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Abstract
We combine a sequence of contractive mappings {fn} and propose a generalized
viscosity approximation method. One side, we consider a nonexpansive mapping S
with the nonempty fixed point set defined on a nonempty closed convex subset C of
a real Hilbert space H and design a new iterative method to approximate some fixed
point of S, which is also a unique solution of the variational inequality. On the other
hand, using similar ideas, we consider N nonexpansive mappings {Si}Ni=1 with the
nonempty common fixed point set defined on a nonempty closed convex subset C.
Under reasonable conditions, strong convergence theorems are proven. The results
presented in this paper improve and extend the corresponding results reported by
some authors recently.
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1 Introduction
Let H be a real Hilbert space with an inner product 〈 , 〉 and norm ‖ · ‖, and C be a
nonempty closed convex subset of H .
Let S : C → C be a nonlinearmapping, we use Fix(S) to denote the set of fixed points of S

(i.e., Fix(S) = {x ∈ C : Sx = x}). Amapping is called nonexpansive if the following inequality
holds:

‖Sx – Sy‖ ≤ ‖x – y‖

for all x, y ∈ C.
In , Halpern [] used contractions to approximate a nonexpansive mapping and

considered the following explicit iterative process:

x ∈ C, xn+ = αnu + ( – αn)Sxn, ∀n≥ ,

where u is a given point and S : C → C is nonexpansive. He proved the strong convergence
of {xn} to a fixed point of S provided that αn = n–θ with θ ∈ (, ). In , Moudafi []
introduced the viscosity approximation method for nonexpansive mappings. Until now,
in many references, viscosity approximation methods still are used and studied, which
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formally generates the sequence {xn} by the recursive formula:

xn+ = αnf (xn) + ( – αn)Sxn,

where f is a contraction and αn ⊂ (, ) is a slowly vanishing sequence. See, for instance,
[–]. In fact, Yamada’s hybrid steepest descent algorithm is also a kind of viscosity ap-
proximation method (see []).
The variational inequality problem is to find a point x∗ ∈ C such that

〈
Fx∗,x – x∗〉 ≥ , ∀x ∈ C. (.)

In recent years, the theory of variational inequality has been extended to the study of a
large variety of problems arising in structural analysis, economics, engineering sciences,
and so on. See [–] and the references cited therein.
Recently, Zhou andWang [] proposed a simpler explicit iterative algorithm for finding

a solution of variational inequality over the set of common fixed points of a finite family
nonexpansive mappings. They introduced an explicit scheme as follows.

Theorem . Let H be a real Hilbert space and F : H → H be an L-Lipschitz continuous
and η-strongly monotone mapping. Let {Si}Ni= be N nonexpansive self-mappings of H such
that C =

⋂N
i= Fix(Si) �= ∅. For any point x ∈ H , define a sequence {xn} in the following

manner:

xn+ = (I – λnμF)SnNS
n
N– · · ·Sn xn, n≥ , (.)

where μ ∈ (, η/L) and Sni := ( – β i
n)I + β i

nSi for i = , , . . . ,N . When the parameters
satisfy appropriate conditions, the sequence converges strongly to the unique solution of the
variational inequality (.).

In this paper, motivated by the above works, we introduce a more generalized iterative
method like viscosity approximation. In Section , we combine a sequence of contractive
mappings and obtain strong convergence theorem for approximating fixed point of a non-
expansive mapping. In Section , we propose a new iterative algorithm for finding some
common fixed point of a finite family nonexpansivemappings, which is also a unique solu-
tion for the variational inequality over the set of fixed point of these mappings on Hilbert
spaces.

2 Preliminaries
In order to prove our results, we collect some facts and tools in a real Hilbert space H ,
which are listed as below.

Lemma . Let H be a real Hilbert space.We have the following inequalities:
(i) ‖x + y‖ ≤ ‖x‖ + 〈x + y, y〉, ∀x, y ∈H .
(ii) ‖tx + ( – t)y‖ ≤ t‖x‖ + ( – t)‖y‖, ∀t ∈ [, ], ∀x, y ∈H .

Lemma . [] Let {Si}i= be γi-averaged on C such that Fix(S) ∩ Fix(S) �= ∅. Then the
following conclusions hold:

http://www.fixedpointtheoryandapplications.com/content/2014/1/68
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(i) both SS and SS are γ -averaged, where γ = γ + γ – γγ;
(ii) Fix(S)∩ Fix(S) = Fix(SS) = Fix(SS).

Recall that given a nonempty closed convex subset C of a real Hilbert space H , for any
x ∈H , there exists a unique nearest point in C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖

for all y ∈ C. Such a PC is called the metric (or the nearest point) projection of H onto C.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H .Given
x ∈H and z ∈ C, then y = PCx if and only if we have the relation

〈x – y, y – z〉 ≥  for all z ∈ C.

Lemma . [] Let H be a Hilbert space and C be a nonempty closed convex subset of H ,
and T : C → C a nonexpansive mapping with Fix(T) �= ∅. If {xn} is a sequence in C weakly
converging to x and if {(I – T)xn} converges strongly to y, then (I – T)x = y.

Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn,

where {γn} is a sequence in (, ) and {δn} is a sequence such that

(i)
∞∑
n=

γn =∞;

(ii) lim sup
n→∞

δn

γn
≤  or

∞∑
n=

|δn| <∞.

Then, limn→∞ an = .

Lemma . [] Let {xn} and {zn} be bounded sequences in a Banach space and {βn} be
a sequence of real numbers such that  < lim infn→∞ βn ≤ lim supn→∞ βn <  for all n =
, , , . . . . Suppose that xn+ = (–βn)zn +βnxn for all n = , , , . . . and lim supn→∞(‖zn+ –
zn‖ – ‖xn+ – xn‖)≤ . Then limn→∞ ‖zn – xn‖ = .

3 Generalized viscosity approximationmethod combining with
a nonexpansive mapping

In this section, we combine a sequence of contractive mappings and apply a more gener-
alized iterative method like viscosity approximation to approximate some fixed point of a
nonexpansive mapping defined on a closed convex subset C of a Hilbert space H , which
is also the solution of the variational inequality

〈
f
(
x∗) – x∗,p – x∗〉 ≤ , ∀p ∈ Fix(S). (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/68
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Suppose the contractive mapping sequence {fn(x)} is uniformly convergent for any x ∈ D,
where D is any bounded subset of C. The uniform convergence of {fn(x)} on D is denoted
by fn(x)⇒ f (x) (n→ ∞), x ∈D.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H and
let {fn} be a sequence of ρn-contractive self-maps of C with  ≤ ρl = lim infn→∞ ρn ≤
lim supn→∞ ρn = ρu < . Let S : C → C be a nonexpansive mapping. Assume the set Fix(S) �=
∅ and {fn(x)} is uniformly convergent for any x ∈ D, where D is any bounded subset of C.
Given x ∈ C, let {xn} be generated by the following algorithm:

xn+ = αnfn(xn) + ( – αn)Sxn. (.)

If the sequence {αn} ⊂ (, ) satisfies the following conditions:
(i) limn→∞ αn = ;
(ii)

∑∞
n= αn =∞;

(iii)
∑∞

n= |αn+ – αn| < ∞,
then the sequence {xn} converges strongly to a point x∗ ∈ Fix(S), which is also the unique
solution of the variational inequality (.).

Proof The proof is divided into several steps.
Step . Show first that {xn} is bounded.
For any q ∈ Fix(S), we have

‖xn+ – q‖ = ∥∥αnfn(xn) + ( – αn)Sxn – q
∥∥

≤ αn
∥∥fn(xn) – q

∥∥ + ( – αn)‖Sxn – Sq‖
≤ αnρn‖xn – q‖ + ( – αn)‖xn – q‖ + αn

∥∥fn(q) – q
∥∥

≤ (
 – αn( – ρn)

)‖xn – q‖ + αn( – ρn)
‖fn(q) – q‖
 – ρn

≤max

{
‖xn – q‖, ‖fn(q) – q‖

 – ρn

}
.

From the uniform convergence of {fn} on D, it is easy to get the boundedness of {fn(q)}.
Thus there exists a positive constant M, such that ‖fn(q) – q‖ ≤ M. By induction, we
obtain ‖xn – p‖ ≤max{‖x – p‖, M

–ρu
}. Hence, {xn} is bounded, so are {Sxn} and {fn(xn)}.

Step . Show that

‖xn+ – xn‖ →  as n→ ∞. (.)

Indeed, observe that

‖xn+ – xn‖ =
∥∥αnfn(xn) + ( – αn)Sxn – αn–fn–(xn–) – ( – αn–)Sxn–

∥∥
=

∥∥αn
(
fn(xn) – fn(xn–)

)
+ αn

(
fn(xn–) – fn–(xn–)

)
+ (αn – αn–)

(
fn–(xn–) – Sxn–

)
+ ( – αn)(Sxn – Sxn–)

∥∥
≤ αnρn‖xn – xn–‖ + αn

∥∥fn(xn–) – fn–(xn–)
∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/68
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+ |αn – αn–|
(‖Sxn‖ + ∥∥fn–(xn–)∥∥)

+ ( – αn)‖xn – xn–‖
=

(
 – αn( – ρn)

)‖xn – xn–‖ + αn
∥∥fn(xn–) – fn–(xn–)

∥∥
+ |αn – αn–|

(‖Sxn‖ + ∥∥fn–(xn–)∥∥)
.

By the conditions (i)-(iii) and the uniform convergence of fn(x), we have

αn‖fn(xn–) – fn–xn–‖ + |αn – αn–|(‖Sxn‖ + ‖fn–xn–‖)
αn( – ρn)

→ 

as n→ ∞. By Lemma ., (.) holds.
Step . Show that

‖Sxn – xn‖ → . (.)

Since

‖Sxn – xn‖ ≤ ‖xn+ – xn‖ + ‖xn+ – Sxn‖.

By the condition (i), we have ‖xn+ – Sxn‖ = αn‖fn(xn) – Sxn‖ → . Combining with (.),
it is easy to get (.).
Step .

lim sup
n→∞

〈
f
(
x∗) – x∗,xn – x∗〉 ≤ , (.)

where x∗ = PFix(S)f (x∗) is a unique solution of the variational inequality (.).
Since fn(x) is uniformly convergent on D, we have limn→∞(fn(x∗) – x∗) = f (x∗) – x∗.
Indeed, take a subsequence {xnj} of {xn} such that

lim sup
n→∞

〈
f
(
x∗) – x∗,xn – x∗〉 = lim

j→∞
〈
f
(
x∗) – x∗,xnj – x∗〉. (.)

Since {xnj} is bounded, there exists a subsequence {xnjk } of {xnj}which converges weakly
to x̂. Without loss of generality, we can assume xnj ⇀ x̂. From (.), we obtain Sxnj ⇀ x̂.
Using Lemma ., we have x̂ ∈ Fix(S). Since x∗ = PFix(S)f (x∗), we get

lim
j→∞

〈
f
(
x∗) – x∗,xnj – x∗〉 = 〈

f
(
x∗) – x∗, x̂ – x∗〉 ≤ .

Combining with (.), the inequality (.) holds.
Step . Show that

xn → x∗, (.)∥∥xn+ – x∗∥∥

=
∥∥αnfn(xn) + ( – αn)Sxn – x∗∥∥

≤ ( – αn)
∥∥Sxn – x∗∥∥ + αn

〈
xn+ – x∗, fn(xn) – x∗〉

http://www.fixedpointtheoryandapplications.com/content/2014/1/68
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≤ ( – αn)
∥∥xn – x∗∥∥ + αn

〈
xn+ – x∗, fn(xn) – fn

(
x∗)〉 + αn

〈
xn+ – x∗, fn

(
x∗) – x∗〉

≤ ( – αn)
∥∥xn – x∗∥∥ + αnρn

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)

+ αn
〈
xn+ – x∗, fn

(
x∗) – x∗〉.

Transform the inequality into another form, we obtain

∥∥xn+ – x∗∥∥ ≤
(
 –

αn( – αn – ρn)
 – αnρn

)∥∥xn – x∗∥∥ +
αn

 – αnρn

〈
xn+ – x∗, fn

(
x∗) – x∗〉.

By Schwartz’s inequality, we have

lim sup
n→∞

〈
xn+ – x∗, fn

(
x∗) – x∗〉

≤ lim
n→∞

∥∥xn+ – x∗∥∥∥∥fn(x∗) – f
(
x∗)∥∥ + lim sup

n→∞
〈
xn+ – x∗, f

(
x∗) – x∗〉.

By the boundedness of {xn}, fn(x)⇒ f (x), (.) and (.), we have

lim sup
n→∞

〈
xn+ – x∗, fn

(
x∗) – x∗〉 ≤ .

It follows from Lemma . that (.) holds. �

Remark . In [], Moudafi proposed the viscosity iterative algorithm as follows:

xn+ = αnf (xn) + ( – αn)Sxn, (.)

where f is a contraction on H . It is a special case of (.) in this paper when f = f = · · · =
fn = · · · = f , ∀n ∈N and C =H . Of course, Halpern’s iteration method is also a special case
of (.) when f = f = · · · = fn = · · · = u, ∀n ∈N.

Remark . In [], the following iterative process was introduced:

xn+ = Sxn –μαnF(Sxn).

Rewriting the equation, we get

xn+ = αn(I –μF)Sxn + ( – αn)Sxn

= αnf (xn) + ( – αn)Sxn. (.)

It is easily to verify f := (I –μF)S is a contractive mapping on H when  < μ < η/L. That
is, Yamada’s method is a kind of viscosity approximation method. Of course it is also a
special case of Theorem ..

4 Generalized viscosity approximationmethod combining with a finite family
of nonexpansive mappings

In this section, we apply a more generalized iterative method like viscosity approximation
to approximate a common element of the set of fixed points of a finite family of nonex-
pansive mappings on Hilbert spaces.

http://www.fixedpointtheoryandapplications.com/content/2014/1/68
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Let {fn} be a sequence of ρn-contractive self-maps of C with  < ρl = lim infn→∞ ρn ≤
lim supn→∞ ρn = ρu <  and {Si}Ni= be N nonexpansive self-mapping of C. Assume the
common fixed point set F =

⋂N
i= Fix(Si) �= ∅ and {fn(q)} is convergent for any q ∈ F . Put

f (q) := limn→∞ fn(q), since every fn is ρn-contractive, we have

∥∥fn(p) – fn(q)
∥∥ ≤ ρn‖p – q‖ ≤ ρu‖p – q‖

for any p,q ∈ F . Further we obtain ‖f (p) – f (q)‖ ≤ ρu‖p – q‖. Next we prove the sequence
{xn} converges strongly to a point x∗ ∈ F =

⋂N
i= Fix(Si), which also solves the variational

inequality

〈
f
(
x∗) – x∗,p – x∗〉 ≤ , ∀p ∈ F . (.)

As we know, it is equivalent to the fixed point equation x∗ = PFf (x∗).

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H and
let {fn} be a sequence of ρn-contractive self-maps of C with  ≤ ρl = lim infn→∞ ρn ≤
lim supn→∞ ρn = ρu < . Let, for each  ≤ i ≤ N (N ≥  be an integer), Si : C → C be a
nonexpansive mapping. Assume the set F =

⋂N
i= Fix(Si) �= ∅ and {fn(q)} is convergent for

any q ∈ F . Given x ∈ C, let {xn} be generated by the following algorithm:

{
xn+ = αnfn(xn) + ( – αn)SnNSnN– · · ·Sn xn,
Sni = ( – λn

i )I + λn
i Si, i = , , . . . ,N .

(.)

If the parameters {αn} and {λn
i } satisfy the following conditions:

(i) {αn} ⊂ (, ), limn→∞ αn =  and
∑∞

n= αn =∞;
(ii) λn

i ∈ (λl,λu) for some λl,λu ∈ (, ) and limn→∞ |λn
i – λn+

i | = , ∀i = , , . . . ,N ,
then the sequence {xn} converges strongly to a point x∗ ∈ F ,which is also the unique solution
of the variational inequality (.).

Proof We will prove the theorem in the case of N = . The proof is divided into several
steps.
Step . We show first that {xn} is bounded.
For any q ∈ F , we have

‖xn+ – q‖ = ∥∥αnfn(xn) + ( – αn)SnS
n
 xn – q

∥∥
≤ αn

∥∥fn(xn) – q
∥∥ + ( – αn)

∥∥SnSn xn – SnS
n
 q

∥∥
≤ αnρn‖xn – q‖ + ( – αn)‖xn – q‖ + αn

∥∥fn(q) – q
∥∥

≤ (
 – αn( – ρn)

)‖xn – q‖ + αn( – ρn)
‖fn(q) – q‖
 – ρn

≤max

{
‖xn – q‖, ‖fn(q) – q‖

 – ρn

}
.

From the convergence of {fn(q)}, it is easy to get the boundness of {fn(q)}. Thus there exists
a positive constant M, such that ‖fn(q) – q‖ ≤ M. By induction, we obtain ‖xn – p‖ ≤
max{‖x – p‖, M

–ρu
}. Hence, {xn} is bounded, and so are {Sxn} and {SnSn xn}.

http://www.fixedpointtheoryandapplications.com/content/2014/1/68
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Step . We show that

‖xn+ – xn‖ →  as n→ ∞. (.)

Since both Sn and Sn are averaged nonexpansive mappings, by Lemma ., SnSn is also
averaged. Rewrite SnSn = ( – βn)I + βnVn, where βn = λn

 + λn
 – λn

λ
n
. Then we have

xn+ = αnfn(xn) + ( – αn)
[
( – βn)I + βnVn

]
xn

= αnfn(xn) + ( – βn)xn – αn( – βn)xn + ( – αn)βnVnxn

= ( – βn)xn + βn

[
αn

fn(xn) – ( – βn)xn
βn

+ ( – αn)Vnxn
]

= ( – βn)xn + βnzn.

Further we obtain

‖zn+ – zn‖

=
∥∥∥∥αn+

βn+

[
fn+(xn+) – ( – βn+)xn+

]
+ ( – αn+)Vn+xn+

–
αn

βn

[
fn(xn) – ( – βn)xn

]
– ( – αn)Vnxn

∥∥∥∥
= ‖Vn+xn+ –Vnxn‖ +

∥∥∥∥
[

αn+

βn+
fn+(xn+) –

αn

βn
fn(xn)

]

–
[

αn+( – βn+)
βn+

xn+ –
αn( – βn)

βn
xn

]
– αn+Vn+xn+ + αnVnxn

∥∥∥∥
≤ ‖xn+ – xn‖ + ‖Vn+xn –Vnxn‖ +

∣∣∣∣αn+

βn+
fn+(xn+) –

αn

βn
fn(xn)

∣∣∣∣
+

∥∥∥∥αn+( – βn+)
βn+

xn+ –
αn( – βn)

βn
xn

∥∥∥∥
+ ‖αn+Vn+xn+ – αnVnxn‖. (.)

Write λ = λl–λ
l , λ = λu–λ

u. From the condition (iii), it is easily to get  < λ ≤ βn ≤ λ

and βn+ – βn →  as n→ ∞. We have

‖Vn+xn –Vnxn‖ =
∥∥∥∥Sn+ Sn+ – ( – βn+)I

βn+
xn –

SnSn – ( – βn)I
βn

xn
∥∥∥∥

≤
∥∥∥∥Sn+ Sn+

βn+
xn –

SnSn
βn

xn
∥∥∥∥ +

∣∣∣∣ 
βn

–


βn+

∣∣∣∣‖xn‖
≤ 

βn

∥∥Sn+ Sn+ xn – SnS
n
 xn

∥∥ +
∣∣∣∣ 
βn

–


βn+

∣∣∣∣(∥∥Sn+ Sn+ xn
∥∥ + ‖xn‖

)

≤ 
λ

(∥∥Sn+ xn – Sn xn
∥∥ +

∥∥Sn+ Sn xn – SnS
n
 xn

∥∥)

+
∣∣∣∣ 
βn

–


βn+

∣∣∣∣(∥∥Sn+ Sn+ xn
∥∥ + ‖xn‖

)

http://www.fixedpointtheoryandapplications.com/content/2014/1/68
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≤ 
λ

(∥∥Sn+ xn – Sn xn
∥∥ +

∥∥Sn+ Sn xn – SnS
n
 xn

∥∥)

+
∣∣∣∣ 
βn

–


βn+

∣∣∣∣M, (.)

whereM = supn{‖Sn+ Sn+ xn‖ + ‖xn‖}. Since |λn+
i – λn

i | → , i = , , we can deduce

∥∥Sn+ xn – Sn xn
∥∥ ≤ ∣∣λn+

 – λn

∣∣(‖xn‖ + ‖Sxn‖

) →  (.)

and

∥∥Sn+ Sn xn – SnS
n
 xn

∥∥ ≤ ∣∣λn+
 – λn


∣∣(∥∥Sn xn∥∥ +

∥∥SSn xn∥∥) → . (.)

Substituting (.) into (.), we have

‖zn+ – zn‖ – ‖xn+ – xn‖

≤ 
λ

(∥∥Sn+ xn – Sn xn
∥∥ +

∥∥Sn+ Sn xn – SnS
n
 xn

∥∥)
+

|βn – βn+|
βnβn+

M

+
∥∥∥∥αn+

βn+
fn+(xn+) –

αn

βn
fn(xn)

∥∥∥∥ +
∥∥∥∥αn+( – βn+)

βn+
xn+ –

αn( – βn)
βn

xn
∥∥∥∥

+ ‖αn+Vn+xn+ – αnVnxn‖.

Combining (.), (.), and condition (i), we get

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

By Lemma ., we conclude that limn→∞ ‖zn – xn‖ → . Further we have

lim
n→∞‖xn+ – xn‖ = lim

n→∞βn‖zn – xn‖ → .

Step . We show that

∥∥SnSn xn – xn
∥∥ → . (.)

By (.), we get

∥∥xn+ – SnS
n
 xn

∥∥ = αn
∥∥fn(xn) – SnS

n
 xn

∥∥ → .

We have

∥∥xn – SnS
n
 xn

∥∥ ≤ ∥∥xn+ – SnS
n
 xn

∥∥ + ‖xn – xn+‖.

Combining with (.), (.) holds.
Since {λn

i } ⊂ (λl,λu), we can assume that λ
nj
i → λ

i as n → ∞. It is easy to get  < λ
i < 

for i = , . Write Si = ( – λ
i )I + λ

i Si, i = , . Then we have Fix(Si ) = Fix(Si), i = ,  and

lim
j→∞ sup

x∈D

∥∥Snji x – Si x
∥∥ = , (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/68
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whereD is an arbitrary bounded subset including {xnj}. By using (.) and (.), we obtain
‖SS xn – xn‖ → .
Step . We have

lim sup
n→∞

〈
f
(
x∗) – x∗,xn – x∗〉 ≤ , (.)

where x∗ = PFf (x∗) is a unique solution of the variational inequality (.).
Since fn(q) is convergent, we have limn→∞(fn(x∗) – x∗) = f (x∗) – x∗.
The proof of Step  is similar to that of Theorem ..
Step . We show that

xn → x∗. (.)

The proof of Step  is similar to that of Theorem .. �

Remark . In [], put Sn = SnNSnN– · · ·Sn , and we rewrite Zhou and Wang’s iterative
algorithm as follows:

xn+ = (I – αnμF)Snxn

= αn(I –μF)Snxn + ( – αn)Snxn

= αnfn(xn) + ( – αn)Snxn. (.)

It is easily to verify (I –μF)Sn is a contractive mapping on H when  < μ < η/L. Thus it
is a special case of Theorem . when fn := (I –μF)Sn, ∀n ∈N and C =H .
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