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1 Introduction and preliminaries
Rhoades [] and Branciari [] proved the following fixed point theorems for the weakly
contraction mapping and contractive mapping of integral type, respectively, which are
generalizations of the Banach fixed point theorem.

Theorem . ([]) Let T be a mapping from a complete metric space (X,d) into itself sat-
isfying

d(Tx,Ty) ≤ d(x, y) –ψ
(
d(x, y)

)
, ∀x, y ∈ X, (.)

where ψ : R+ → R
+ is continuous and nondecreasing such that ψ is positive on R

+ \ {},
ψ() =  and limt→+∞ ψ(t) = +∞. Then T has a unique fixed point in X.

Theorem . ([]) Let T be a mapping from a complete metric space (X,d) into itself sat-
isfying

∫ d(Tx,Ty)


ϕ(t)dt ≤ c

∫ d(x,y)


ϕ(t)dt, ∀x, y ∈ X, (.)

where c ∈ (, ) is a constant and ϕ ∈ �. Then T has a unique fixed point a ∈ X such that
limn→∞ Tnx = a for each x ∈ X.

Recently several years, the researchers in [–] and others continued the study of
Rhoades and Branciari, proved some fixed point and common fixed point theorems for
various generalized weakly contraction mappings and contractive mappings of integral
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type in complete metric spaces, Banach spaces, modular spaces and symmetric spaces.
Suzuki [] proved that contractive condition of integral type in complete metric spaces
is a special case of Meir-Keeler type.
The objective of this article is both to introduce several mappings satisfying contrac-

tive conditions of integral type, one of which extends the mapping (.) and is different
from the mapping (.), and to provide sufficient conditions which ensure the existence of
fixed points and convergence of iterative methods for these mappings in complete metric
spaces. Two nontrivial examples are given to explain the main results obtained.
Throughout this paper, we assume that R+ = [,+∞), N = {} ∪N, N denotes the set of

all positive integers and

� =
{
ϕ : ϕ :R+ →R

+ is Lebesgue integrable, summable on each

compact subset of R+ and
∫ ε


ϕ(t)dt >  for each ε > 

}
;

� =
{
ψ :ψ :R+ →R

+ is a lower semicontinuous function with ψ() = 

and ψ(t) >  for each t > 
}
.

For a self mapping T in a metric space (X,d) and (x, y,n) ∈ X ×N, define

xn = Tnx, dn = d(xn,xn+);

M(x, y) =max

{
d(x, y),d(x,Tx),d(y,Ty),



[
d(x,Ty) + d(y,Tx)

]}
;

N(x, y) =max
{
d(x,Tx),d(y,Ty)

}
;

P(x, y) =max
{
d(x, y),d(x,Tx),d(y,Ty)

}
;

Q(x, y) =max

{
d(x,Tx),d(y,Ty),



[
d(x,Ty) + d(y,Tx)

]}
.

Lemma . ([]) Let ϕ ∈ � and {rn}n∈N be a nonnegative sequence with limn→∞ rn = a.
Then

lim
n→∞

∫ rn


ϕ(t)dt =

∫ a


ϕ(t)dt.

Lemma . ([]) Let ϕ ∈ � and {rn}n∈N be a nonnegative sequence. Then

lim
n→∞

∫ rn


ϕ(t)dt = 

if and only if limn→∞ rn = .

2 Main results
Now we prove the existence, uniqueness, and iterative approximations of fixed points for
the mappings (.), (.), and (.)∼(.), respectively.
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Theorem . Let (ϕ,ψ) be in � × � and T be a mapping from a complete metric space
(X,d) into itself satisfying

∫ d(Tx,Ty)


ϕ(t)dt ≤

∫ d(x,y)


ϕ(t)dt –

∫ ψ(d(x,y))


ϕ(t)dt, ∀x, y ∈ X. (.)

Then T has a unique fixed point a ∈ X such that limn→∞ Tnx = a for each x ∈ X.

Proof Let x be an arbitrary point in X. Suppose that there exists some n ∈N with xn =
xn+. Clearly,

xn = Txn = Txn = · · · = Tmxn = · · · = lim
n→∞Tnxn ,

that is, xn is a fixed point of T . Suppose that xn 	= xn+ for each n ∈ N. It follows from
(.) and (ϕ,ψ) ∈ � × � that

∫ dn+


ϕ(t)dt =

∫ d(xn+,xn+)


ϕ(t)dt

=
∫ d(Tn+x,Tn+x)


ϕ(t)dt

≤
∫ d(Tnx,Tn+x)


ϕ(t)dt –

∫ ψ(d(Tnx,Tn+x))


ϕ(t)dt

=
∫ dn


ϕ(t)dt –

∫ ψ(dn)


ϕ(t)dt

<
∫ dn


ϕ(t)dt, ∀n ∈N,

which yields

dn+ < dn, ∀n ∈N,

which implies that there exists a constant c with limn→∞ dn = c ≥ . Suppose that c > .
Put lim infn→∞ ψ(dn) = α. It is easy to see that there exists a subsequence {dn(k)}n∈N
of {dn}n∈N satisfying limk→∞ ψ(dn(k)) = α. Since ψ is lower semicontinuous and ψ ∈
�, it follows that α ≥ ψ(c) > . Using (.), Lemma . and (ϕ,ψ) ∈ � × �, we
get

 <
∫ c


ϕ(t)dt

= lim sup
k→∞

∫ dn(k)+


ϕ(t)dt

= lim sup
k→∞

∫ d(xn(k)+,xn(k)+)


ϕ(t)dt

= lim sup
k→∞

∫ d(Tn(k)+x,Tn(k)+x)


ϕ(t)dt
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≤ lim sup
k→∞

(∫ d(Tn(k)x,Tn(k)+x)


ϕ(t)dt –

∫ ψ(d(Tn(k)x,Tn(k)+x))


ϕ(t)dt

)

≤ lim sup
k→∞

(∫ dn(k)


ϕ(t)dt –

∫ ψ(dn(k))


ϕ(t)dt

)

≤ lim sup
k→∞

∫ dn(k)


ϕ(t)dt – lim inf

k→∞

∫ ψ(dn(k))


ϕ(t)dt

=
∫ c


ϕ(t)dt –

∫ α


ϕ(t)dt

≤
∫ c


ϕ(t)dt –

∫ ψ(c)


ϕ(t)dt

<
∫ c


ϕ(t)dt,

which is impossible. Hence c =  and

lim
n→∞dn = . (.)

Now we prove that {xn}n∈N is a Cauchy sequence. If it is not a Cauchy sequence, then
there exist a constant ε >  and two subsequences {xm(k)}k∈N and {xn(k)}k∈N of {xn}n∈N such
that n(k) is minimal in the sense that n(k) >m(k) > k and d(xm(k),xn(k)) > ε. It follows that
d(xm(k),xn(k)–) ≤ ε. Observe that

ε < d(xm(k),xn(k))

≤ d(xm(k),xm(k)–) + d(xm(k)–,xn(k)–) + d(xn(k)–,xn(k))

≤ dm(k)– + d(xm(k)–,xm(k)) + d(xm(k),xn(k)–) + dn(k)–

≤ dm(k)– + ε + dn(k)–, ∀k ∈N, (.)

and

∣∣d(xm(k)–,xn(k)–) – d(xm(k),xn(k)–)
∣∣ ≤ dm(k)–, ∀k ∈N. (.)

Letting k → ∞ in (.) and (.) and using (.), we infer that

lim
k→∞

d(xm(k),xn(k)) = lim
k→∞

d(xm(k),xn(k)–) = lim
k→∞

d(xm(k)–,xn(k)–) = ε. (.)

Put

lim inf
k→∞

ψ
(
d(xm(k)–,xn(k)–)

)
= β .

Clearly, there exists a subsequence {d(xm(kj)–,xn(kj)–)}j∈N of {d(xm(k)–,xn(k)–)}k∈N such
that

lim
j→∞ψ

(
d(xm(kj)–,xn(kj)–)

)
= β . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/69
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Sinceψ is lower semicontinuous, it follows from (.), (.), andψ ∈ � that β ≥ ψ(ε) > .
By means of (.), (.), (.), Lemma ., and ϕ ∈ �, we deduce that

 <
∫ ε


ϕ(t)dt

= lim sup
j→∞

∫ d(xm(kj),xn(kj))


ϕ(t)dt

= lim sup
j→∞

∫ d(Tm(kj)x,Tn(kj)x)


ϕ(t)dt

≤ lim sup
j→∞

(∫ d(Tm(kj)–x,Tn(kj)–x)


ϕ(t)dt –

∫ ψ(d(Tm(kj)–x,Tn(kj)–x))


ϕ(t)dt

)

= lim sup
j→∞

(∫ d(xm(kj)–,xn(kj)–)


ϕ(t)dt –

∫ ψ(d(xm(kj)–,xn(kj)–))


ϕ(t)dt

)

≤ lim sup
j→∞

∫ d(xm(kj)–,xn(kj)–)


ϕ(t)dt – lim inf

j→∞

∫ ψ(d(xm(kj)–,xn(kj)–))


ϕ(t)dt

=
∫ ε


ϕ(t)dt –

∫ β


ϕ(t)dt

≤
∫ ε


ϕ(t)dt –

∫ ψ(ε)


ϕ(t)dt

<
∫ ε


ϕ(t)dt,

which is a contradiction. Thus {xn}n∈N is a Cauchy sequence. Since (X,d) is complete, it
follows that there exists a ∈ X such that

lim
n→∞Tnx = a. (.)

Next we prove that a is a fixed point of T . In view of (.), (.), and Lemma ., we
obtain

 ≤
∫ d(Tn+x,Ta)


ϕ(t)dt ≤

∫ d(Tnx,a)


ϕ(t)dt –

∫ ψ(d(Tnx,a))


ϕ(t)dt

≤
∫ d(Tnx,a)


ϕ(t)dt →  as n→ ∞,

which implies that

lim
n→∞

∫ d(Tn+x,Ta)


ϕ(t)dt = ,

which together with Lemma . gives

lim
n→∞d

(
Tn+x,Ta

)
= .
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Consequently, we have

d(a,Ta)≤ d
(
a,Tn+x

)
+ d

(
Tn+x,Ta

) →  as n→ ∞,

that is, a = Ta.
Lastly, we prove that a is a unique fixed point of T in X. Suppose that T has another

fixed point b ∈ X \ {a}. It follows from (.), ϕ ∈ �, and ψ(d(a,b)) >  that

 <
∫ d(a,b)


ϕ(t)dt =

∫ d(Ta,Tb)


ϕ(t)dt

≤
∫ d(a,b)


ϕ(t)dt –

∫ ψ(d(a,b))


ϕ(t)dt

<
∫ d(a,b)


ϕ(t)dt,

which is a contradiction. This completes the proof. �

Remark . In the case φ(t) =  for all t ∈ R
+, Theorem . reduces to Theorem .. On

the other hand, the example below demonstrates that Theorem . is different from The-
orem ..

Example . Let X = R
+ be endowed with the Euclidean metric d = | · |, T : X → X and

ϕ,ψ :R+ →R
+ be defined by

Tx =
x

 + x
, ∀x ∈ X

and

ϕ(t) = t, ψ(t) =
t√
 + t

, ∀t ∈R
+.

Obviously, (ϕ,ψ) ∈ � × �. Let x, y ∈ X. It is clear that

( – xy) =  – xy + xy ≤  + x + y + xy =
(
 + x

)(
 + y

)
,

 + (x – y) =  + x – xy + y ≤  + x + y + xy =
(
 + x

)(
 + y

)
,

which imply that

( – xy)
[
 + (x – y)

] ≤ (
 + x

)( + y
) ≤ [

 + (x – y)
](
 + x

)( + y
),

which gives

∫ d(Tx,Ty)


ϕ(t)dt =

(
x

 + x
–

y
 + y

)

=
(x – y)( – xy)

( + x)( + y)

≤ (x – y)[ + (x – y)]
[ + (x – y)]

http://www.fixedpointtheoryandapplications.com/content/2014/1/69
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= (x – y) –
(x – y)

[ + (x – y)]

=
∫ d(x,y)


ϕ(t)dt –

∫ ψ(d(x,y))


ϕ(t)dt,

that is, (.) holds. Thus the conditions of Theorem . are satisfied. It follows from The-
orem . that T has a unique fixed point  ∈ X and limn→∞ Tnx =  for each x ∈ X.
In order to verify that Theorem . is useless in proving the existence of fixed points of

T , we need to show that (.) does not hold. Otherwise, (.) holds, that is, there exists
some constant c ∈ (, ) satisfying

∫ d(Tx,Ty)


ϕ(t)dt =

(
x

 + x
–

y
 + y

)

=
(x – y)( – xy)

( + x)( + y)

≤ c(x – y) = c
∫ d(x,y)


ϕ(t)dt, ∀x, y ∈ X,

which yields

( – xy)

( + x)( + y)
≤ c, ∀x, y ∈ X with x 	= y,

which means that

 = lim
(x,y)→(+,+)

x 	=y

( – xy)

( + x)( + y)
≤ c < ,

which is a contradiction.

Theorem . Let (ϕ,ψ) be in � × � and T be a mapping from a complete metric space
(X,d) into itself satisfying

∫ d(Tx,Ty)


ϕ(t)dt ≤

∫ M(x,y)


ϕ(t)dt –

∫ ψ(M(x,y))


ϕ(t)dt, ∀x, y ∈ X. (.)

Then T has a unique fixed point a ∈ X such that limn→∞ Tnx = a for each x ∈ X.

Proof Let x be an arbitrary point inX. If xn = xn+ for some n ∈N, then there is nothing
to prove. Now suppose that xn 	= xn+ for all n ∈ N. Note that

M(xn,xn+) =max

{
d(xn,xn+),d(xn,Txn),d(xn+,Txn+),



[
d(xn,Txn+) + d(xn+,Txn)

]}

=max

{
dn,dn+,



d(xn,xn+)

}

=max{dn,dn+}, ∀n ∈N, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/69
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because



d(xn,xn+) ≤ 


[
d(xn,xn+) + d(xn+,xn+)

] ≤max{dn,dn+}, ∀n ∈N.

Now we prove that

dn+ < dn, ∀n ∈N. (.)

Or else there exists some n ∈ N such that dn+ ≥ dn . Making use of (.) and (.), we
know that

∫ dn+


ϕ(t)dt =

∫ d(xn+,xn+)


ϕ(t)dt

=
∫ d(Tn+x,Tn+x)


ϕ(t)dt

≤
∫ M(Tnx,Tn+x)


ϕ(t)dt –

∫ ψ(M(Tnx,Tn+x))


ϕ(t)dt

=
∫ max{dn ,dn+}


ϕ(t)dt –

∫ ψ(max{dn ,dn+})


ϕ(t)dt

≤
∫ dn+


ϕ(t)dt –

∫ ψ(dn+)


ϕ(t)dt

<
∫ dn+


ϕ(t)dt,

which is a contradiction. Note that (.) means that there exists a constant c with

lim
n→∞dn = c≥ . (.)

Suppose that c > . Set lim infn→∞ ψ(dn) = γ . Obviously, there exists a subsequence
{dn(k)}n∈N of {dn}n∈N such that limk→∞ ψ(dn(k)) = γ . Since ψ is lower semicontinuous,
it follows from ψ ∈ � that γ ≥ ψ(c) > . On account of (.)∼(.), Lemma ., and
ϕ ∈ �, we arrive at

 <
∫ c


ϕ(t)dt

= lim sup
k→∞

∫ dn(k)+


ϕ(t)dt

= lim sup
k→∞

∫ d(xn(k)+,xn(k)+)


ϕ(t)dt

= lim sup
k→∞

∫ d(Tn(k)+x,Tn(k)+x)


ϕ(t)dt

≤ lim sup
k→∞

(∫ M(Tn(k)x,Tn(k)+x)


ϕ(t)dt –

∫ ψ(M(Tn(k)x,Tn(k)+x))


ϕ(t)dt

)

≤ lim sup
k→∞

(∫ M(xn(k),xn(k)+)


ϕ(t)dt –

∫ ψ(M(xn(k),xn(k)+))


ϕ(t)dt

)

http://www.fixedpointtheoryandapplications.com/content/2014/1/69
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= lim sup
k→∞

(∫ dnk


ϕ(t)dt –

∫ ψ(dnk )


ϕ(t)dt

)

≤ lim sup
k→∞

∫ dnk


ϕ(t)dt – lim inf

k→∞

∫ ψ(dnk )


ϕ(t)dt

=
∫ c


ϕ(t)dt –

∫ γ


ϕ(t)dt

≤
∫ c


ϕ(t)dt –

∫ ψ(c)


ϕ(t)dt

<
∫ c


ϕ(t)dt,

which is absurd. Hence c =  and (.) holds. Suppose that {xn}n∈N is not a Cauchy se-
quence. It follows that there exist a constant ε >  and two subsequences {xm(k)}k∈N and
{xn(k)}k∈N of {xn}n∈N such that n(k) is minimal in the sense that n(k) > m(k) > k and
d(xm(k),xn(k)) > ε. It follows that (.) holds. Observe that (.) and (.) ensure that

∣∣d(xm(k)–,xn(k)) – d(xm(k),xn(k))
∣∣ ≤ dm(k)– →  as k → ∞ (.)

and

M(xm(k)–,xn(k)–)

=max

{
d(xm(k)–,xn(k)–),d(xm(k)–,Txm(k)–),d(xn(k)–,Txn(k)–),



[
d(xm(k)–,Txn(k)–) + d(xn(k)–,Txm(k)–)

]}

=max

{
d(xm(k)–,xn(k)–),dm(k)–,dn(k)–,



[
d(xm(k)–,xn(k)) + d(xn(k)–,xm(k))

]}

→max{ε, , , ε} = ε as k → ∞. (.)

Put

lim inf
j→∞ ψ

(
M(xm(k)–,xn(k)–)

)
= λ.

Clearly, there exists a subsequence {M(xm(kj)–,xn(kj)–)}j∈N of {M(xm(k)–,xn(k)–)}k∈N such
that

lim
j→∞ψ

(
M(xm(kj)–,xn(kj)–)

)
= λ ≥ ψ(ε). (.)

Combining (.), (.), (.)∼(.), Lemma ., and ϕ ∈ �, we get

 <
∫ ε


ϕ(t)dt

= lim sup
j→∞

∫ d(xm(kj),xn(kj))


ϕ(t)dt

http://www.fixedpointtheoryandapplications.com/content/2014/1/69
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= lim sup
j→∞

∫ d(Tm(kj)x,Tn(kj)x)


ϕ(t)dt

≤ lim sup
j→∞

(∫ M(Tm(kj)–x,Tn(kj)–x)


ϕ(t)dt –

∫ ψ(M(Tm(kj)–x,Tn(kj)–x))


ϕ(t)dt

)

= lim sup
j→∞

(∫ M(xm(kj)–,xn(kj)–)


ϕ(t)dt –

∫ ψ(M(xm(kj)–,xn(kj)–))


ϕ(t)dt

)

≤ lim sup
j→∞

∫ M(xm(kj)–,xn(kj)–)


ϕ(t)dt – lim inf

j→∞

∫ ψ(M(xm(kj)–,xn(kj)–))


ϕ(t)dt

=
∫ ε


ϕ(t)dt –

∫ λ


ϕ(t)dt

≤
∫ ε


ϕ(t)dt –

∫ ψ(ε)


ϕ(t)dt

<
∫ ε


ϕ(t)dt,

which is a contradiction. Hence {xn}n∈N is a Cauchy sequence. Completeness of (X,d)
ensures that there exists a ∈ X satisfying (.). Suppose that d(a,Ta) > . Let

M∗ =max

{
d(a,Ta),d

(
Ta,Ta

)
,


[
d
(
a,Ta

)
+ d(a,Ta)

]}
. (.)

Note that (.) and (.) yield

lim
n→∞M(xn+,Ta)

= lim
n→∞max

{
d(xn+,Ta),d(xn+,Txn+),d

(
Ta,Ta

)
,


[
d
(
xn+,Ta

)
+ d(Ta,Txn+)

]}

= lim
n→∞max

{
d(xn+,Ta),dn+,d

(
Ta,Ta

)
,


[
d
(
xn+,Ta

)
+ d(Ta,xn+)

]}

=max

{
d(a,Ta), ,d

(
Ta,Ta

)
,


[
d
(
a,Ta

)
+ d(Ta,a)

]}

=M∗ (.)

and

lim
n→∞M(xn,a)

= lim
n→∞max

{
d(xn,a),d(xn,Txn),d(a,Ta),



[
d(xn,Ta) + d(a,Txn)

]}

= lim
n→∞max

{
d(xn,a),dn,d(a,Ta),



[
d(xn,Ta) + d(a,xn+)

]}

=max

{
,,d(a,Ta),



d(a,Ta)

}

= d(a,Ta). (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/69
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Put lim infn→∞ ψ(M(xn,a)) = η. Clearly, there exists a subsequence {M(xn(j),a)}j∈N of
{M(xn,a)}n∈N such that

lim
j→∞ψ

(
M(xn(j),a)

)
= η ≥ ψ

(
d(a,Ta)

)
. (.)

In virtue of (.), (.)∼(.), and Lemma ., we conclude that

 <
∫ M∗


ϕ(t)dt

= lim sup
j→∞

∫ M(xn(j)+,Ta)


ϕ(t)dt

= lim sup
j→∞

∫ M(Tn(j)+x,Ta)


ϕ(t)dt

≤ lim sup
j→∞

(∫ M(Tn(j)x,a)


ϕ(t)dt –

∫ ψ(M(Tn(j)x,a))


ϕ(t)dt

)

= lim sup
j→∞

(∫ M(xn(j),a)


ϕ(t)dt –

∫ ψ(M(xn(j),a))


ϕ(t)dt

)

≤ lim sup
j→∞

∫ M(xn(j),a)


ϕ(t)dt – lim inf

j→∞

∫ ψ(M(xn(j),a))


ϕ(t)dt

=
∫ d(a,Ta)


ϕ(t)dt –

∫ η


ϕ(t)dt

≤
∫ d(a,Ta)


ϕ(t)dt –

∫ ψ(d(a,Ta))


ϕ(t)dt

<
∫ d(a,Ta)


ϕ(t)dt,

which together with (.) means that

d(a,Ta)≤M∗ < d(a,Ta),

which is impossible. Consequently, a = Ta is a fixed point of T in X. Suppose that T has
another fixed point b ∈ X \ {a}. Notice that

M(a,b) =max

{
d(a,b),d(a,Ta),d(b,Tb),



[
d(a,Tb) + d(b,Ta)

]}

=max
{
d(a,b), , ,d(a,b)

}
= d(a,b),

which together with ϕ ∈ �, (.), and ψ(d(a,b)) >  means that

 <
∫ d(a,b)


ϕ(t)dt =

∫ d(Ta,Tb)


ϕ(t)dt

≤
∫ M(a,b)


ϕ(t)dt –

∫ ψ(M(a,b))


ϕ(t)dt
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=
∫ d(a,b)


ϕ(t)dt –

∫ ψ(d(a,b))


ϕ(t)dt

<
∫ d(a,b)


ϕ(t)dt,

which is a contradiction. Consequently, T possesses a unique fixed point a ∈ X. This com-
pletes the proof. �

Remark . The below example is an application of Theorem ..

Example . LetX = [, ]∪{} be endowedwith the Euclideanmetric d = | · |,T : X → X
and ϕ,ψ :R+ →R

+ be defined by

Tx =

⎧⎨
⎩

x
 , ∀x ∈ [, ],

, x = 

and

ϕ(t) = t, ∀t ∈R
+, ψ(t) =

⎧⎨
⎩

√

 t, ∀t ∈ [, ],√
 + 

+t , ∀t ∈ (, +∞).

Clearly, (ϕ,ψ) ∈ � × �. For x, y ∈ X with y ≤ x, we consider the following four cases.
Case . Let x, y ∈ [, ] with y≤ x

 . It is easy to verify that

M(x, y) =max

{
|x – y|, x


,
y

,



(∣∣∣∣x – y


∣∣∣∣ +
∣∣∣∣y – x



∣∣∣∣
)}

= x – y≤ ,

which yields

∫ d(Tx,Ty)


ϕ(t)dt =



(x – y) ≤ (x – y) –




(x – y)

=
∫ M(x,y)


ϕ(t)dt –

∫ ψ(M(x,y))


ϕ(t)dt.

Case . Let x, y ∈ [, ] with x
 < y ≤ x. It is clear that

M(x, y) =max

{
|x – y|, x


,
y

,



(∣∣∣∣x – y


∣∣∣∣ +
∣∣∣∣y – x



∣∣∣∣
)}

=
x


≤ ,

which gives

∫ d(Tx,Ty)


ϕ(t)dt =



(x – y) =



x –

(


xy –



y

)

=


x –

(
–


(y – x) +



x

)

≤ 

x –




x

=
∫ M(x,y)


ϕ(t)dt –

∫ ψ(M(x,y))


ϕ(t)dt.
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Case . Let y ∈ [, ] and x = . Obviously, we have

M(x, y) =max

{
 – y, ,

y

,



(
 –

y

+  – y

)}
=  – y ≥ ,

which implies that

∫ d(Tx,Ty)


ϕ(t)dt =

(
 –



y
)

≤  <  –
(
 +


 + 

)

≤ ( – y) –
(
 +


 +  – y

)

=
∫ M(x,y)


ϕ(t)dt –

∫ ψ(M(x,y))


ϕ(t)dt.

Case . Let x = y = . It follows that

M(x, y) =max

{
, – , – ,



( –  +  – )

}
= ,

which means that

∫ d(Tx,Ty)


ϕ(t)dt =  <  –

(
 +


 + 

)

=
∫ M(x,y)


ϕ(t)dt –

∫ ψ(M(x,y))


ϕ(t)dt.

That is, (.) holds. Thus the conditions of Theorem . are satisfied. It follows from The-
orem . that T has a unique fixed point  ∈ X and limn→∞ Tnx =  for every x ∈ X.

Similar to the proofs of Theorems . and ., we have the following results and we omit
their proofs.

Theorem . Let (ϕ,ψ) be in � × � and T be a mapping from a complete metric space
(X,d) into itself satisfying

∫ d(Tx,Ty)


ϕ(t)dt ≤

∫ N(x,y)


ϕ(t)dt –

∫ ψ(N(x,y))


ϕ(t)dt, ∀x, y ∈ X. (.)

Then T has a unique fixed point a ∈ X such that limn→∞ Tnx = a for each x ∈ X.

Theorem . Let (ϕ,ψ) be in � × � and T be a mapping from a complete metric space
(X,d) into itself satisfying

∫ d(Tx,Ty)


ϕ(t)dt ≤

∫ P(x,y)


ϕ(t)dt –

∫ ψ(P(x,y))


ϕ(t)dt, ∀x, y ∈ X. (.)

Then T has a unique fixed point a ∈ X such that limn→∞ Tnx = a for each x ∈ X.
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Theorem . Let (ϕ,ψ) be in � × � and T be a mapping from a complete metric space
(X,d) into itself satisfying

∫ d(Tx,Ty)


ϕ(t)dt ≤

∫ Q(x,y)


ϕ(t)dt –

∫ ψ(Q(x,y))


ϕ(t)dt, ∀x, y ∈ X. (.)

Then T has a unique fixed point a ∈ X such that limn→∞ Tnx = a for each x ∈ X.
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