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Abstract

In this paper, we establish some new common tripled fixed point theorems for
mappings defined on a set equipped with two quasi-partial metrics. We also provide
illustrative examples in support of our new results. The results presented in this paper
generalize the well-known comparable results in the literature due to Karapinar et al.
[Math. Comput. Model. 57:2442-2448, 2013], and Shatanawi and Pitea [Fixed Point
Theory Appl. 2013:153, 2013].
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1 Introduction and preliminaries
In 1994, Matthews [1] introduced the notion of partial metric spaces and extended the
Banach contraction principle from metric spaces to partial metric spaces. Based on the
notion of partial metric spaces, several authors (for example, [2-32]) obtained some fixed
point results for mappings satisfying different contractive conditions. Very recently, Haghi
et al. [33] showed in their interesting paper that some of fixed point theorems in partial
metric spaces can be obtained from metric spaces.

In 2013, Karapinar ef al. [34] introduced the concept of quasi-partial metric spaces and
studied some fixed point problems on quasi-partial metric spaces.

The notion of partial metric space is given as follows.

Definition 1.1 (Matthews [1]) A partial metric on a nonempty set X is a function p: X x
X — R* such that for all x,y,z € X:

(pl) x =y p(x,x) = px,y) =p(,),

(p2) plx,x) < p(x,),

(p3) p(x.y) =p(y,%),

(p4) px,y) < p(x,2) +p(z,y) - p(z,2).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial
metric on X.

Following Karapinar et al. [34], the notion of quasi-partial metric spaces is given as fol-
lows.

Definition 1.2 (Karapinar et al. [34]) A quasi-partial metric on nonempty set X is a func-
tion g : X x X — R* which satisfies:
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(QPMy) If g(x,x) = g(x,9) = q(5,), then x = y,

(QPM2) g(x,x) < q(x,7),

(QPM3) g(x,x) < q(y,x), and

(QPMy) q(x,9) + q(z,2) < q(x,2) + q(z,y) for all x,y,z € X.

A quasi-partial metric space is a pair (X,q) such that X is a nonempty set and ¢ is a
quasi-partial metric on X.
Let g be a quasi-partial metric on set X. Then

dg(x,y) = q(x,9) + gy, %) — q(x, x) — q(, )
is a metric on X.

Definition 1.3 (Karapinar et al. [34]) Let (X, q) be a quasi-partial metric space. Then we
have the following.
(i) A sequence {x,} converges to a point x € X if and only if

g(x,x) = lim g(x,x,) = lim g(x,,x).
n—0o0 n—0o0

(i) A sequence {x,} is called a Cauchy sequence if lim,; s, o q(%y, %,,) and
limy, ;s 00 (%, ;) exist (and are finite).

(iii) The quasi-partial metric space (X, g) is said to be complete if every Cauchy
sequence {x,} in X converges, with respect to 7, to a point x € X such that

q(x,x)= lim q(xmxm)z lim q(xmxm)~
n,m— 00 n,m—> 00

Bhaskar and Lakshmikantham [35] introduced the concept of coupled fixed point and
studied some nice coupled fixed point theorems. Later, Lakshmikantham and Ciri¢ [36]
introduced the notion of a coupled coincidence point of mappings. For some works on a
coupled fixed point, we refer the reader to [37-68].

For simplicity, we denote from now on X x X x --- x X by X* where k € N and X is a

k terms
nonempty set. We start by recalling some definitions.

Definition 1.4 (Bhaskar and Lakshmikantham [35]) An element (x,y) € X? is called a
coupled fixed point of the mapping F : X? — X if F(x,y) = x and F(y,x) = y.

Definition 1.5 (Lakshmikantham and Ciri¢ [36]) An element (x,7) € X? is called
(i) a coupled coincidence point of the mappings F: X?> — X and g: X — X if F(x,y) = gx
and F(y,x) = gy, and (gx, gy) is called a coupled point of coincidence;
(i) a common coupled fixed point of mappings F: X> — X and g: X — X if
F(x,y)=gx=xand F(y,x) =gy =y.

Definition 1.6 (Abbas et al. [37]) The mappings F: X> — X and g: X — X are called
w-compatible if gF (x,y) = F(gx, gy) whenever F(x,y) = gx and F(y, x) = gy.

In 2010, Samet and Vetro [38] introduced a fixed point of order N > 3. In particular, for
N = 3. we have the following definition.


http://www.fixedpointtheoryandapplications.com/content/2014/1/71

Gu Fixed Point Theory and Applications 2014, 2014:71 Page 3 of 21
http://www.fixedpointtheoryandapplications.com/content/2014/1/71

Definition 1.7 (Samet and Vetro [38]) An element (x,y,z) € X> is called a tripled fixed
point of a given mapping F: X> — X if F(x,y,z) =, F(y,z,x) =y, and F(z,%,y) = z.

Note that Berinde and Borcut [39] defined differently the notion of tripled fixed point
in the case of ordered sets in order to keep true the mixed monotone property. For more
details, see [39].

Definition 1.8 (Aydi et al. [40]) An element (x,7,2) € X3 is called
(i) a tripled coincidence point of mappings F: X> — X and g: X — X if F(x,y,2) = gx,
F(y,z,x) = gy, and F(z,x,y) = gz. In this case (gx, gy, gz) is called a tripled point of
coincidence;
(i) a common tripled fixed point of mappings F: X®> — X and g: X — X if
F(x,y,z) =gx=x,F(y,z,x) =gy =y, and F(z,x,y) =gz = z.

Definition 1.9 (Aydi et al. [40]) The mappings F: X®> — X and g: X — X are called w-
compatible if gF (x, y,z) = F(gx, gy, gz) whenever F(x,y,z) = gx, F(y,z,x) = gy, and F(z,%,y) =
gz.

Recently, Aydi and Abbas [41] obtained some tripled coincidence and fixed point results
in partial metric space.

Very recently, Shatanawi and Pitea [42] obtained some common coupled fixed point
results for a pair of mappings in quasi-partial metric space.

Theorem 1.1 (Shatanawi and Pitea [42]) Let (X,q) be a quasi-partial metric space, g :
X — X and F : X* — X be two mappings. Suppose that there exist ky, ko, and k3 in [0,1)
with ki + ko + k3 < 1 such that the condition

Q(F(x»y),F(u, V)) + q(F(Y’x)»F(% u))
<k [q(gx,gu) + q(gy,gv)] +ky [q(gx, F(x, y)) + q(gy, F(y, x))]
+ k3 [q(gu, F(u, V)) + q(gv, F(v, u))] (1.1)

holds for all x,y,u,v € X. Also, suppose we have the following hypotheses:
(i) FIX x X) Cg(X).
(i) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a coincidence point (x,y) satisfying gx = F(x,y) and
& =F@,x).

Moreover, if F and g are w-compatible, then F and g have a unique common coupled
fixed point of the form (x, x).

The aim of this article is to prove some new common tripled fixed point theorems for
mappings defined on a set equipped with two quasi-partial metrics.

The following lemma is crucial in our work.

Lemma 1.1 (Shatanawi and Pitea [42]) Let (X, q) be a quasi-partial metric space. Then the
following statements hold true:

(i) Ifqx,y) =0, then x = y.

(ii) Ifx#y, then q(x,y) > 0 and q(y,x) > 0.
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In this manuscript, we generalize, improve, enrich, and extend the above coupled com-
mon fixed point results. We also state some examples to illustrate our results. This paper
can be considered as a continuation of the remarkable works of Karapinar et al. [34] and
Shatanawi and Pitea [42].

2 Main results

Theorem 2.1 Let q; and q, be two quasi-partial metrics on X such that q,(x,y) < q1(x,y),
forall x,y € X, and F : X> — X, g: X — X be two mappings. Suppose that there exist ky,
ko, k3, kg, and ks in [0,1) with

k1+k2+k3+2k4+k5<1 (21)
such that the condition

01 (F(x,%,2), E(w, v, w)) + @1 (E(y, 2, %), Fv, w, 1)) + 1 (F(z,%,9), E(w, 1, v))
< ki[q2(gx.gu) + 42(gy, gv) + 42(g2.gW)]
+ ko[ qa (g2, F(x,9,2)) + 2 (29, F(,2,%)) + 42(g2 F(2,%,9)) ]
+ K[ (g ECwr v ) + (g0, E(vyw, 1)) + o (gw, EGoy1,0))]
+ ka2 (g E(tt v, ) + (@9, EGrw, 1)) + 2 (g2 s 1,)) ]
+ ks[ga (g Fer2)) + 2 (@ F 3, 2,) + (g, Flzy ) ] 2.2)
holds for all x,,2,u,v,w € X. Also, suppose we have the following hypotheses:

i) F(X°) Cg(X).
(ii) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a tripled coincidence point (x,y, z) satisfying

gx=F(x,9,2z) =gy =F(y,2,x) = gz = F(z,%,).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed
point of the form (u, u, u).

Proof Let xo,%0,20 € X. Since F(X3) C g(X), we can choose x1,71,z1 € X such that gx; =
F(x0,90,20), 21 = F(¥0,20,%0) and gz; = F(zo, 0, yo). Similarly, we can choose x3, 2,2, € X
such that gy = F(x1,y1,21), g@¥2 = F(31,21,%1), and gz = F(z1, %1, y1). Continuing in this way
we construct three sequences {x,}, {y,}, and {z,} in X such that

Xyl = F(xn:yn:zn)r Vn+1 = F(ym men) and
(2.3)

22n1 = F(zps %0y yn),  Ym > 0.

It follows from (2.2), (2.3), (QPM2), and (QMP4) that

18X §Xn1) + Q1€Y1 &Vni1) + 41(821 §2n41)
= ql (F(xn—hyn—l’Zn—l);F(xn:ym Zn)) + 41 (F(yn—lrzn—hxn—l)vF(yn; anxn))

Page 4 of 21
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+ @1 (F(Zn-1, %1, Yn-1)s F (Zs Xy Yn))
< ki[q2(g%n-1,8%n) + 42(@Vn-1,2Vn) + 42(82n1,821) |
+ ko[ 92 (g%n-1, F (-1, Yn-1,Zn1)) + @2(@Vn-1, F V-1, Zn-1,%n1))
+ 42(82n-1, F(Zn-1,%n-1,Yn1)) |
+ k3 [q2(%n» F @ Vs 2n)) + 42(€Vns FOs 2 %)) + G2 (820 E @2 ) ) |
+ ka[q2(€%n-1, F(ns Y Zn)) + @2(€Vn-1s F O Zns %)) + G2(82n-1 F (@ X1 ¥)) |
+ k5[ 92 (g% F (-1, Yn-1,2n-1)) + G2 (Vs F Y15 Zn-1,%n-1))
+ 42820 F (21, %1, Y1) |
= (ki + k2)[q2(8%n-1,8%n) + 42(€Vn-1,8Vn) + G2(€2n1,821) |
+ k3 q2(&%n @ni1) + G2(8Yr Qi) + G2(8Zn i) ]
+ky [qz(gxn—ngnﬂ) + q2(8Vn-1,8Yns1) + 6]2(an-1,an+1)]
+ ks [ q2(g%n> &%) + 42(&Vns &) + 42(82ns Z2n) |
< (ky + k2)[q2(g%n-1,8%n) + G2(&Vn-1,8Vn) + G2(€2n-1,82n)]
+ k3[q2(g%n §5ns1) + G2(@Vn» Qns1) + 42(82n> G2ns1) |
+ ka[ G2 (@%n1,8%n) + q2(€%n> Xns1) — G2(g%n %)
+ 42(QVn-1,8Vn) + 42(QVn> QY1) — 42(&Vns V)
+ 42(g2n-1,82n) + 42(2ns §2ns1) — 42(g2n: Z2n) |
+ ks [ q2(@xns @) + 42(Qn> QY1) + 42(€2ns G2nan) ]
< (ki + ky + ko) [q2(€%n-1,8%n) + 42(€Vn-1,8Vn) + 42(g2n-1,82n) ]
+ (ks + ky + ks) [ q2(@%n @ni1) + G2(QVns Qns1) + G2(€2n> &2ns1) |
< (ki + ky + ko) [q1(g%n-1,8%n) + G1(€Yn-1,8Vn) + 41(gZn-1,82n) |
+ (ks + ky + ks)[q1(g%n &&ni1) + Q1(Qn> QY1) + 41(82n> G2ni1) ],

which implies that

01(g%n> 8%n41) + 41(&V> EYnn1) + G1(821, 82n11)

< k1+k2+k4

TRk 101 850) + 41(€n1,8) + 01(82-1,820) (2.4)

Put k = % Obviously, 0 < k < 1. Repetition of the above inequality (2.4) # times,

we get

q1(8% > 8%ns1) + G1(&Vns EYni1) + G1(821, 82n11)

< K" q1(gxo.gx1) + q1(gv0, 1) + q1(g20,821) |- (2.5)

Next, we shall prove that {gx,}, {gy.}, and {gz,} are Cauchy sequences in g(X).

Page 5 of 21
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In fact, for each n,m € N, m > n, from (QPM4) and (2.5) we have

G1(g%n, §%m) + 1 (&Y, Em) + 41(820> 82m)

m-1
< Z[QI(gxiyngl) + q1(@yi gyint) + q1(g2ir 211 |

-1

<> Kq(gxo.gx1) + q1(gy0, 1) + 01(820,821)]

kﬂ
-k

3

A

=<

[q1(gx0,g%1) + q1(gy0,201) + 41(g20,821) |-

—_

This implies that

lim_[q1(g%,8%m) + 1@V &m) + 41@2w g7m)] = 0,

n

and so

lim q(gx,,gx,) =0, lim ¢q1(gy,,gym) =0 and

n,m— 00

lim  q1(gz,,82m) = 0.
1,m—> 00
By similar arguments as above, we can show that

lim qi(gxm,gx,) =0, lim q1(gym-gy») =0 and
1,M—> 00 1,M—> 00

lim qi(gzim,gzn) = 0.
n,m— 00

(2.6)

(2.8)

Hence {gx,}, {gy,}, and {gz,} are Cauchy sequences in (gX, q1). Since (gX, q;) is complete,
there exist gx, gy, gz € g(X) such that {gx,}, {gy,}, and {gz,} converge to gx, gy, and gz with

respect to 7, that is,

01(gxgx) = lim q1(gv.gx) = lim q1(ex,g%)
= lim m(gxm,gxn) = lim ql(gxn,gxm),
n,m—>00 M —> 00
a1 (gy.gy) = lim q1(gy,gyy) = lim q1(gyn,2y)
n—>00 n— 00
= im_ q1(@ym gyn) = Nim  q1(gym gym),
and
ql(gz,gZ) = lim ql(gz,gzn) = lim %(gzng)
n—00 n— 00

= lim qi(gzm gz,) = lLim qi(gz,., 22m)-

(2.9)

(2.10)

(2.11)

Page 6 of 21
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Combining (2.7)-(2.11), we have

q(gr,gx) = lim q1(gw, gvy) = lim ¢ (gw, gx)
= lim qi(gwm gx,) = lim  qi(gx,, gxm) =0, (2.12)
n,m— 00 H,1m— 00
2(gy.gy) = lim qi(gy,gy,) = lim q1(gyn.gy)

e }r}gloo q1(QVm>&Yn) = ; }ngloo 01(&Yn&Ym) = 0, (2.13)
and

01(gz,.82) = lim q1(gz,2,) = lim ¢1(gz,,,€2)
= lim qi(gzm,gz,) = lim qi(gz,,g2,) = 0. (2.14)

On the other hand, by (QMP4) we obtain

01(g%ns1, F(%,9,2)) < q1(g%ne1,8%) + q1 (g%, F(x, ¥, 2)) — q1 (g, gx)
< q1(gxni1,8%) + q1 (g% F (%, 9, 2))
< q1(gxns1, %) + q1(% @Xni1) + 41 (8%ne1, F(%,,2)) — q1 (@415 &Xns1)

< q1(@Xns1, %) + q1(% @Xni1) + 41 (g%ni1, F (%, 5, 2)).
Letting n — oo in the above inequalities and using (2.12), we have
Tim gy (gxun, F(®,9,2) < q1(gx F(x,3,2)) < 1im g1 (gxnn, F(%,,2)).
That is,
lim g, (%041, F(%,9,2)) = q1(gx, F(%, 7, 2)). (2.15)

Similarly, we have

Tim ¢y (gyna1, F(2,%)) = q1(¢9, F (3, 2,%)) (2.16)
and
lim ¢y (gyn1, F(z%,3)) = 41(¢2 F(2,%,9)). (2.17)

Now we prove that F(x,y,z) = gx, F(y,z,x) = gy, and F(z, x, y) = gz. In fact, it follows from
(2.2) and (2.3) that
q1(g%ns1, F(%,9,2)) + q1(gVns1, F (0,2, %)) + q1(g2ns1, F (2, %,))
=q (F(xn:yn: Zn):F(x’y’Z)) 91 (F(ymzmxn):F(y’ Z’x)) +q (F(anxn:yn): F(Z,xd’))

< ki[q2(g%n, g%) + 422V, gY) + 92(g21, 82) |
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+ko qZ(gme(xnrymzn)) + qZ(gymF(Yn»men)) + qZ(gsz(zn»xm}’n))]

[
+ ka[q2 (g%, F(%,9,2)) + q2(g9, F (0, 2,%)) + q2(g2, F(2,%,)) ]
+ ka[q2 (g%, F(%,,2)) + 42(8Vn F,2,%)) + 42(82n, F(2,%,9)) ]
+ ks[q2(8% F s Yus 2n)) + G2(€95 F O Zns %)) + G2(€20 F (2 Xy y) ) |
= k1[q2(gx &%) + 42(gVnr €9) + 42(82,872)|
+ ko[ G2(8%ns @ni1) + 42(QVns QYns1) + 42(82ms G2t ]
+k3[q2 (g% F(%,9,2)) + 42(99, F (9, 2,%)) + 42 (g2, F(2,%,)) |
+ ko[ 42 (g2 F(%,9,2)) + q2(g9m F (0 2,%)) + q2(g2 F (2%, )|
+ ks q2(g%, g%ni1) + 42(€Y, @ne1) + G2(82 2ni1) ]
< ki [q1(g%n 8%) + q1(gVnr &) + 01 (820 82)]
+ ko[ q1(8%nr 8%ni1) + 41(8Vms E¥ns1) + 41(€2nr G2ni1)]
+ ks[q1 (g%, F(x,,2)) + (29, F(0,2,%)) + q1(¢2, F(2,%,9)) ]
+ ka[q1 (g%, F(%,,2)) + q1(7m F(3,2,%)) + 1 (g2 F(2,%,))]
[

+ ks[q1(g% g%n1) + 01(8 &Yns1) + q1(82, 82ns1) |-

Letting n — oo in the above inequality, using (2.12)-(2.17), we obtain

q1(g% F(x,9,2)) + @1 (g0, F(y, 2,%)) + q1(g2, F(2,%,))
< (ks + ka)[q1(gx, F(%,,2)) + q1(gy, F (3, 2, %)) + q1 (g2, F (2%, %)) . (2.18)

By (2.1) we have k3 + k4 < 1. Hence, it follows from (2.18) that

01 (g%, F(x,9,2)) + 41 (29, F(9,2,%)) + q1 (g2, F(z,%,9)) = .

This implies that

q1(g%, F(%,%,2)) = q1 (g0, F (9,2, %)) = q1(gz, F(z,%,y)) = 0.

By Lemma 1.1, we get F(x,y,z) = gx, F(y,2z,x) = gy, and F(z,x,y) = gz. Hence, (gx, gy, gz) is a
tripled point of coincidence of mappings F and g.

Next, we will show that the tripled point of coincidence is unique. Suppose that
(x*, 5%, z) € X3 with F(x*, y*,z*) = g&*, F(y*, 2%, x*) = gy*, and F(z*,x*,y*) = gz*. Using (2.2),
(2.12), (2.13), (2.14), and (QPM3), we obtain

01(gngx”) + a1(e0,8y") + a1 (g2.82")
= q1(F(6,2,2), F(x",5",2")) + @1 (F0,2,2), F(y*, 2%, 27)) + @1 (F(2,%,9), F (2", 2%, 7))
< ki[q2(gx.8x") + q2(29,29") + 42(2.27) ]
+ ko[ g2 (g%, F(%,9,2)) + q2(¢9, F (0, 2,%)) + 42(¢2, F(2,%,9)) ]
+halga (g F(x,0% 7)) + 4@ F (v, 25,4%)) + qa(g2' F (2557, 57))
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+ ka2 (gn, F(x*,y",2%)) + 42(g, F (7", 2", 4%)) + @2 (g2" F (2,57, 5") )|
+ks[q2(gx", F(%,9,2)) + q2(" F(9,2,%)) + 42(g2", F(z,%,9)) ]
= kg2 (g% gx") + 4220, 99") + 2(g2.827)]
+ ko[ g2 (g g%) + 42(¢7,99) + q2(g2,82)]
+ ks[ g2 (gx",8%%) + 42 (29", 8y") + q2(82", 82") ]
+ ka[ g2 (g%,857) + 42(27,8V") + 42 (g2.82") ]
+ks[q2(gx",g%) + 22(99"29) + 42(82".87)]
< (ki + ko) g1 (gm.8x") + a1 (€9,29") + a1 (g2.827) ]
+ ko[ (g%, g%) + q1(29, ) + 41(¢2,82)]
+hs[ai(ex",8x") + a1 (e7",89") + 1 (¢27, ") ]
+ks[q1(gx", gx) + (g7, 8y) + (g2, g2)]
< (ki + ks + ko) [ @ (g% 857 + a1 (@, 99") + 11 (g2.82") ]
+ ks[q (gx",g%) + a1 (9", 2y) + 11 (2", 82) |

This implies that

71(g%gx*) + q1 (29, @) + 11 (g2, g2")

k
<o e ra(ere) + (e e)] (2.19)
—R1 — A3 = R4

Similarly, we have

qi(gx*,g%) + (8> gy) + q1(gz"> g7)

k
<o alene) (e ey) + a(enge)] (2.20)
—R1 — A3 = R4

Substituting (2.20) into (2.19), we obtain
01 (g0 ") + a1 (gy.8y") + 11 (g2 82)

k ?
= (ﬁ) [(enex) + arlerey) + ailgz )] (2.21)

Since qui(ﬁ <1, from (2.21), we must have q;(gx, gx*) = q1(gy,gy*) = q:1(gz,gz*) = 0. By
Lemma 1.1, we get gx = gx*, gy = gy*, and gz = gz*, which implies that the uniqueness of
the tripled point of coincidence of F and g, that is, (gx, gy, gz).

Next, we will show that gx = gy = gz. In fact, from (2.2), (2.12)-(2.14) we have

01(gx,8y) + 01(2,82) + 41(g2, gx)
= q1(F(x,7,2), F(,2,%)) + q1(F(y,2,%), F(z,%,Y)) + q1(F (2, %,), F (%, 9, 2))

< ki[qa(gx% 8y) + 42(27,82) + 42(g2,g%)]
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+ ko[ q2 (g%, F(x,9,2)) + 42 (g0, F (0,2, %)) + q2(g2, F(2,%,9)) |
+ ks[q2(gy, F(9,2,%)) + 42(g2, F(2,%,)) + g2 (g%, F(x,9,2)) |
+ ka[q2 (g%, F (9, 2,%)) )]

[ )]

)

)
+42(¢0 F(2,%,)) + q2(gz, F(%,,2)
+ ks[q2 (29, F(x,5,2)) + g2 (g2, F (9,2, %))

+ g2 (g% F(z, %,y
= ki[q2(gx, g9) + 42(2,82) + q2(g2,8%) ]
+ ko[ qa (g, g%) + 42(29, ) + 42(g2, £2)]
+ k3[q2(29,29) + q2(g2,82) + q2(gx, )]
+ ka[qa(gx, gY) + 42(2Y, £2) + 42(g2, g%) ]
+ ks[q2(gy, g%) + 42(82.89) + 42(g%,82)]
< ka[q1(gx.gy) + 01(89,82) + 1 (g2,8%)]
+ ka[q1(gx, g%) + q1(gy,29) + 41(g2,82)|
+ k[ (29, 29) + 11 (g2, 82) + a1 (g, g) ]
+ ka1 (gr.y) + q1(gy,82) + 11 (g2 g%)]|
+ ks[q1(gy, g%) + 1(g2,29) + 1 (g%, 82)|
= (ky + ka)[q1(g%, g9) + 01 (€9, 82) + 71(g2, g%) |
+ ks [q1(2y, 8%) + 41(g2, ) + 41 (g, g2) |-

This implies that

q1(g%,8y) + q1(gy,82) + q1(gz, gx)
ks
< —— [a(@g0) + a1(gz @) + a1 (gx. g2) |-
1—k—ky

By similar arguments as above, we can show that

71(8y,g%) + q1(82,&y) + q1(gx, g2)
ks

< —— [algx @) + a1(gy g2) + a1 (g2, gx) |-
-k ke

Substituting (2.23) into (2.22), we have
71(g%: &y) + 41(8,82) + q1(g2 &)

k 2
= (ﬁ) ) [ql(gx,gy) +q1(gy, g2) + ql(gz,gx)],

(2.22)

(2.23)

(2.24)

Since ks < 1, from (2.24), we must have q1(gx,gy) = q1(gy,g2) = q1(gz,gx) = 0. By

1k -
Lemma 1. 1 we get gx = gy = gz.

Finally, assume that F and g are w-compatible. Let u = gx, then we have u = gx =

F(x,y,z) = gy = F(y,z,x) = gz = F(z,%,y), and so that

gu = ggx = g(F(x,,2)) = F(gx, gy, 82) = F(u, u, u1).

(2.25)
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Consequently, (u,u,u) is a tripled coincidence point of F and g, and so (gu,gu,gu) is a
tripled point of coincidence of F and g, and by its uniqueness, we get gu = gx. Thus, we
obtain F(u, u,u) = gu = u. Therefore, (1, u, u) is the unique common tripled fixed point of
F and g. This completes the proof of Theorem 2.1. |

Remark 2.1 Theorem 2.1 improves and extends Theorem 2.1 of Shatanawi and Pitea [42]
in the following aspects:
(1) The single quasi-partial metric extends to two quasi-partial metrics.
(2) The coupled fixed point extends to a tripled fixed point.
(3) The contractive condition defined by (1.1) is replaced by the new contractive
condition defined by (2.2).

In Theorem 2.1, if we take g;(x,y) = q2(x, y) for all x,y € X, then we get the following.

Corollary 2.1 Let (X, q) be a quasi-partial metric space, F : X> — X and g : X — X be two
mappings. Suppose that there exist ky, ky, k3, ka, and ks in [0,1) with ky + ky + k3 + 2ks + ks < 1
such that the condition

a(F(x,9,2), F(u,v,w)) + q(F(y,2, %), F(v, w,u)) + q(E(z,%,9), F(w, u,v))
< k[ gq(gx, gu) + q(gy,gv) + q(z,w)]
+ka[q(gx E(x,9,2)) + (g9, F,2,%)) + q(gz, F(z,%,9)) ]
+ ks[q(gu, F(u,v,w)) + q(gv, F(v, w, ) + q(gw, F(w, u,v))]
+ ka[q(gx, E(u, v, W) + q(gy, E(v, w, ) + q(gz, F(w, u,v)) |
+ ks[q(gu, F(%,9,2)) + q(gv, F(5,2,%)) + q(gw, F(z,%,)) | (2.26)
holds for all x, v,z u,v,w € X. Also, suppose we have the following hypotheses:

(i) F(X*) Cg(X).
(i) g(X) is a complete subspace of X.

Then the mappings F and g have a tripled coincidence point (x,y, z) satisfying
gx=F(x,y,z) =gy =F(y,2,%x) = F(z,x,y) = gz.

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed
point of the form (i, u, u).

Remark 2.2 Corollary 2.1 improves and extends Corollary 2.2 of Aydi and Abbas [41] to

quasi-partial metric spaces.

Corollary 2.2 Let q; and g, be two quasi-metrics on X such that q,(x,y) < q:1(x,y), for all
x,y€X,and F: X> — X, g: X — X be two mappings. Suppose that there exist a; € [0,1)
(i=1,2,3,...,15) with

(o) o($50)  ($50) .

i=10 i=13
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such that the condition

Q (F(x,y, 2), F(u,v,w))
< arq>(gx, gu) + a242(gy,gv) + azq2(gz, gw)
+ daqa (gx,F(x,y, z)) +dsq (gy, F(y,z,%)) + asq> (gz, F(z,%,%))
+ azq, (gu, F(u,v, w)) +agq, (gv, F(v,w, u)) + doqy (gw, F(w,u, v))
+ aq> (gx,F(u, v, w)) +angs (gy, F(v,w, u)) +dngs (gz,F(w, u, v))
+ ai3qs (gu, F(x,y, z)) + duqs (gv, F(y,z, x)) + daisqa (gw, F(z, x,y)) (2.28)
holds for all x,y,z,u,v,w € X. Also, suppose we have the following hypotheses:

(i) F(X®) C g(X).
(i) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a tripled coincidence point (x,y, z) satisfying
gx=F(x,y,z) =gy =F(y,2,x) =gz = F(z,x,9).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed
point of the form (i, u, u).

Proof Given x,y,z,u,v,w € X. It follows from (2.29) that

01 (F(x,9,2), F(u, v, )
< a1qa2(gx, gu) + a2q>(gy,gv) + a3q2(gz, gw)
+aaq> (g%, F(x,9,2)) + asqz (29, F(y,2, %)) + asq> (g2, F(z,%,9))
+ azqo (gu, F(u, v, w)) + asqa (gv, E(v, w, 1)) + asqs (gw, F(w, u, v))
+ a10q2 (g%, F(u, v, w)) + angz (g9, F(v,w, ) + a12q2 (g2, F(w, u, v))
+ ar3q2 (gu, F(%,9,2)) + auqs (gv, F(y,2,%)) + aisq2(gw, F(z, %, ), (2.29)
01 (F(y,2,%), F(v, w,u))
= amq2(gy,gV) + a292(82,gW) + asqa(gx, gu)
+asq> (g9, F(9,2,%)) + asq> (g2, F(z,%,)) + asqa (g5, F(x,,2))
+ azqa(gv, E(v, w, 1)) + asqo (gw, E(w, u,v)) + asqs (gu, F(u, v, w))
+a1042(gy, F(v, w, ) + ang> (gz, F(w, u,v)) + a1oq2 (gx, F(u, v, w))

+ a13q2(gv, F (9,2, %)) + a1aq2 (gw, F(2,%,y)) + a15q2(gu, F(x,, 2)), (2.30)

and

0 (F(Z, x’)’):F(W, u, V))

< a192(gz, gw) + a»q2(gx, gu) + asq.(gy, gv)
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+asq> (g2, F(z,%,9)) + asqa (g%, F(x,,2)) + asqa(gy, F (9,2, %))
+ azqy (gw, F(w, u,v)) + asqa (gu, F(u, v, w)) + aoqa (gv, F(v, w, u))
+ a0q2 (g2, F(w, u,v)) + angs (gx, F(u, v, w)) + a1aq2(gy, F(v, w, u))

+ 13> (gw, F(z, x,y)) + awuqs (gu, F(x,y, z)) + a5 (gv, F(y,z, x)). (2.31)

Adding inequality (2.29) and (2.30) to inequality (2.31), we get

q1(q1(F(x,9,2), F(u, v, w)) + F(9,2,%), F(v, w,u)) + q1 (F(z,%,7), F(w, 1, ))
< (a1 + az + a3)[q2 (g gu) + q2(29,gv) + 42(g2.gW)]
+(as + as + aq)[q2 (g%, F(%,9,2)) + 4229, F (3, 2,%)) + 92 (g2, F (2, %,9)) |
+ (a7 + ag + as)[q2 (gu, F(u, v, w)) + g2 (gv, E(v, w, ) + g2 (gw, F(w, u,v)) ]
+ (a0 + an + a1)[q2 (g% F(u, v, w)) + g2 (g9, Fv, w, 1)) + g2 (g2, F(w, 1, v)) |

+ (@13 + aw + a15) @2 (g1, F(%, 9, 2)) + 42 (gv, F (0, 2,%)) + q2(gw, F(z,%,9)) ] (2.32)
Therefore, the result follows from Theorem 2.1. O

Remark 2.3 If we take g;(x,y) = g2(x,y) = p(x, y) for all x, y € X, where p is a partial metric
on X. Then Corollary 2.2 is reduced to Theorems 2.1 and 2.4 of Aydi and Abbas [41].
Corollary 2.2 also improves and extends Corollary 2.1 of Shatanawi and Pitea [35].

Corollary 2.3 Let q, and q, be two quasi-metrics on X such that q,(x,y) < q1(x,y), for all
x,y€X,and F: X3 — X, g: X — X be two mappings. Suppose that there exists k € [0,1)
such that the condition
q1 (F(x;y) Z),F(M, v, W)) +q1 (F()/, z, x)’F(V) w, u)) +q1 (F(Zr x,_)/), F(W; u, V))
< k[q2(gx, gu) + q2(g,gv) + q2(gz.gw)] (2.33)
holds for all x,y,z,u,v,w € X. Also, suppose we have the following hypotheses:

(i) F(X?) C g(X).
(ii) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a tripled coincidence point (x, y, z) satisfying

gx=F(x,y,z)=gy=F(y,2,%x) =gz = F(z,x,9).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed

point of the form (i, u, u).

Corollary 2.4 Let q) and q, be two quasi-metrics on X such that q,(x,y) < q:1(x,y), for all
x,y€X,and F:X® — X, g: X — X be two mappings. Suppose that there exists k € [0,1)
such that the condition

q1(F(x,9,2), F(u,v,w)) + q1(F (9,2, %), F(v,w,u)) + q1(F (2, %, %), F(w, u,v))
< k[q2(gx, F(%,7,2)) + 42(gy, F (5, 2, %)) + q2(F (g2, F (2. %,))) ] (2.34)
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holds for all x,y,z,u,v,w € X. Also, suppose we have the following hypotheses:
(i) F(X®) C g(X).
(i) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a tripled coincidence point (x,y, z) satisfying

gx=F(x,y,z) =gy =F(y,2,x) =gz =F(z,x,9).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed

point of the form (i, u, u).

Corollary 2.5 Let q; and g, be two quasi-metrics on X such that q,(x,y) < q:1(x,y), for all
x,y€X,and F:X® — X, g: X — X be two mappings. Suppose that there exists k € [0,1)

such that the condition

q1(F(%,9,2), F(u,v.w)) + q1(F(y,2,%x), F(v,w,u)) + q1 (F(2,,), F(w, u, v))
< k[q2(gu, F(u, v, w)) + @2 (gv, E(v, w, 1)) + o (gw, F(w, ,v)) ] (2.35)
holds for all x,y,z,u,v,w € X. Also, suppose we have the following hypotheses:

(i) F(X) C g(X).
(i) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a tripled coincidence point (x,y, z) satisfying

gx=F(x,y,z) =gy =F(y,2,x) =gz = F(z,x,7).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed

point of the form (i, u, u).

Remark 2.4 Corollaries 2.3-2.5 improve and extend Corollaries 2.2-2.4 of Shatanawi and
Pitea [42] in the following aspects:
(1) The single quasi-partial metric extends to two quasi-partial metrics.

(2) The coupled fixed point extends to a tripled fixed point.
Corollary 2.6 Let q;, and q, be two quasi-metrics on X such that q,(x,y) < q1(x,y), for all

xy€X,and F: X® — X, g: X — X be two mappings. Suppose that there exists k € [0, 1)

such that the condition

178} (F(x,y, 2), F(u,v, w)) + q(F(y, z,x), F(v,w, u)) +q1 (F(z, x,9), F(w, u, v))

< k[qz (gx, F(u,v, w)) +q (gy, F(v,w, u)) +q2 (gz, F(w, u, v))] (2.36)

holds for all x,y,z,u,v,w € X. Also, suppose we have the following hypotheses:


http://www.fixedpointtheoryandapplications.com/content/2014/1/71

Gu Fixed Point Theory and Applications 2014, 2014:71 Page 15 of 21
http://www.fixedpointtheoryandapplications.com/content/2014/1/71

i) F(X?) Cg(X).
(i) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a tripled coincidence point (x,y, z) satisfying

gx=F(x,y,z)=gy=F(y,2,%x) =gz =F(z,x,9).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed

point of the form (u, u, u).

Corollary 2.7 Let q; and g, be two quasi-metrics on X such that q,(x,y) < q:(x,y), for all
x,y€X,and F:X® — X, g: X — X be two mappings. Suppose that there exists k € [0,1)
such that the condition
q1 (F(xryr Z)1 F(u’ v, W)) + Q(F()’, Z, x)’ F(Vr w, b[)) +q1 (F(Zr xry)rF(Wr u, V))
< k[q2(gu, F(%,9,2)) + q2(gv, F(3:2, %)) + g2 (gw, F(z,%,9)) ] (2.37)
holds for all x,y,z,u,v,w € X. Also, suppose we have the following hypotheses:

(i) F(X?) Cg(X).
(i) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a tripled coincidence point (x, y, z) satisfying

gx=F(x,y,z) =gy =F(y,2,x) = gz = F(z,x,).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed
point of the form (u, u, u).
Let g = Ix (the identity mapping) in Theorem 2.1 and Corollaries 2.1-2.7. Then we have

the following results.

Corollary 2.8 Let q; and q, be two quasi-metrics on X such that q2(x,y) < q1(x,y), for all
X,y € X, and F : X> — X be a mapping. Suppose that there exist ky, ky, k3, ky, and ks in
[0,1) with ky + ko + k3 + 2ky + ks < 1 such that the condition

0 (F(x,y, 2), F(u,v, w)) +q1 (F(y, z,x), F(v,w, u)) +q (F(z, x,9), F(w, u, v))
<k [qz (xu) + q2(y,v) + q2(z, w)]

(% F(x,9,2)) + q2(0, F(y,2,%)) + g2 (2, F (2, x,y))]
(

+ ks[q2 (u, F(u, v, w)) + @2 (v, E(v, w, 1)) + g (w, F(w, 1,v)) |

+ ko[ g2
[

+ ka[q2 (% E(u, v, w)) + @2 (0, F v, w, 1)) + @1 (2, F(w, 1, v)) |

+ ks[q2 (1, F(x,9,2)) + 2 (v, F(3,2,%)) + q2 (W, F (2, %,)) | (2.38)

holds for all x,y,z,u,v,w € X. If (X, q1) is a complete quasi-partial metric space, then the
mapping F has a unique tripled fixed point of the form (u, u, u).
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Corollary 2.9 Let (X,q) be a complete quasi-partial metric space, F : X> — X be a map-
ping. Suppose that there exist ky, ky, k3, ks, and ks in [0,1) with ky + ko + ks + 2ks + ks <1
such that the condition

q(F(x,y,2), F(u,v,w)) + q(F(y,2,%), F(v, w,u)) + q(F(2,%,), F(w, u,v))
<k[qlxu) +q(,v) + q(z,w)]
+ko[q(x%, F(x,9,2)) + q(3, F(y,2,%)) + q(z F(z,,9)) ]
[q(u, F(w, v, W) + q(v, Fv, w, 1)) + q(w, E(w, u,v)) ]
+ ka[q (%, E(u, v, w)) + q(y, E(v, w, 1)) + q (2, F(w, 1, v)) |
[

+ ks q( ,E(x,, z)) + q(v, F(y,z,x ) + q(w, F(z,x,y))] (2.39)

+kslq

holds for all x,y,z,u,v,w € X. Then F has a unique tripled fixed point of the form (u,u, u).

Remark 2.5 Corollary 2.9 improves and extends Corollary 2.5 of Shatanawi and Pitea
[42], the contractive condition is replaced by the new contractive condition defined by
(2.39).

Corollary 2.10 Let (X,p) be a complete partial metric space, F : X> — X be a mapping.
Suppose that there exist ki, ka, k3, ka, and ks in [0,1) with ki + ky + ks + 2ky + ks < 1 such
that the condition
P(F(%,9,2), F(u,v,w))
< ki[plx, w) + p(y,v) + p(z, )]
+ka[p(x, F(x,9,2)) + p(3: F (9,2, %)) + p(2,F(2,%,9)) ]
+ k3 [p(u F(u,v, w)) +p(V,F(v, w, u)) +p(w, F(w,u, v))]

+ ks [p( F(%,9,2)) + p(v, F(y,2,%)) + p(w, F(z,%,9)) ] (2.40)

holds for all x,y,z,u,v,w € X. Then the mapping F has a unique tripled fixed point of the
form (u,u, u).

Corollary 2.11 Let q; and q, be two quasi-metrics on X such that q(x,y) < q1(x,), for all

%,y € X,and F : X> — X be a mapping. Suppose that there exist a; € [0,1) (i =1,2,3,...,15)
with

<Z a,) +2 (;{; al) + (i al) <1 (2.41)

such that the condition

a0 (F(x»)’: z), F(u,v, W))

< a1q2(%, u) + axga(y, v) + asqa(z, w)
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+asqy (%, F(%,9,2)) + asqa (3, F(,2,%)) + asqa (2, F(z,%,9))

+ azq (u, F(u, v, w)) + agqa (v, F(v,w, ) + aoqa (w, F(w, u,v))

+ aroq2 (%, F(u, v, w)) + angs (5, F(v, w, 1)) + araq (2, F(w, u, v))

+ a13q> (4, F(%,9,2)) + a1aqz (v, F(9, 2, %)) + a15q2 (w, F (2, %, )) (2.42)

holds for all x,y,z,u,v,w € X. If (X, q1) is a complete quasi-partial metric space. Then the
mapping F has a unique coupled fixed point of the form (u, u, u).

Remark 2.6 Corollary 2.11 improves and extends Corollary 2.6 of Shatanawi and Pitea
[42] in the following aspects:
(1) The single quasi-partial metric extends to two quasi-partial metrics.
(2) The coupled fixed point extends to a tripled fixed point.
(3) The contractive condition is replaced by the new contractive condition defined by
(2.42).

Corollary 2.12 Let q; and q, be two quasi-metrics on X such that q,(x,y) < q:(x,y), for
all x,y € X, and F : X®> — X be a mapping. Suppose that there exists k € [0,1) such that the
condition

q1(F(x,9,2), F(u,v,w)) + q1 (F(y,2,%), F(v, w,u)) + q1 (F (2, %, %), F(w, 1, v))
< k[q2(%,u) + ©2(9,) + q2(z, W) (2.43)

holds for all x,y,z,u,v,w € X. If (X, q1) is a complete quasi-partial metric space. Then the
mapping F has a unique tripled fixed point of the form (u,u, u).

Corollary 2.13 Let q; and q, be two quasi-metrics on X such that q,(x,y) < q:(x,y), for
all x,y € X, and F : X®> — X be a mapping. Suppose that there exists k € [0,1) such that the
condition

q1(F(%,9,2), F(u,v,w)) + q1 (F (9, 2,%), F(v, w, )) + q1 (F (2, %,y), F(w, u,))
<k[g2(%F(x,,2)) + q2(% F (5,2, %)) + q2(2, F(z,%,9)) ] (2.44)

holds for all x,y,z,u,v,w € X. If (X, q1) is a complete quasi-partial metric space. Then the
mapping F has a unique tripled fixed point of the form (u, u, u).

Corollary 2.14 Let q; and q, be two quasi-metrics on X such that q,(x,y) < qi(x,y), for
allx,y € X, and F : X® — X be a mapping. Suppose that there exists k € [0,1) such that the
condition

q1(F(%,9,2), F(u,v,w)) + q(F(9,2,%), F(v,w, ) + q1 (F (2, %, y), F(w, u,))

< k[q2(u, F(t,v,w)) + g2 (v, F(v,w, 1)) + q2 (W, F(w, 1, v)) ] (2.45)

holds for all x,y,z,u,v,w € X. If (X, q1) is a complete quasi-partial metric space. Then the
mapping F has a unique tripled fixed point of the form (u,u, u).
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Remark 2.7 Corollaries 2.12-2.14 improve and extend Corollaries 2.7-2.9 of Shatanawi
and Pitea [42] in the following aspects:
(1) The single quasi-partial metric extends to two quasi-partial metrics.

(2) The coupled fixed point extends to a tripled fixed point.
Corollary 2.15 Let q1 and q, be two quasi-metrics on X such that q,(x,y) < q1(x,y), for all

x,y € X, and F : X® — X be a mapping. Suppose that there exists k € [0, %) such that the
condition

q1(F(x,9,2), F(u,v,w)) + q(F(y,2,%), F(v, w,u)) + q1 (F (2, %,%), F(w, u,v))

< k[qg (x,F(u, v, w)) + 4 (y, F(v,w, u)) +q> (z,F(w, u, v))]

holds for all x,y,z,u,v,w € X. If (X, q1) is a complete quasi-partial metric space. Then the
mapping F has a unique tripled fixed point of the form (u, u, u).

Corollary 2.16 Let q and q, be two quasi-metrics on X such that q,(x,y) < q1(x,y), for

allx,y € X, and F : X® — X be a mapping. Suppose that there exists k € [0,1) such that the
condition

q1(F(x,9,2), F(u,v,w)) + q1 (F(y,2,%), F(v, w,u)) + q1 (F (2, %,%), F(w, u,v))

< k[q2(#, F(%,9,2)) + @2 (v, F(y,2,%)) + g2 (w, F(2,%,9)) ]

holds for all x,y,z,u,v,w € X. If (X, q1) is a complete quasi-partial metric space. Then the
mapping F has a unique tripled fixed point of the form (u, u, u).

Now, we introduce an example to support our results.

Example 2.1 Let X = [0,1], and two quasi-partial metrics g;,g, on X be given as

1
qxy)=x—y|+x and qa(x,y) = §[|x—y| +x]

for all x,y € X. Also, define F: X —Xandg: X — Xas

xX+y+z
27

F(x,y,2) = and gx= g
for all x,5,z € X. Then
(1) (X,q) is a complete quasi-partial metric space.
(2) FX®) cX.
(3) F and g are w-compatible.
(4) Forany x,y,z,u,v,w € X, we have

q1(F(x,9,2), F(u,v,w)) + q1(F(9,2,%) + F(v,w, 1)) + q1 (F(z,, ), F(w, u, v))

= % (qz(gx,gu) +q2(gy,8v) + qz(gz,gw)),
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Proof The proofs of (1), (2), and (3) are clear. Next we show that (4). In fact, for

X2, U, V, W E X, we have

q1(F(x,9,2), F(u,v,w)) + q1 (F(y,2,%) + F(v,w, 1)) + q1 (F(2,, ), F(w, u, v))

X+y+zZ u+v+w y+z+x v+w+u Z+x+y w+tu+v
) +Q1 ) +q1 )

Il
N
=

27 27 27 27 27 27
1
=§(|x+y+z—(u+v+w)|+(x+y+z))
1
5§(|x—u|+|y—v|+|z—w|+x+y+z)
1//1 1 1 1 1 1 1
=(|zx=Zu|+x+|zy—sv|+=y+|cz--w|+ =z
s\|37 73" "33 8" T 375 T
1
= 3 (2ex.gu) + d2(2,8Y) + d2(e2.8w)-

Thus, F and g satisfy all the hypotheses of Corollary 2.3. So, F and g have a unique common

coupled fixed point. Here (0, 0,0) is the unique common tripled fixed point of F and g. [J
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