conclusion follows from Theorem .. �

Remark . () Our Theorem . and its corollaries extend and generalize corresponding
theorems in a uniformly convex Banach space to a hyperbolic space. Some of these are
given below:

(i) Theorem . itself is a nonlinear version of Theorem . in [].
(ii) Corollary . extends and generalizes Theorem . in [].
(iii) Corollary . extends and generalizes Theorem . in [].
(iv) Corollary . extends and generalizes Theorem  in [].
(v) Corollary . is a generalization and refinement of Theorem  in [], Theorem .

in [] and Theorem . in [].
() Our results also hold in a CAT() space.
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