
Li et al. Fixed Point Theory and Applications 2014, 2014:66
http://www.fixedpointtheoryandapplications.com/content/2014/1/66

RESEARCH Open Access

Strong convergence of three-step iteration
methods for a countable family of
generalized strict pseudocontractions in
Hilbert spaces
Shi-Xiu Li, Lu-Chuan Ceng*, Hui-Ying Hu and Xiao-Jie Wang

*Correspondence:
zenglc@hotmail.com
Department of Mathematics,
Shanghai Normal University,
Shanghai, 200234, China

Abstract
In this paper, we introduce a new class of generalized strict pseudocontractions in a
real Hilbert space, and we consider a three-step Ishikawa-type iteration method

⎧⎨
⎩
zn = (1 – γn)xn + γnTnxn,
yn = (1 – βn)xn + βnTnzn,
xn+1 = (1 – αn)xn + αnTnyn,

for finding a common fixed point of a countable family {Tn} of uniformly Lipschitz
generalized λn-strict pseudocontractions. Under mild conditions imposed on the
parameter sequences {αn}, {βn} and {γn}, we prove the strong convergence of {xn}
to a common fixed point of a countable family {Tn} of uniformly Lipschitz generalized
strict pseudocontractions. On the other hand, we also introduce three-step hybrid
viscosity approximation method for finding a common fixed point of a countable
family {Tn} of uniformly Lipschitz generalized λn-strict pseudocontractions with
λn = 0, i.e., a countable family {Tn} of uniformly Lipschitz pseudocontractions. Under
appropriate conditions we derive the strong convergence results for this method. The
results presented in this paper improve and extend the corresponding results in the
earlier and recent literature.
MSC: 47H06; 47H09; 47J20; 47J30
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1 Introduction
Let C be a nonempty subset of H . A mapping T : C →H is said to be nonexpansive, if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C. (.)

A mapping T : C →H is called pseudocontractive if

〈Tx – Ty,x – y〉 ≤ ‖x – y‖, ∀x, y ∈ C. (.)
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Note that inequality (.) can be equivalently written as

‖Tx – Ty‖ ≤ ‖x – y‖ + ∥∥(I – T)x – (I – T)y
∥∥, ∀x, y ∈ C, (.)

where I is the identity mapping on H .
A mapping T : C → H is called a strict pseudocontraction [] if for all x, y ∈ C there

exists a constant λ ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + λ
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C. (.)

In this case, we also say that T is a λ-strict pseudocontraction.
In this paper, we introduce and consider the concept of generalized strict pseudocon-

traction. A mapping T : C → H is called a generalized strict pseudocontraction if there
exists a constant λ ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + ( + λ)
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C. (.)

In this case, we also say that T is a generalized λ-strict pseudocontraction. It is remarkable
that whenever T : C → H is a nonexpansive mapping, a pseudocontraction or a strict
pseudocontraction, T is certainly a generalized strict pseudocontraction.
Apart from their being an important generalization of nonexpansivemappings and strict

pseudocontractions, interest in generalized strict pseudocontractions stems mainly from
the fact that they are also an important generalization of pseudocontractions. It is well
known that there exists a close connection between pseudocontractions and the impor-
tant class of nonlinear monotone mappings, where a mapping A with domain D(A) and
range R(A) in H is called monotone if

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈D(A).

We observe thatA ismonotone if and only ifT := I–A is pseudocontractive and thus a zero
of A, x ∈ N(A) := {x ∈ D(A) : Ax = }, is a fixed point of T , x ∈ F(T) := {x ∈ D(T) : Tx = x}.
It is now well known (see, e.g., []) that if A is monotone then the solutions of the equation
Ax =  correspond to the equilibrium points of some evolution systems. Consequently,
considerable research efforts, especially within the past  years or so, have been devoted
to iterativemethods for approximating fixed points ofT whenT is pseudocontractive (see,
e.g., [–] and references therein).
The most general iterative algorithm for nonexpansive mappings studied by many au-

thors is the following:

x ∈ C, xn+ = ( – αn)xn + αnTxn, n≥ , (.)

where {αn} ⊂ (, ) and satisfies the following additional assumptions: (i) limn→∞ αn = ;
(ii)

∑∞
n= αn =∞, the sequence {xn} generated by (.) is generally referred to as theMann

iteration one in the light of Mann [].
TheMann iteration process does not generally converge to a fixed point of T even when

the fixed point exists. If, for example, C is a nonexpansive, and theMann iteration process
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is defined by (.) with (i) limn→∞ αn = ; (ii)
∑∞

n= αn = ∞, one can only prove that the
sequence is an approximate fixed point sequence. That is, ‖xn – Txn‖ →  as n → ∞. To
get the sequence {xn} to converge to a fixed point of T (when such a fixed point exists),
some type of compactness condition must be additionally imposed either on C (e.g., C is
compact) or on T .
Later on, some authors tried to prove convergence of Mann iteration scheme to a fixed

point of a much more general and important class of Lipschitz pseudocontractive map-
pings. But in  Chidume and Mutangadura [] gave an example of a Lipschitz pseu-
docontractive self-mapping on a compact convex subset of a Hilbert space with a unique
fixed point for which no Mann sequence converges. Consequently, for this class of map-
pings, the Mann sequence may not converge to a fixed point of Lipschitz pseudocontrac-
tive mappings even when C is a compact convex subset of H .
In , Ishikawa [] introduced an iteration process, which in some sense is more gen-

eral than that of Mann and which converges to a fixed point of a Lipschitz pseudocontrac-
tive self-mapping T on C. The following theorem is proved.

Theorem IS [] If C is a compact convex subset of a Hilbert space H , T : C → C is a
Lipschitz pseudocontractive mapping and x is any point of C, then the sequence {xn} con-
verges strongly to a fixed point of T , where {xn} is defined iteratively for each integer n ≥ 
by

{
yn = ( – βn)xn + βnTxn,
xn+ = ( – αn)xn + αnTyn,

(.)

where {αn}, {βn} are sequences of positive numbers satisfying the conditions:
(i)  ≤ αn ≤ βn ≤ ; (ii) limn→∞ βn = ; (iii)

∑∞
n= αnβn =∞.

The iteration method of Theorem IS, which is now referred to as the Ishikawa iterative
method has been studied extensively by various authors. But it is still an open question
whether or not this method can be employed to approximate fixed points of Lipschitz
pseudocontractive mappings without the compactness assumption on C or T (see, e.g.,
[, , ]).
In order to obtain a strong convergence theorem for pseudocontractive mappings with-

out the compactness assumption, Zhou [] established the hybrid Ishikawa algorithm for
Lipschitz pseudocontractive mappings as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = ( – αn)xn + αnTxn,
zn = ( – βn)xn + βnTyn,
Cn = {z ∈ C : ‖zn – z‖ ≤ ‖xn – z‖

– αnβn( – αn – Lα
n)‖xn – Txn‖},

Qn = {z ∈ C : 〈xn – z,x – xn〉 ≥ },
xn+ = PCn∩Qnx, n ∈N .

(.)

He proved that the sequence {xn} defined by (.) converges strongly to PF(T)x, where
PC is the metric projection from H into C. We observe that the iterative algorithm (.)
generates a sequence {xn} by projecting x onto the intersection of closed convex sets Cn

and Qn for each n≥ .
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In , Yao et al. [] introduced the hybrid Mann algorithm as follows. Let C be
a nonempty, closed, and convex subset of a real Hilbert space H . Let T : C → C be a
L-Lipschitz pseudocontractive mapping such that F(T) = ∅. Assume that the sequence
{αn} ⊂ [a,b] for some a,b ∈ (, 

+L ). Then for C = C and x = PCx, they proved that the
sequence {xn} defined by⎧⎪⎨

⎪⎩
yn = ( – αn)xn + αnTxn,
Cn+ = {z ∈ Cn : ‖αn(I – T)yn‖ ≤ αn〈xn – z, (I – T)yn〉},
xn+ = PCn+x, n ∈N ,

(.)

converges strongly to PF(T)x.
More recently, Tang et al. [] generalized algorithm (.) to the hybrid Ishikawa iterative

process. Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
T : C → C be a Lipschitz pseudocontractive mapping. Let {αn} and {βn} be sequences
in [, ]. Suppose that x ∈ H . For C = C and x = PCx, define a sequence {xn} of C as
follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn = ( – αn)xn + αnTzn,
zn = ( – βn)xn + βnTxn,
Cn+ = {z ∈ Cn : ‖αn(I – T)yn‖ ≤ αn〈xn – z, (I – T)yn〉

+ αnβn‖xn – Txn‖‖yn – xn + αn(I – T)yn‖},
xn+ = PCn+x, n ∈N .

(.)

Then they proved that the hybrid algorithm (.) strongly converges to a fixed point of
the Lipschitz pseudocontractive mapping T . It is worth mentioning that the schemes in
(.)-(.) are not easy to compute. They involve the computation of the intersection of
Cn and Qn for each n≥ .
Recently, Zegeye et al. [] generalized algorithm (.) to Ishikawa iterative process

(not hybrid) as follows. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H . Let {Ti}≤i≤N be a finite family of Lipschitz pseudocontractive mappings with
Lipschitzian constants Li for i = , , . . . ,N . Assume that the interior of F :=

⋂N
i= F(Ti) is

nonempty. Let {xn} be a sequence generated from an arbitrary x ∈ C by{
yn = ( – βn)xn + βnTnxn,
xn+ = ( – αn)xn + αnTnyn.

(.)

Under appropriate conditions, they proved that {xn} converges strongly to x∗ ∈ F .
Very recently, Cheng and Su [] generalized algorithm (.) to three-step Ishikawa-

type iterative process. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H , let {Tn}∞n= : C → C be a countable family of uniformly closed and uniformly
Lipschitz pseudocontractive mappings with Lipschitz constants Ln. Let L := supn≥ Ln <
∞. Assume that the interior of F :=

⋂∞
n= F(Tn) is nonempty. Let {xn} be a sequence gen-

erated from an arbitrary x ∈ C by the following algorithm:⎧⎪⎨
⎪⎩
zn = ( – γn)xn + γnTnxn,
yn = ( – βn)xn + βnTnzn,
xn+ = ( – αn)xn + αnTnyn.

(.)

Under mild conditions, they proved that {xn} converges strongly to x∗ ∈ F .
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Our concern now is the following: Is it possible to prove strong convergence of three-
step Ishikawa-type iterative algorithm (.) for finding a common fixed point of a count-
able family {Tn} of uniformly Lipschitz generalized strict pseudocontractive mappings?
In this paper, we consider and analyze three-step Ishikawa-type iterative algorithm (.)

for finding a common fixed point of a countable family {Tn} of uniformly Lipschitz gen-
eralized λn-strict pseudocontractions. Under mild conditions imposed on the parame-
ter sequences {αn}, {βn} and {γn}, we prove the strong convergence of {xn} to a common
fixed point of a countable family {Tn} of uniformly Lipschitz generalized strict pseudo-
contractions. On the other hand, inspired by the viscosity approximation method [] we
also introduce a three-step hybrid viscosity approximation method for finding a common
fixed point of a countable family {Tn} of uniformly Lipschitz generalized λn-strict pseu-
docontractions with λn = , i.e., a countable family {Tn} of uniformly Lipschitz pseudo-
contractions. Under appropriate conditions we derive the strong convergence results for
this method. The results presented in this paper improve and extend the corresponding
results in the earlier and recent literature; for instance, Zhou [], Yao et al. [], Tang et
al. [], Cheng and Su [] and Zegeye et al. [].

2 Preliminaries
Let C be a nonempty subset of a real Hilbert space H . A mapping T : C → H is called
Lipschitz continuous if there exists a constant L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ C. (.)

If L = , then T is called nonexpansive; and if L < , then T is called a contraction. It is easy
to see from (.) that every contraction mapping is nonexpansive and every nonexpansive
mapping is Lipschitz.
A countable family of mappings {Tn}n≥ : C → H is called uniformly Lipschitz with

Lipschitz constants Ln > , n≥ , if there exists L = supn≥ Ln ∈ (,∞) such that

‖Tnx – Tny‖ ≤ L‖x – y‖, ∀x, y ∈ C,n≥ . (.)

A countable family of mapping {Tn}n≥ : C → H is called uniformly closed if xn → x∗

and ‖xn – Tnxn‖ →  imply x∗ ∈ ⋂∞
n= F(Tn).

In the sequel, we also need the following definition and lemma.
Let H be a real Hilbert space. Define the function φ :H ×H → R as follows:

φ(x, y) := ‖x – y‖ = ‖x‖ – 〈x, y〉 + ‖y‖, ∀x, y ∈ H ;

it was studied previously by Alber [], Kamimula and Takahashi [] and Reich [].
It is clear from the definition of the function φ that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖), ∀x, y ∈H .

The function φ also has the following property:

φ(y,x) = φ(y, z) + φ(z,x) + 〈z – y,x – z〉, ∀x, y, z ∈H . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/66
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Lemma . [] Let H be a real Hilbert space. Then

∥∥αx + ( – α)y
∥∥ = α‖x‖ + ( – α)‖y‖ – α( – α)‖x – y‖, ∀x, y ∈H ,α ∈ [, ].

The following lemma is a direct consequence of the inner product. Thus, its proof is
omitted.

Lemma . Let H be a real Hilbert space. Then

‖x‖ + 〈y,x〉 ≤ ‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈ H .

Lemma . [, p.] Let {an} and {bn} be two sequences of nonnegative real numbers
satisfying the inequality

an+ ≤ an + bn, ∀n≥ .

If
∑∞

n= bn < ∞, then limn→∞ an exists.

3 Uniformly Lipschitz generalized strict pseudocontractions
In this section, we consider and analyze three-step Ishikawa-type iteration method intro-
duced by Cheng and Su [] for finding a common fixed point of a countable family of
uniformly closed and uniformly Lipschitz generalized λn-strict pseudocontractive map-
pings with Lipschitz constants Ln in a real Hilbert space.

Theorem. Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
{Tn}n≥ : C → C be a countable family of uniformly closed and uniformly Lipschitz gener-
alized λn-strict pseudocontractive mappings with Lipschitz constants Ln. Let L := supn≥ Ln.
Assume that the interior of F :=

⋂∞
n= F(Tn) is nonempty. Let {xn} be a sequence generated

from an arbitrary x ∈ C by the following algorithm:
⎧⎪⎨
⎪⎩
zn = ( – γn)xn + γnTnxn,
yn = ( – βn)xn + βnTnzn,
xn+ = ( – αn)xn + αnTnyn,

(.)

where {αn}, {βn}, and {γn} are sequences in (, ) satisfying the following conditions:
(i) {αn}, {βn}, {γn} ⊂ [a,b] for some a,b ∈ (, );
(ii) αn ≤ βn ≤ γn and βn – β

n – γn ≤  for all n≥ ;
(iii) supn≥ γn ≤ γ with γ L + γ L + γ L + γL + γ < ;
(iv)

∑∞
n= λn < ∞.

Then {xn} converges strongly to x∗ ∈ F provided supn≥{‖xn – Tnxn‖ + ‖yn – Tnyn‖} <∞.

Proof Let p ∈ F . Utilizing Lemma ., we obtain from (.) and (.)

‖xn+ – p‖ = ∥∥( – αn)(xn – p) + αn(Tnyn – p)
∥∥

= ( – αn)‖xn – p‖ + αn‖Tnyn – p‖ – αn( – αn)‖xn – Tnyn‖

≤ ( – αn)‖xn – p‖ + αn
[‖yn – p‖ + ( + λn)‖yn – Tnyn‖

]
– αn( – αn)‖xn – Tnyn‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/66
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= ( – αn)‖xn – p‖ + αn‖yn – p‖ + αn‖yn – Tnyn‖

– αn( – αn)‖xn – Tnyn‖ + αnλn‖yn – Tnyn‖, (.)

‖yn – p‖ = ( – βn)‖xn – p‖ + βn‖Tnzn – p‖ – βn( – βn)‖xn – Tnzn‖

≤ ( – βn)‖xn – p‖ + βn
[‖zn – p‖ + ( + λn)‖zn – Tnzn‖

]
– βn( – βn)‖xn – Tnzn‖

= ( – βn)‖xn – p‖ + βn‖zn – p‖ + βn‖zn – Tnzn‖

– βn( – βn)‖xn – Tnzn‖ + βnλn‖zn – Tnzn‖ (.)

and

‖zn – p‖ = ( – γn)‖xn – p‖ + γn‖Tnxn – p‖ – γn( – γn)‖xn – Tnxn‖

≤ ( – γn)‖xn – p‖ + γn
[‖xn – p‖ + ( + λn)‖xn – Tnxn‖

]
– γn( – γn)‖xn – Tnxn‖

= ‖xn – p‖ + γn‖xn – Tnxn‖ – γn( – γn)‖xn – Tnxn‖ + γnλn‖xn – Tnxn‖

= ‖xn – p‖ + γ 
n ‖xn – Tnxn‖ + γnλn‖xn – Tnxn‖. (.)

In addition, utilizing (.), we have

‖zn – Tnzn‖ =
∥∥( – γn)(xn – Tnzn) + γn(Tnxn – Tnzn)

∥∥

= ( – γn)‖xn – Tnzn‖ + γn‖Tnxn – Tnzn‖ – γn( – γn)‖xn – Tnxn‖

≤ ( – γn)‖xn – Tnzn‖ + γnL‖xn – zn‖ – γn( – γn)‖xn – Tnxn‖

= ( – γn)‖xn – Tnzn‖ + γ 
n L

‖xn – Tnxn‖ – γn( – γn)‖xn – Tnxn‖

= ( – γn)‖xn – Tnzn‖ + γn
(
γ 
n L

 + γn – 
)‖xn – Tnxn‖. (.)

Substituting (.) and (.) into (.), we obtain

‖yn – p‖ ≤ ( – βn)‖xn – p‖ + βn
(‖xn – p‖ + γ 

n ‖xn – Tnxn‖ + γnλn‖xn – Tnxn‖
)

+ βn
[
( – γn)‖xn – Tnzn‖ + γn

(
γ 
n L

 + γn – 
)‖xn – Tnxn‖

]
– βn( – βn)‖xn – Tnzn‖ + βnλn‖zn – Tnzn‖

= ‖xn – p‖ + βnγn
(
γ 
n L

 + γn – 
)‖xn – Tnxn‖

+ βn(βn – γn)‖xn – Tnzn‖ + βnλn( – γn)‖xn – Tnzn‖

+ βnλnγn
(
γ 
n L

 + γn
)‖xn – Tnxn‖. (.)

We observe that

‖yn – Tnyn‖ =
∥∥( – βn)(xn – Tnyn) + βn(Tnzn – Tnyn)

∥∥

= ( – βn)‖xn – Tnyn‖ + βn‖Tnzn – Tnyn‖ – βn( – βn)‖xn – Tnzn‖

≤ ( – βn)‖xn – Tnyn‖ + βnL‖zn – yn‖ – βn( – βn)‖xn – Tnzn‖ (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/66
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and

‖zn – yn‖ =
∥∥( – γn)xn + γnTnxn – ( – βn)xn – βnTnzn

∥∥
= ‖βnxn – γnxn + γnTnxn – βnTnzn‖
=

∥∥(βn – γn)xn – (βn – γn)Tnxn + βn(Tnxn – Tnzn)
∥∥

≤ (γn – βn)‖xn – Tnxn‖ + βnL‖xn – zn‖
= (γn – βn)‖xn – Tnxn‖ + βnγnL‖xn – Tnxn‖
= (γn – βn + βnγnL)‖xn – Tnxn‖. (.)

Thus, substituting (.) into (.), we get

‖yn – Tnyn‖ ≤ ( – βn)‖xn – Tnyn‖ – βn( – βn)‖xn – Tnzn‖

+ βnL(γn – βn + βnγnL)‖xn – Tnxn‖. (.)

Also, substituting (.) and (.) into (.), we have

‖xn+ – p‖ ≤ ( – αn)‖xn – p‖ + αn
[‖xn – p‖ + βn(βn – γn)‖xn – Tnzn‖

+ βnγn
(
γ 
n L

 + γn – 
)‖xn – Tnxn‖ + βnλn( – γn)‖xn – Tnzn‖

+ βnλnγn
(
γ 
n L

 + γn
)‖xn – Tnxn‖

]
+ αn

[
( – βn)‖xn – Tnyn‖ + βnL(γn – βn + βnγnL)‖xn – Tnxn‖

– βn( – βn)‖xn – Tnzn‖
]
– αn( – αn)‖xn – Tnyn‖

+ αnλn
[
( – βn)‖xn – Tnyn‖ + βnL(γn – βn + βnγnL)‖xn – Tnxn‖

– βn( – βn)‖xn – Tnzn‖
]

= ‖xn – p‖ + [
αnβnγn

(
γ 
n L

 + γn – 
)

+ αnβnL(γn – βn + βnγnL)
]‖xn – Tnxn‖

+ αn(αn – βn)‖xn – Tnyn‖ + αnβn(βn – γn – )‖xn – Tnzn‖

+ λn
[
αnβnγn

(
γ 
n L

 + γn
)
+ αnβnL(γn – βn + βnγnL)

]‖xn – Tnxn‖

+ αnλn( – βn)‖xn – Tnyn‖ + λnαnβn(βn – γn)‖xn – Tnzn‖. (.)

Note that

‖xn – Tnyn‖ ≤ ‖xn – yn‖ + ‖yn – Tnyn‖

= β
n‖xn – Tnzn‖ + ‖yn – Tnyn‖. (.)

Substituting (.) into (.), we obtain

‖xn+ – p‖ ≤ ‖xn – p‖ + [
αnβnγn

(
γ 
n L

 + γn – 
)

+ αnβnL(γn – βn + βnγnL)
]‖xn – Tnxn‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/66
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+ αn(αn – βn)‖xn – Tnyn‖ + αnβn(βn – γn – )‖xn – Tnzn‖

+ λn
[
αnβnγn

(
γ 
n L

 + γn
)
+ αnβnL(γn – βn + βnγnL)

]‖xn – Tnxn‖

+ αnλn( – βn)
[
β

n‖xn – Tnzn‖ + ‖yn – Tnyn‖
]

+ λnαnβn(βn – γn)‖xn – Tnzn‖

= ‖xn – p‖ + [
αnβnγn

(
γ 
n L

 + γn – 
)

+ αnβnL(γn – βn + βnγnL)
]‖xn – Tnxn‖

+ αn(αn – βn)‖xn – Tnyn‖ + αnβn(βn – γn – )‖xn – Tnzn‖

+ λn
[
αnβnγn

(
γ 
n L

 + γn
)
+ αnβnL(γn – βn + βnγnL)

]‖xn – Tnxn‖

+ λn
[
( – βn)αnβ


n + αnβn( – γn) – αnβn( – βn)

]‖xn – Tnzn‖

+ λn( – βn)‖yn – Tnyn‖. (.)

In terms of condition (iii) we have

γ
(
γ L + γL + γ – 

)
+ γ L( + γL) < ,

which implies that

γn
(
γ 
n L

 + γn – 
)
+ L(γn – βn + βnγnL)

≤ γn
(
γ 
n L

 + γnL + γn – 
)
+ L

(
γn + γ 

n L
) < .

So,

αnβnγn
(
γ 
n L

 + γn – 
)
+ αnβnL(γn – βn + βnγnL) < .

Again from condition (ii), we have αn – βn ≤ , βn – γn –  ≤  and

βn – β
n – γn ≤ .

Hence, we get

( – βn)αnβ

n + αnβn( – γn) – αnβn( – βn)

= αnβ

n – αnβ


n + αnβn – αnβnγn – αnβn + αnβ


n

= αnβ

n – αnβ


n – αnβnγn

= αnβn
(
βn – β

n – γn
) ≤ ,

which, together with (.), implies that

‖xn+ – p‖ ≤ ‖xn – p‖ + [
αnβnγn

(
γ 
n L

 + γn – 
)

+ αnβnL(γn – βn + βnγnL)
]‖xn – Tnxn‖

+ λn
[
αnβnγn

(
γ 
n L

 + γn
)
+ αnβnL(γn – βn + βnγnL)

]‖xn – Tnxn‖
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+ λn( – βn)‖yn – Tnyn‖

≤ ‖xn – p‖ + [
αnβnγn

(
γ 
n L

 + γn – 
)

+ αnβnL(γn – βn + βnγnL)
]‖xn – Tnxn‖

+ λn
[(
L + 

)
+ L( + L)

]‖xn – Tnxn‖ + λn‖yn – Tnyn‖

≤ ‖xn – p‖ + [
αnβnγn

(
γ 
n L

 + γn – 
)

+ αnβnL(γn – βn + βnγnL)
]‖xn – Tnxn‖ + λnM

≤ ‖xn – p‖ + λnM, (.)

where supn≥{((L + )+L(+L))‖xn –Tnxn‖ +‖yn –Tnyn‖} ≤M for someM >  (due
to supn≥{‖xn – Tnxn‖ + ‖yn – Tnyn‖} < ∞). Consequently, we have

‖xn+ – p‖ ≤ ‖xn – p‖ + λnM. (.)

Utilizing condition (iv) and Lemma . we know that limn→∞ ‖xn – p‖ exists and hence
{‖xn –p‖} is bounded. This implies that {xn}, {Tnxn}, {zn}, {Tnzn}, {yn}, and {Tnyn} are also
bounded.
On the other hand, from (.) we have

φ(p,xn) = φ(p,xn+) + φ(xn+,xn) + 〈xn+ – p,xn – xn+〉,

which implies that

〈xn+ – p,xn – xn+〉 + 

φ(xn+,xn) =



(
φ(p,xn) – φ(p,xn+)

)
. (.)

Since the interior of F is nonempty, there exists p∗ ∈ F and r > . Such that p∗ + rh ∈ F
where ‖h‖ ≤ . Thus, from the fact that φ(x, y) = ‖x – y‖, and from (.) and (.) we
get

 ≤ 〈
xn+ –

(
p∗ + γ h

)
,xn – xn+

〉
+


φ(xn+,xn) +



λnM

=


(
φ
(
p∗ + γ h,xn

)
– φ

(
p∗ + γ h,xn+

))
+


λnM. (.)

Then from (.) and (.), we obtain

r〈h,xn – xn+〉 ≤ 〈
xn+ – p∗,xn – xn+

〉
+


φ(xn+,xn) +



λnM

=


(
φ
(
p∗,xn

)
– φ

(
p∗,xn+

))
+


λnM

and hence

〈h,xn – xn+〉 ≤ 
r

(
φ
(
p∗,xn

)
– φ

(
p∗,xn+

))
+


r

λnM.

Since h with ‖h‖ ≤  is arbitrary, we have

‖xn – xn+‖ ≤ 
r

(
φ
(
p∗,xn

)
– φ

(
p∗,xn+

))
+


r

λnM.
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So, whenever n >m, we get

‖xm – xn‖ = ‖xm – xm+ + xm+ – · · · – xn– + xn– – xn‖

≤
n–∑
i=m

‖xi – xi+‖

≤ 
r

n–∑
i=m

(
φ
(
p∗,xi

)
– φ

(
p∗,xi+

))
+
M
r

n–∑
i=m

λi

=

r

(
φ
(
p∗,xm

)
– φ

(
p∗,xn

))
+
M
r

n–∑
i=m

λi.

Note that {φ(p∗,xn)} converges and ∑∞
n= λn also converges. Thus, we find that {xn} is a

Cauchy sequence. Since C is a closed subset of H , there exists x∗ ∈ C such that

lim
n→∞

∥∥xn – x∗∥∥ = . (.)

Furthermore, from (.) and conditions (i)-(iii), we get

a
[(
 – γ L – γ

)
– γL( + γL)

]‖xn – Tnxn‖

≤ αnβnγn
[(
 – γ 

n L
 – γn

)
– γnL( + γnL)

]‖xn – Tnxn‖

=
[
αnβnγn

(
 – γ 

n L
 – γn

)
– αnβnγ


n L

( + γnL)
]‖xn – Tnxn‖

≤ [
αnβnγn

(
 – γ 

n L
 – γn

)
– αnβnL(γn – βn + βnγnL)

]‖xn – Tnxn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + λnM.

From limn→∞ λn =  and the existence of limn→∞ ‖xn – p‖, it follows that

lim
n→∞‖xn – Tnxn‖ = . (.)

Since {Tn}n≥ are uniformly closed, from (.) and (.), we deduce that x∗ ∈ F :=⋂∞
n= F(Tn). The proof is complete. �

Remark . As previously, it is worth emphasizing that whenever T : C →H is a nonex-
pansive mapping, a pseudocontraction or a strict pseudocontraction, T is certainly a gen-
eralized strict pseudocontraction. Here we provide an example to illustrate a countable
family of uniformly closed and uniformly Lipschitz generalized strict pseudocontractions
with the interior of the common fixed points being nonempty. Suppose that X := R and
C := [– 

 ,

 ] ⊂ R. Let {Tn}n≥ : C → C be defined by

Tnx :=

{
x, x ∈ [– 

 , ),
( 
n +


 )x, x ∈ [,  ].

Then we observe that F :=
⋂∞

n= F(Tn) = [– 
 , ], and hence the interior of common fixed

point set F is nonempty.
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Next we show that {Tn}n≥ is a countable family of nonexpansive mappings. Indeed,
suppose that C = [– 

 , ) and C = [,  ].
If x, y ∈ C, we have

‖Tnx – Tny‖ = ‖x – y‖.

If x, y ∈ C, we have

‖Tnx – Tny‖ =
(


n

+



)
‖x – y‖ ≤ 


‖x – y‖ ≤ ‖x – y‖.

If x ∈ C, y ∈ C, we have

‖Tnx – Tny‖ =
∥∥∥∥x –

(

n

+



)
y
∥∥∥∥

= –x +
(


n

+



)
y

≤ –x +


y

≤ –x + y

= ‖x – y‖.

So, it follows that {Tn}n≥ is a sequence of nonexpansive mappings and hence uniformly
Lipschitz with uniformly Lipschitz constant L = supn≥ Ln = .
Finally, we show that {Tn}n≥ is uniformly closed.
Case : If there exists {xn} ⊂ C such that xn → x∗ ∈ [– 

 , ], and ‖xn – Tnxn‖ = , we
observe that [– 

 , ] = F .
Case : If there exists {xn} ⊂ C such that xn → x∗ ∈ [,  ], then if and only if x∗ =  we

have ‖xn – Tnxn‖ → , and it is obvious that  ∈ F .
If there exists {xn} ⊂ C:
(i) ∃N , as n >N , xn ∈ C. The proof is the same as the proof of the second case.
(ii) ∃N , as n >N , xn ⊂ C. The proof is the same as the proof of the first case.
(iii) {xnk } ⊂ C, {xnj} ⊂ C. If there exists xn → x∗, then we have x∗ = . The proof is the

same as the proof of the second case. So, we find that {Tn}n≥ is uniformly closed.

Remark . In Theorem ., put αn ≡ 
 , βn ≡ 

 , γn ≡ 
 and take L ∈ [, .]. Then

conditions (i)-(iii) in Theorem . are satisfied. Indeed, it is clear that conditions (i)-(ii) in
Theorem . are satisfied. Next we verify condition (iii) in Theorem .. Observe that

γ L + γ L + γ L + γL + γ

≤ .


+
× .


+
.


+
× . + 



<
.


+
× .


+
.


+
.


<
.


+
.


+
.
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<
.


+
.


+



=
.


< .

Theorem. Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
Tn : C → C be a finite family of uniformly closed and uniformly Lipschitz generalized λn-
strict pseudocontractive mappings with Lipschitzian constants Ln, n = , , . . . ,N . Let L =
supn≥ Ln. Assume that the interior of F :=

⋂N
n= F(Tn) is nonempty. Let {xn} be a sequence

generated from an arbitrary x ∈ C by the following algorithm:

⎧⎪⎨
⎪⎩
zn = ( – γn)xn + γnTnxn,
yn = ( – βn)xn + βnTnzn,
xn+ = ( – αn)xn + αnTnyn,

(.)

where Tn := Tn(modN) and {αn}, {βn}, and {γn} are sequences in (, ) satisfying the following
conditions:

(i) {αn}, {βn}, {γn} ⊂ [a,b] for some a,b ∈ (, );
(ii) αn ≤ βn ≤ γn and βn – β

n – γn ≤  for all n≥ ;
(iii) supn≥ γn ≤ γ with γ L + γ L + γ L + γL + γ < .

Then {xn} converges strongly to x∗ ∈ F provided supn≥{‖xn – Tnxn‖ + ‖yn – Tnyn‖} <∞.

If in Theorem ., we consider a single Lipschitz generalized strict pseudocontractive
mapping, then we get the following result.

Theorem. Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
T : C → C be a Lipschitz generalized λ-strict pseudocontractive mapping with Lipschitzian
constant L. Assume that the interior of F(T) is nonempty. Let {xn} be a sequence generated
from an arbitrary x ∈ C by the following algorithm:

⎧⎪⎨
⎪⎩
zn = ( – γn)xn + γnTxn,
yn = ( – βn)xn + βnTzn,
xn+ = ( – αn)xn + αnTyn,

(.)

where {αn}, {βn}, and {γn} are sequences in (, ) satisfying the following conditions:
(i) {αn}, {βn}, {γn} ⊂ [a,b] for some a,b ∈ (, );
(ii) αn ≤ βn ≤ γn and βn – β

n – γn ≤  for all n≥ ;
(iii) supn≥ γn ≤ γ with γ L + γ L + γ L + γL + γ < .

Then {xn} converges strongly to x∗ ∈ F(T) provided supn≥{‖xn – Txn‖ + ‖yn – Tyn‖} < ∞.

Proof Following the same process as in the proof of Theorem ., we obtain xn → x∗ ∈
F(T).
Indeed, from (.) and conditions (i)-(iii), we deduce that

α[( – γ L – γ
)
– γL( + γL)

]‖xn – Txn‖

≤ αnβnγn
[(
 – γ 

n L
 – γn

)
– γnL( + γnL)

]‖xn – Txn‖

=
[
αnβnγn

(
 – γ 

n L
 – γn

)
– αnβnγ


n L

( + γnL)
]‖xn – Txn‖
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≤ [
αnβnγn

(
 – γ 

n L
 – γn

)
– αnβnL(γn – βn + βnγnL)

]‖xn – Txn‖

≤ ‖xn – p‖ – ‖xn+ – p‖,

which yields

lim
n→∞‖xn – Txn‖ = ,

and hence there exists a subsequence {xnk } of {xn} such that

lim
k→∞

‖xnk – Txnk‖ = .

Thus, xnk → x∗ and the continuity of T implies that Tx∗ = x∗ ∈ F(T). �

4 Uniformly Lipschitz pseudocontractions
In this section, we introduce and analyze a three-step hybrid viscosity approximation
method for finding a common fixed point of a countable family of uniformly closed and
uniformly Lipschitz generalized λn-strict pseudocontractive mappings with λn ≡ , i.e.,
a countable family of uniformly closed and uniformly Lipschitz pseudocontractive map-
pings.

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let {Tn}n≥ : C → C be a countable family of uniformly closed and uniformly Lipschitz
pseudocontractivemappings with Lipschitz constants Ln. Let L = supn≥ Ln.Assume that the
interior of F :=

⋂∞
n= F(Tn) is nonempty. Let {xn} be a sequence generated from an arbitrary

x ∈ C by the following algorithm:

⎧⎪⎨
⎪⎩
zn = ( – γn)xn + γnTnxn,
yn = ( – βn)xn + βnTnzn,
xn+ = ( – αn)yn + αnf (xn),

(.)

where f : C → C is a contractive mapping with contractive constant δ ∈ (, ) and {αn},
{βn}, and {γn} are sequences in (, ) satisfying the following conditions:

(i)
∑∞

n= αn < ∞;
(ii)  < β ≤ βn ≤ γn;

(iii)  < γn ≤ –+
√

+(–ε)L
L for some ε ∈ (, ).

Then {xn} converges strongly to x∗ ∈ F .

Proof Let p ∈ F . Then from (.) and Lemma ., we have

‖xn+ – p‖ = ∥∥( – αn)(yn – p) + αn
(
f (xn) – f (p)

)
+ αn

(
f (p) – p

)∥∥

≤ ∥∥( – αn)(yn – p) + αn
(
f (xn) – f (p)

)∥∥ + αn
〈
f (p) – p,xn+ – p

〉
≤ ( – αn)‖yn – p‖ + αn

∥∥f (xn) – f (p)
∥∥ + αn

〈
f (p) – p,xn+ – p

〉
≤ ( – αn)‖yn – p‖ + αnδ‖xn – p‖ + αn

(∥∥f (p) – p
∥∥ + ‖xn+ – p‖),

‖xn+ – p‖ ≤ ‖yn – p‖ + αnδ

 – αn
‖xn – p‖ + αn

 – αn

∥∥f (p) – p
∥∥, (.)
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‖yn – p‖ = ( – βn)‖xn – p‖ + βn‖Tnzn – p‖ – βn( – βn)‖xn – Tnzn‖

≤ ( – βn)‖xn – p‖ + βn‖zn – p‖ + βn‖zn – Tnzn‖

– βn( – βn)‖xn – Tnzn‖

≤ ( – βn)‖xn – p‖ + βn‖zn – p‖ + βn‖zn – Tnzn‖, (.)

‖zn – p‖ = ( – γn)‖xn – p‖ + γn‖Tnxn – p‖ – γn( – γn)‖xn – Tnxn‖

≤ ( – γn)‖xn – p‖ + γn‖xn – p‖ + γn‖xn – Tnxn‖

= –γn( – γn)‖xn – Tnxn‖

= ‖xn – p‖ + γ 
n ‖xn – Tnxn‖ – γn( – γn)‖xn – Tnxn‖ (.)

and

‖zn – Tnzn‖ =
∥∥( – γn)(xn – Tnzn) + γn(Tnxn – Tnzn)

∥∥

= ( – γn)‖xn – Tnzn‖ + γn‖Tnxn – Tnzn‖ – γn( – γn)‖xn – Tnxn‖

≤ ( – γn)‖xn – Tnzn‖ + γnL‖xn – zn‖ – γn( – γn)‖xn – Tnxn‖

= ( – γn)‖xn – Tnzn‖ + γ 
n L

‖xn – Tnxn‖ – γn( – γn)‖xn – Tnxn‖

= ( – γn)‖xn – Tnzn‖ + γn
(
γ 
n L

 + γn – 
)‖xn – Tnxn‖. (.)

Substituting (.) and (.) into (.) we have

‖yn – p‖ ≤ ( – βn)‖xn – p‖ + βn
(‖xn – p‖ + γ 

n ‖xn – Tnxn‖
)

+ βn
[
( – γn)‖xn – Tnzn‖ + γn

(
γ 
n L

 + γn – 
)‖xn – Tnxn‖

]
– βn( – βn)‖xn – Tnzn‖

= ‖xn – p‖ + βnγn
(
γ 
n L

 + γn – 
)‖xn – Tnxn‖

+ βn(βn – γn)‖xn – Tnzn‖

≤ ‖xn – p‖ + βnγn
(
γ 
n L

 + γn – 
)‖xn – Tnxn‖. (.)

Since  < β ≤ βn ≤ γn and γ 
n L +γn –≤ –ε (due to condition (iii)), for some ε ∈ (, ),

from (.) we get

‖yn – p‖ ≤ ‖xn – p‖ – β
nε‖xn – Tnxn‖,

which leads to

‖yn – p‖ ≤ ‖xn – p‖.

Thus,

‖xn+ – p‖ ≤ ( – αn)‖yn – p‖ + αn
(
δ‖xn – p‖ + ∥∥f (p) – p

∥∥)
≤ (

 – αn( – δ)
)‖xn – p‖ + αn

∥∥f (p) – p
∥∥

≤max

{
‖x – p‖, ‖f (p) – p‖

 – δ

}
. (.)
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Thus, {‖xn – p‖} is bounded. This implies that {xn}, {Tnxn}, {zn}, {Tnzn}, {yn}, {Tnyn}, and
{f (xn)} are also bounded.
Note that

‖xn+ – p‖ =
∥∥( – αn)(yn – p) + αn

(
f (xn) – p

)∥∥

≤ ( – αn)‖yn – p‖ + αn
∥∥f (xn) – p

∥∥

≤ ‖yn – p‖ + αn
∥∥f (xn) – p

∥∥

≤ ‖xn – p‖ – β
nε‖xn – Tnxn‖ + αn

∥∥f (xn) – p
∥∥. (.)

Hence it immediately follows that

‖xn+ – p‖ ≤ ‖xn – p‖ + αn
∥∥f (xn) – p

∥∥.

By Lemma ., we conclude from
∑∞

n= αn < ∞ and the boundedness of {xn}, {f (xn)} that
limn→∞ ‖xn – p‖ exists.
Following the same process as in the proof of Theorem ., we can derive

xn → x∗ ∈ C. (.)

Furthermore, from (.) and conditions (i), (ii), and (iii), we get

β
nε‖xn – Tnxn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + αn

∥∥f (xn) – p
∥∥,

which, together with limn→∞ αn = , implies that

lim
n→∞‖xn – Tnxn‖ = . (.)

Since the {Tn}∞n= are uniformly closed, from (.) and (.) we infer that x∗ ∈ F :=⋂∞
n= F(Tn) = F . The proof is complete. �

Theorem . Let H be a real Hilbert space and let {An}n≥ : H → H be a countable
family of uniformly Lipschitz monotone mappings with Lipschitzian constants Ln. Let
L := supn≥ Ln. Assume that if ‖Anxn‖ →  and xn → x, then x ∈ ⋂∞

n=N(An). Let the inte-
rior of F :=

⋂∞
n=N(An) be nonempty. Let {xn} be a sequence generated from an arbitrary

x ∈H by the following algorithm:

⎧⎪⎨
⎪⎩
zn = xn – γnAnxn,
yn = xn – βn(xn – zn) – βnAnzn,
xn+ = ( – αn)yn + αnf (xn),

(.)

where f : H → H is a contractive mapping with contractive constant δ ∈ (, ), and {αn},
{βn}, and {γn} are sequences in (, ) satisfying the following conditions:

(i)
∑∞

n= αn < ∞;
(ii)  < β ≤ βn ≤ γn;

(iii)  < γn ≤ –+
√

+(–ε)L
L for some ε ∈ (, ).

Then {xn} converges strongly to x∗ ∈ F .
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Proof Put Tn := I –An for n ≥ . Then we know that {Tn}n≥ is a countable family of uni-
formly closed and uniformly Lipschitz pseudocontractive mappings with

⋂∞
n= F(Tn) =⋂∞

n=N(An) = ∅. In this case, the iterative scheme (.) reduces to scheme (.) and hence
the conclusion follows from Theorem .. �

Corollary . Let H be a real Hilbert space and let An : H → H be a finite family of
uniformly Lipschitz monotone mappings with Lipschitzian constants Ln, n = , , . . . ,N .
Assume that if ‖Anxn‖ →  and xn → x, then x ∈ ⋂N

n=N(An). Let the interior of F :=⋂N
n=N(An) be nonempty. Let {xn} be a sequence generated from an arbitrary x ∈ H by

the following algorithm:

⎧⎪⎨
⎪⎩
zn = xn – γnAnxn,
yn = xn – βn(xn – zn) – βnAnzn,
xn+ = ( – αn)yn + αnf (xn),

(.)

where An := An(modN), f : H → H is a contractive mapping with contractive constant δ ∈
(, ), and {αn}, {βn}, and {γn} are sequences in (, ) satisfying the following conditions:

(i)
∑∞

n= αn < ∞;
(ii)  < β ≤ βn ≤ γn;

(iii)  < γn ≤ –+
√

+(–ε)L
L for some ε ∈ (, ) and L :=max{Ln : n = , , . . . ,N}.

Then {xn} converges strongly to x∗ ∈ F .

Corollary . Let H be a real Hilbert space, let A :H →H be a Lipschitz monotone map-
ping with Lipschitzian constant L. Assume that the interior of N(A) is nonempty. Let {xn}
be a sequence generated from an arbitrary x ∈H by the following algorithm:

⎧⎪⎨
⎪⎩
zn = xn – γnAxn,
yn = xn – βn(xn – zn) – βnAzn,
xn+ = ( – αn)yn + αnf (xn),

(.)

where f : H → H is a contractive mapping with contractive constant δ ∈ (, ), and {αn},
{βn}, and {γn} are sequences in (, ) satisfying the following conditions:

(i)
∑∞

n= αn < ∞;
(ii)  < β ≤ βn ≤ γn;

(iii)  < γn ≤ –+
√

+(–ε)L
L for some ε ∈ (, ).

Then {xn} converges strongly to x∗ ∈N(A).
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