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Abstract
In this paper, we study attractive points for a class of generalized nonexpansive
mappings on star-shaped sets and establish strong convergence theorems of the
Halpern iterative sequences generated by these mappings in a real Hilbert space. We
modify Halpern’s iterations for finding an attractive point of a mapping T satisfying
condition (E) on a star-shaped set C in a real Hilbert space H and provide an
affirmative answer to an open problem posed by Akashi and Takahashi in a recent
work of (Appl. Math. Comput. 219(4):2035-2040, 2012) for nonexpansive and
nonspreading mappings. Furthermore, we study the approximation of common
attractive points of generalized nonexpansive mappings and derive a strong
convergence theorem by a new iteration scheme for these mappings. As applications
of our results, we study multiple sets split monotone inclusion problems for inverse
strongly monotone mappings, multiple sets split optimization problems, and multiple
sets split feasibility problems. Our results contain many original results on multiple
sets split feasibility problem in the literature. Our results also improve and generalize
many well-known results in the current literature.
MSC: 47H10; 37C25
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1 Introduction
Throughout this paper, we denote the set of real numbers and the set of positive integers
by R and N, respectively. Let H be a Hilbert space with the norm ‖ · ‖ and C a nonempty
subset of H . Let T : C → H be a mapping. We denote by F(T) the set of fixed points of T
and by A(T) the set of attractive points (see []) of T , i.e.,

F(T) = {x ∈ C : Tx = x} and A(T) =
{
x ∈H : ‖Ty – x‖ ≤ ‖y – x‖,∀y ∈ C

}
.

A mapping T : C → H is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C.
A mapping T : C →H is said to be quasi-nonexpansive if F(T) �= ∅ and ‖Tx– y‖ ≤ ‖x– y‖
for all x ∈ C and y ∈ F(T). A mapping T : C → H is said to be strongly monotone if there
exists γ̄ >  such that 〈x – y,Tx – Ty〉 ≥ γ̄ ‖x – y‖ for all x, y ∈H .
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Recall that the one-step Halpern iteration (see []) is given by the following formula:

xn+ = αnu + ( – αn)Txn, u ∈ C,x ∈ C. (.)

Here, {αn}n∈N is a real sequence in [, ] satisfying some appropriate conditions. A more
general iteration scheme of one-step Halpern iteration is two-step Halpern iteration given
by

⎧⎪⎨
⎪⎩
u ∈ C,x ∈ C chosen arbitrarily,
yn = ( – βn)xn + βnTxn,
xn+ = αnu + ( – αn)yn,

(.)

where the sequences {βn}n∈N and {αn}n∈N satisfy some appropriate conditions. In partic-
ular, when all βn = , the Halpern iteration (.) becomes the standard Halpern iteration
(.).

Definition . Let C be a nonempty subset of a Hilbert space H . Then C is called star-
shaped if there exists z ∈ C such that for any x ∈ C and any λ ∈ (, ),

λz + ( – λ)x ∈ C.

Such z ∈ C is called a center of the star-shaped set C.

Recently, Takahashi andTakeuchi [] introduced the concept of attractive points. Akashi
and Takahashi [] proved the following strongly convergence attractive point theorem for
nonexpansive mappings on a star-shaped set C of a Hilbert space.

Theorem . Let H be a Hilbert space and C be a star-shaped subset of H with center
z ∈ C. Let T : C → C be a nonexpansive mapping with A(T) �= ∅. Suppose that {xn}n∈N is a
sequence generated by x = x ∈ C and

xn+ = αnz + ( – αn)Txn, ∀n ∈N,

where  ≤ αn ≤ , limn→∞ αn = ,
∑∞

n= αn = ∞ and
∑∞

n= |αn – αn+| < ∞. Then {xn}n∈N
converges strongly to PA(T)z, where PA(T) is metric projection of H onto A(T).

Akashi and Takahashi [] posed the following open problem in their final remark.

Question . Is there any strong convergence theoremofHalpern’s type for awide class of
nonlinear mappings which contains nonexpansive mappings and nonspreading mappings
in a real Hilbert space H?

Definition . ([]) Let C be a nonempty subset of a Banach space X. For μ ≥ , we say
that a mapping T : C → X satisfies condition (Eμ) on C if there exists μ ≥  such that for
all x, y ∈ C,

‖x – Ty‖ ≤ μ‖x – Tx‖ + ‖x – y‖.

We say that T satisfies condition (E) on C whenever T satisfies (Eμ) on C for some μ ≥ .
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The split feasibility problem (SFP) is to find a point

x∗ ∈ C such that Ax∗ ∈Q,

where C is a nonempty closed convex subset of a Hilbert spaceH,Q is a nonempty closed
convex subset of a Hilbert space H, and A : H → H is an operator. The split feasibility
problem in finite dimensional Hilbert spaces was first introduced by Censor et al. [] for
modeling inverse problems which arise from phase retrievals and in medical image re-
construction. The split feasibility problem has applications in signal processing, image
reconstruction, approximation theory, control theory, biomedical engineering, commu-
nications, and geophysics. One may refer to [–].
Let C,C, . . . ,Cm be nonempty closed convex subsets of a Hilbert space H, let

Q,Q, . . . ,Qn be nonempty, closed convex subsets of Hilbert space H and let A,A,
. . . ,Am :H → H be linear operators. The well known multiple sets split feasibility prob-
lem (MSSFP) is to find x∗ ∈H such that x∗ ∈ Ci and Aix∗ ∈Qi for all i = , , . . . ,m.
Multiple sets split feasibility problem (MSSFP) contains convex feasibility problem

(CFP) and split feasibility problems (SFP) as special cases [, , ].
In this paper, we study attractive points for a class of generalized nonexpansive map-

pings on star-shaped sets and establish strong convergence theorems of the Halpern it-
erative sequences generated by these mappings in a real Hilbert space. We modify the
Halpern iterations for finding an attractive point of a mapping T satisfying condition (E)
on a star-shaped set C in a real Hilbert spaceH and provide an affirmative answer to open
Question .. Furthermore, we study the approximation of common attractive points of
generalized nonexpansive mappings and derive a strong convergence theorem by a new
iterative scheme for these mappings. As applications of our results, we study multiple
sets split monotone inclusion problems for inverse strongly monotone mappings, mul-
tiple sets split optimization problem, multiple sets split feasibility problem. To the best
of our knowledge, there is no result on multiple sets split monotone inclusion for inverse
strongly monotone mappings and multiple sets split optimization problem in the liter-
ature. Our results also improve and generalize many well-known results in the current
literature; see, for example, [].

2 Preliminaries
Following Kohsaka and Takahashi [], a mapping T : C → H is said to be nonspreading
if

‖Tx – Ty‖ ≤ ‖Tx – y‖ + ‖x – Ty‖ (.)

for all x, y ∈ C.
Let C be a nonempty, closed convex subset of a Hilbert space H and x ∈ H . Then there

exists a unique nearest point z ∈ C such that ‖x – z‖ = infy∈C ‖x – y‖. We denote such a
correspondence by z = PCx. The mapping PC is called ametric projection of H onto C.

Definition . ([]) Let C be a nonempty subset of a Banach space X. We say that a
mapping T : C → X satisfies condition (C) on C if for all x, y ∈ C,



‖x – Tx‖ ≤ ‖x – y‖
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implies

‖Tx – Ty‖ ≤ ‖x – y‖.

Remark . ([] and []) Let T : C → X.
(i) It is obvious that if T is nonexpansive, then T satisfies (Eμ) on C for some μ ≥ ,

but the converse is not true.
(ii) If T satisfies condition (C), then T satisfies (Eμ) on C for some μ ≥ , but the

converse is not true.
(iii) If T satisfies condition (E), it is easy to see that

A(T)∩C = F(T).

In this section, we collect some lemmas which will be used in the proofs for the main
results in next sections. We start with the following well-known lemma.

Lemma . ([]) Let H be a real Hilbert space and C a nonempty convex subset of H . For
given x ∈H :

(i) z = PCx if and only if

〈x – z, y – z〉 ≤ , ∀y ∈ C.

(ii) z = PCx if and only if

‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C.

(iii) 〈PCx – PCy,x – y〉 ≥ ‖PCx – PCy‖, ∀x, y ∈ H . Consequently, PC is a nonexpansive
mapping.

Lemma . ([]) In a Hilbert space H , we have
(i) for all x, y ∈H and λ ∈ [, ]

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖;

(ii) for all x, y, z ∈H

‖x – y‖ ≤ ∥∥x – (y + z)
∥∥ + 〈x – y, z〉;

(iii) for all x, y ∈H

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉;

(iv) for all x, y,w ∈ H ,

〈
(x – y) + (x –w), y –w

〉
= ‖x –w‖ – ‖x – y‖.
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Takahashi and Takeuchi [] proved the following useful lemmas related to attractive
points of a nonempty set C in a Hilbert space H .

Lemma . Let C be a nonempty subset of a real Hilbert space H and T : C → H be a
mapping. Then A(T) is a closed convex subset of H .

Lemma . Let C be a nonempty subset of a real Hilbert space H and T : C → H be a
mapping. If {un}n∈N be a sequence in H such that

lim sup
n→∞

〈
(un – y) + (un – Ty), y – Ty

〉 ≤ 

for all y ∈ C. If a subsequence {uni}i∈N of {un}n∈N, converges weakly to u ∈ H , then u ∈ A(T).

Lemma . Let C be a nonempty subset of a real Hilbert space H and T : C → C be a
nonexpansive mapping. Then the following assertions are equivalent.
() The attractive point set A(T) �= ∅.
() There exists x ∈ C such that the sequence {Tnx}n∈N is bounded.

Proposition . Let C be a nonempty subset of a Banach space X and T : C → C be a
mapping which satisfies condition (Eμ) for someμ ≥ .Then the following statements hold.

(i) For all x ∈ C,

‖x – Tx‖ ≤ (μ + )‖x – Tx‖.

(ii) For all x, y ∈ C,

‖Tx – Ty‖ ≤ μ(μ + )‖x – Tx‖ + ‖Tx – y‖.

(iii) For all x, y ∈ C,

‖Tx – Ty‖ – ‖Tx – y‖ ≤ [
μ(μ + )‖x – Tx‖ + μ(μ + )‖Tx – y‖]‖x – Tx‖.

Proof
(i) Since T satisfies condition (Eμ),

∥∥x – Tx
∥∥ ≤ μ‖x – Tx‖ + ‖x – Tx‖ ≤ (μ + )‖x – Tx‖.

(ii) By (i),

‖Tx – Ty‖ ≤ μ
∥∥Tx – Tx

∥∥ + ‖Tx – y‖
≤ μ

(‖Tx – x‖ + ∥∥x – Tx
∥∥)

+ ‖Tx – y‖
≤ μ(μ + )‖Tx – x‖ + ‖Tx – y‖.

(iii) This follows immediately from (ii). This completes the proof.
�
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Example . Let T : [, ]→ [, ] be defined by

Tx =

{
 if x ∈ [, ),
 if x = .

Then T is a nonspreading mapping with F(T) = {}. Indeed, for any x ∈ [, ) and y = ,
we have Tx =  and Ty = . Observe now that

|Tx – Ty| = | – |

≤ |x – | + | – |

= |x – Ty| + |y – Tx|.

The other cases can be verified similarly. It is worth mentioning that T is neither non-
expansive nor continuous.

Proposition . Let C be a nonempty subset of a Banach space X and T : C → C be a
mapping. If T is a nonspreading mapping, then it satisfies condition (E) on C.

Proof Since T is a nonspreading mapping, then we have

‖Tx – Ty‖ ≤ ‖Tx – y‖ + ‖x – Ty‖, ∀x, y ∈ C.

This implies that, for any x, y ∈ C,

() ‖Tx – Ty‖ ≤ ‖Tx – y‖ or () ‖Tx – Ty‖ ≤ ‖x – Ty‖.

If () holds, then we have

‖x – Ty‖ ≤ ‖x – Tx‖ + ‖Tx – Ty‖
≤ ‖x – Tx‖ + ‖Tx – y‖
≤ ‖x – Tx‖ + ‖Tx – x‖ + ‖x – y‖
= ‖x – Tx‖ + ‖x – y‖.

If () holds, then we obtain

‖y – Tx‖ ≤ ‖y – Ty‖ + ‖Ty – Tx‖
≤ ‖y – Ty‖ + ‖x – Ty‖
≤ ‖y – Ty‖ + ‖x – y‖ + ‖y – Ty‖
= ‖y – Ty‖ + ‖x – y‖.

This completes the proof. �

Let us give an example of a generalized nonexpansivemappingwhich is not a nonspread-
ing mapping.

http://www.fixedpointtheoryandapplications.com/content/2014/1/72
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Example . Let T : [–, ] → [–, ] be defined by

Tx =

{ |x|
 if x ∈ [–, ),
– 

 if x = .

It could easily be verified that T satisfies condition (E) on [–, ]; for more details, see [].
However, the mapping T is not a nonspreading mapping. Indeed, for x = – and y = , we
have Tx =  and Ty = – 

 . Thus we obtain

|Tx – Ty| = 
∣∣∣∣ + 



∣∣∣∣


=



(.)

and

|Tx – y| + |x – Ty| =
∣∣∣∣– + 



∣∣∣∣


=


.

If T is a nonspreading mapping, then, in view of (.), we have

|Tx – Ty| = 


≤ 

.

This is a contradiction. Therefore, T is not a nonspreading mapping.

Lemma . (see [, Lemma .]) Let {sn}n∈N be a sequence of nonnegative real numbers
satisfying the inequality:

sn+ ≤ ( – γn)sn + γnδn, ∀n≥ ,

where {γn}n∈N and {δn}n∈N satisfy the conditions:

(i) {γn}n∈N ⊂ [, ] and
∑∞

n= γn =∞, or equivalently,
∏∞

n=( – γn) = ;
(ii) lim supn→∞ δn ≤ , or
(ii)′

∑∞
n= γnδn < ∞.

Then limn→∞ sn = .

To prove our main result, we need the following lemma.

Lemma . ([]) Let {sn}n∈N be a sequence of nonnegative real numbers, let {αn}n∈N be a
sequence of [, ] with

∑∞
n= αn =∞, let {βn}n∈N be a sequence of nonnegative real numbers

with
∑∞

n= βn < ∞ and let {γn}n∈N be a sequence of real numbers with lim supn→∞ γn ≤ .
Suppose that

sn+ ≤ ( – αn)sn + αnγn + βn, ∀n≥ .

Then limn→∞ sn = .

The following lemma has been proved in [].

http://www.fixedpointtheoryandapplications.com/content/2014/1/72
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Lemma . Let {an}n∈N be a sequence of real numbers such that there exists a subse-
quence {ni}i∈N of {n}n∈N such that ani < ani+ for all i ∈ N. Then there exists a subsequence
{mk}k∈N ⊂ N such thatmk → ∞ and the following properties are satisfied by all (sufficiently
large) numbers k ∈N:

amk ≤ amk+ and ak ≤ amk+.

In fact,mk =max{j ≤ k : aj < aj+}.

Let X be a real Banach space. The modulus δ of convexity of X is denoted by

δ(ε) = inf

{
 –

‖x + y‖


: ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}

for every ε with  ≤ ε ≤ . A Banach space X is said to be uniformly convex if δ(ε) >  for
every ε > . It is well that any Hilbert space is a uniformly convex Banach space; see, for
more details [].
We know the following result from [].

Lemma . Let X be a uniformly convex Banach space and Br := {x ∈ X : ‖x‖ ≤ r}, r > .
Then there exists a continuous strictly increasing convex function g : [,∞)→ [,∞) with
g() =  such that

‖λx + βy + γ z‖ ≤ λ‖x‖ + β‖y‖ + γ ‖z‖ – λβg
(‖x – y‖)

for all x, y, z ∈ Br and all λ,β ,γ ∈ [, ] with λ + β + γ = .

The following result has been proved in [].

Lemma . Let X be a uniformly convex Banach space, r >  be a constant. Then there
exists a continuous, strictly increasing and convex function g : [,∞) → [,∞) such that

∥∥∥∥∥
∞∑
k=

αkxk

∥∥∥∥∥


≤
∞∑
k=

αk‖xk‖ – αiαjg
(‖xi – xj‖

)

for all i, j ∈N∪{}, xk ∈ Br := {z ∈ X : ‖z‖ ≤ r}, αk ∈ (, ) and k ∈N∪{}with∑∞
k= αk = .

3 Strong convergence theorems
The following result presents an existence theorem of attractive points of a generalized
nonexpansive mapping T on a nonempty subset C of a Hilbert space H .

Theorem . Let C be a nonempty subset of a real Hilbert space H . Let T : C → C be
a mapping satisfying condition (E) on C which is uniformly asymptotically regular, i.e.,
limn→∞ ‖Tnx – Tn+x‖ =  for all x ∈ C. Then the following assertions are equivalent.
() The attractive point set A(T) �= ∅.
() There exists x ∈ C such that the sequence {Tnx}n∈N is bounded.

http://www.fixedpointtheoryandapplications.com/content/2014/1/72
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Proof The implication () �⇒ () is obvious. For the converse implication, suppose that
there exists x ∈ C such that the sequence {Tnx}n∈N is bounded. Setting un = Tnx for all
n ∈N, the uniformly asymptotically regularity of T assures that

lim
n→∞‖Tun – un‖ = lim

n→∞
∥∥Tn+x – Tnx

∥∥ = . (.)

Since {un}n∈N is bounded and C is a nonempty subset of the Hilbert space H , there exists
a subsequence {unk }k∈N of {un}n∈N such that unk ⇀ y ∈ C as k → ∞. Next, we denote unk
by xk for all k ∈ N. This, together with (.), implies that

lim
k→∞

‖Txk – xk‖ = lim
k→∞

‖Tunk – unk‖ =  and xk ⇀ y as k → ∞.

Thus we have

lim sup
k→∞

‖xk – Ty‖ ≤ μ lim sup
k→∞

‖Txk – xk‖ + lim sup
k→∞

‖xk – y‖ = lim sup
k→∞

‖xk – y‖.

The Opial property implies that y ∈ F(T)⊂ A(T), which completes the proof. �

The following strong convergence result provides an affirmative answer to open Ques-
tion . in the case where the mapping T is a generalized nonexpansive mapping.

Theorem . Let H be a Hilbert space and C be a star-shaped subset of H with center
z ∈ C. Let T : C → C be a mapping satisfying condition (E) on C such that A(T) �= ∅. Sup-
pose that {xn}n∈N is a sequence generated by x = x ∈ C and

xn+ = αnz + ( – αn)Txn, ∀n ∈N, (.)

where  ≤ αn ≤ , limn→∞ αn = ,
∑∞

n= αn = ∞ and
∑∞

n= |αn – αn+| < ∞. Then {xn}n∈N
converges strongly to PA(T)z, where PA(T) is metric projection of H onto A(T).

Proof Let x ∈ C and u = PA(T)z. Following the same argument as in Theorem . [], we
can show that the sequences {xn}n∈N and {Txn}n∈N are bounded.
Let K := sup{|‖z‖,‖Txn –u‖| : n ∈ N}, with the same argument as in Theorem . [], we

see that

‖xn+ – xn‖ ≤ K |αn – αn+| + ( – αn)‖xn – xn–‖.

Since  ≤ αn ≤ , limn→∞ αn = ,
∑∞

n= αn = ∞ and
∑∞

n= |αn – αn+| < ∞, we have from
Lemma . that

lim
n→∞‖xn+ – xn‖ = .

This last result together with (.) amounts to

lim
n→∞‖xn – Txn‖ = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/72
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In view of Lemma .(iv), we get, for any y ∈ C,

lim sup
n→∞

〈
(xn – y) + (xn – Ty), y – Ty

〉
= lim sup

n→∞
〈
(Txn – y) + (Txn – Ty), y – Ty

〉
= lim sup

n→∞
(‖Txn – Ty‖ – ‖Txn – y‖)

≤ lim sup
n→∞

[
μ(μ + )‖xn – Txn‖ + μ(μ + )‖Txn – y‖]‖xn – Txn‖

≤ lim sup
n→∞

[
μ(μ + ) + μ(μ + )

]
M‖xn – Txn‖,

whereM = sup{‖Txn – y‖,‖Txn – xn‖ : n ∈ N}. Thus we obtain

lim sup
n→∞

〈
(xn – y) + (xn – Ty), y – Ty

〉 ≤ , ∀y ∈ C.

Since {xn}n∈N is bounded, there exists a subsequence {xni}i∈N of {xn}n∈N such that xni ⇀ y,
and

lim sup
n→∞

〈xn – u, z – u〉 = lim
i→∞〈xni – u, z – u〉 = 〈y – u, z – u〉.

By Lemma ., y ∈ A(T). This, together with Lemma .(ii), implies that

lim sup
n→∞

〈xn+ – u, z – u〉 ≤ lim sup
n→∞

〈xn+ – xn, z – u〉

+ lim sup
n→∞

〈xn – u, z – u〉

= lim sup
n→∞

〈xn – u, z – u〉

= lim
i→∞〈xni – u, z – u〉

= 〈y – u, z – u〉 = 〈y – PA(T)z, z – PA(T)z〉
≤ .

From Lemma .(iii) and (.), we have

‖xn+ – PA(T)z‖ =
∥∥αnz + ( – αn)xn – PA(T)z

∥∥

≤ ∥∥( – αn)(xn – PA(T)z)
∥∥ + αn〈xn+ – PA(T)z, z – PA(T)z〉

≤ ( – αn)‖xn – PA(T)z‖ + αn〈xn+ – PA(T)z, z – PA(T)z〉.

Then Theorem . follows from Lemma .. �

Applying Theorems . and . and following the same arguments as Theorem . [],
we have the following fixed point theorem, which generalizes Theorem . [].

http://www.fixedpointtheoryandapplications.com/content/2014/1/72


Naraghirad and Lin Fixed Point Theory and Applications 2014, 2014:72 Page 11 of 24
http://www.fixedpointtheoryandapplications.com/content/2014/1/72

Theorem . Let H be a Hilbert space and C be a closed star-shaped subset of H . Let T :
C → C be a mapping satisfying condition (E) on C such that T is uniformly asymptotically
regular and {Tnx}n∈N is bounded for some x ∈ C. Then F(T) �= ∅.

For the special case of Theorem ., we have the following fixed point theorem.

Corollary . Let H be a Hilbert space and C be a closed star-shaped subset of H . Let T :
C → C be amapping satisfying condition (C) on C such that T is uniformly asymptotically
regular and {Tnx}n∈N is bounded for some x ∈ C. Then F(T) �= ∅.

Applying Theorem . and following the same arguments as Theorem . [], we have
the following fixed point convergence theorem, which generalizes Theorem . [].

Theorem . Let H be a Hilbert space and C be a closed star-shaped subset of H with
center z ∈ C. Let T : C → C be a mapping satisfying condition (E) on C such that F(T) �= ∅.
Suppose that {xn}n∈N is a sequence generated by x = x ∈ C and

xn+ = αnz + ( – αn)Txn, ∀n ∈N,

where  ≤ αn ≤ , limn→∞ αn = ,
∑∞

n= αn = ∞ and
∑∞

n= |αn – αn+| < ∞. Then {xn}n∈N
converges strongly to some u ∈ F(T), where

u = arg min
u∈F(T)

‖u – z‖.

Corollary . Let H be a Hilbert space and C be a closed star-shaped subset of H with
center z ∈ C. Let T : C → C be a mapping satisfying condition (C) on C such that F(T) �= ∅.
Suppose that {xn}n∈N is a sequence generated by x = x ∈ C and

xn+ = αnz + ( – αn)Txn, ∀n ∈N,

where  ≤ αn ≤ , limn→∞ αn = ,
∑∞

n= αn = ∞ and
∑∞

n= |αn – αn+| < ∞. Then {xn}n∈N
converges strongly to some u ∈ F(T), where

u = arg min
u∈F(T)

‖u – z‖.

Remark . The two-step Halpern iteration process is a generalization of the one-step
Halpern iteration process. It providesmore flexibility in defining the algorithmparameters
which is important from the numerical implementation perspective.

In the following, we prove strong convergence theorems of common attractive points
for generalized nonexpansive mappings in a Hilbert space.

Theorem . Let H be a Hilbert space and C be a convex subset of H and z ∈ C. Let
T : C → C be a mapping satisfying condition (Eλ) on C and T : C → C be a mapping
satisfying condition (Eμ) on C such that A := A(T) ∩ A(T) �= ∅. Let {αn}n∈N, {βn,}n∈N,
{βn,}n∈N, and {βn,}n∈N be sequences in [, ] satisfying the following control conditions:
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(a) limn→∞ αn = ;
(b)

∑∞
n= αn =∞;

(c) βn, + βn, + βn, = , ∀n ∈ N;
(d) lim infn→∞ βn,jβn, > , j = , .

Let {xn}n∈N be a sequence generated by

⎧⎪⎨
⎪⎩
x ∈ C chosen arbitrarily,
yn = βn,Txn + βn,Txn + βn,xn,
xn+ = αnz + ( – αn)yn.

(.)

Then the sequence {xn}n∈N defined in (.) converges strongly to PAz, where PA is the metric
projection from H onto A.

Proof We divide the proof into several steps. Set

u = PAz.

Step . We prove that the sequences {xn}n∈N, {yn}n∈N, {Txn}n∈N, and {Txn}n∈N are
bounded.
We first show that {xn}n∈N is bounded.
Let p ∈ A be fixed. In view of Lemma ., there exists a continuous strictly increasing

convex function g : [,∞) → [,∞) with g() =  such that

‖yn – p‖ = ‖βn,Txn + βn,Txn + βn,xn – p‖

≤ βn,‖Txn – p‖ + βn,‖Txn – p‖ + βn,‖xn – p‖

– βn,jβn,g
(‖xn – Tjxn‖

)
≤ βn,‖xn – p‖ + βn,‖xn – p‖ + βn,‖xn – p‖

– βn,jβn,g
(‖xn – Tjxn‖

)
= ‖xn – p‖ – βn,jβn,g

(‖xn – Tjxn‖
)

≤ ‖xn – p‖, j = , . (.)

This together with (.) entails

‖xn+ – p‖ = ∥∥αnu + ( – αn)yn – p
∥∥

≤ αn‖u – p‖ + ( – αn)‖yn – p‖
≤ αn‖u – p‖ + ( – αn)‖xn – p‖
≤max

{‖u – p‖,‖xn – p‖}.
Consequently, by induction, we deduce that

‖xn+ – p‖ ≤max
{‖u – p‖,‖x – p‖}

for all n ∈ N. This implies that the sequence {‖xn – p‖}n∈N is bounded and hence the se-
quence {xn}n∈N is bounded. Then, by (.), {yn}n∈N, {Txn}n∈N, and {Txn}n∈N are bounded.
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Step . We prove that for any n ∈N

‖xn+ – u‖ ≤ ( – αn)‖xn – u‖ + αn〈xn+ – u, z – u〉. (.)

Let us show (.). For each n ∈N and j = , , in view of (.), we obtain

‖yn – u‖ ≤ ‖xn – u‖ – βn,jβn,g
(‖xn – Tjxn‖

)
.

This implies that

‖xn+ – u‖ = ‖αnz + ( – αn)yn – u‖

≤ αn‖z – u‖ + ( – αn)‖yn – u‖

≤ αn‖z – u‖ + ( – αn)
[‖xn – u‖ – βn,jβn,g

(‖xn – Tjxn‖
)]
. (.)

LetM := sup{|‖z – u‖ – ‖xn – u‖| : n ∈N, j = , }. It follows from (.) that

βn,jβn,g
(‖xn – Tjxn‖

) ≤ ‖xn – u‖ – ‖xn+ – u‖ + αnM, j = , . (.)

In view of Lemma .(ii) and (.), we obtain

‖xn+ – u‖ = ∥∥αnz + ( – αn)yn – u
∥∥

≤ ∥∥αnz + ( – αn)yn – u – αn(z – u)
∥∥ + 

〈
xn+ – u,αn(z – u)

〉
=

∥∥( – αn)(yn – u)
∥∥ + αn〈xn+ – u, z – u〉

≤ ( – αn)‖yn – u‖ + αn〈xn+ – u, z – u〉
≤ ( – αn)‖xn – u‖ + αn〈xn+ – u, z – u〉.

Step . We prove that xn → u as n→ ∞.
We discuss the following two possible cases.
Case . Suppose that there exists n ∈N such that {‖xn –u‖}∞n=n is nonincreasing. Then

the sequence {‖xn – u‖}n∈N is convergent. Thus we have ‖xn – u‖ – ‖xn+ – u‖ →  as
n→ ∞. This, together with conditions (c), (d), and (.), imply that

lim
n→∞‖xn – Txn‖ = , and lim

n→∞‖xn – Txn‖ = . (.)

On the other hand, we have

yn – xn = βn,(xn – Txn) + βn,(xn – Txn), and xn+ – yn = αn(z – yn).

This implies that

lim
n→∞‖yn – xn‖ = , and lim

n→∞‖xn+ – yn‖ = . (.)

By the triangle inequality, we conclude that

‖xn+ – xn‖ ≤ ‖xn+ – yn‖ + ‖yn – xn‖.
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It follows from (.) that

lim
n→∞‖xn+ – xn‖ = .

Using Proposition ., Lemma .(iv), and (.), we obtain for any y ∈ C

lim sup
n→∞

〈
(xn – y) + (xn – Ty), y – Ty

〉
= lim sup

n→∞
〈
(Txn – y) + (Txn – Ty), y – Ty

〉
= lim sup

n→∞
(‖Txn – Ty‖ – ‖Txn – y‖)

≤ lim sup
n→∞

[
μ(μ + )‖xn – Txn‖ + μ(μ + )‖Txn – y‖]‖xn – Txn‖

≤ lim sup
n→∞

[
μ(μ + ) + μ(μ + )

]
M‖xn – Txn‖,

whereM = sup{‖Txn – y‖,‖Txn – xn‖ : n ∈N}. Thus we obtain

lim sup
n→∞

〈
(xn – y) + (xn – Ty), y – Ty

〉 ≤ , ∀y ∈ C. (.)

Similarly, we have

lim sup
n→∞

〈
(xn – y) + (xn – Ty), y – Ty

〉
= lim sup

n→∞

〈
(Txn – y) + (Txn – Ty), y – Ty

〉
= lim sup

n→∞

(‖Txn – Ty‖ – ‖Txn – y‖)
≤ lim sup

n→∞

[
λ(λ + ) + λ(λ + )

]
M‖xn – Txn‖,

whereM = sup{‖Txn – y‖,‖Txn – xn‖ : n ∈ N}.
Thus we obtain

lim sup
n→∞

〈
(xn – y) + (xn – Ty), y – Ty

〉 ≤ , ∀y ∈ C. (.)

Since {xn}n∈N is bounded, there exists a subsequence {xni}i∈N of {xn}n∈N such that xni ⇀ y,
and

lim sup
n→∞

〈xn – u, z – u〉 = lim
i→∞〈xni – u, z – u〉 = 〈y – u, z – u〉.

By Lemma ., (.), and (.), y ∈ A(T)∩A(T). By Lemma .(ii), we show that

lim sup
n→∞

〈xn+ – u, z – u〉 ≤ lim sup
n→∞

〈xn+ – xn, z – u〉

+ lim sup
n→∞

〈xn – u, z – u〉

= lim sup
n→∞

〈xn – u, z – u〉
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= lim
i→∞〈xni – u, z – u〉

= 〈y – u, z – u〉 = 〈y – PAz, z – PAz〉
≤ . (.)

Thus we have the desired result by (.) and Lemma ..
Case . Suppose that there exists a subsequence {ni}i∈N of {n}n∈N such that

‖xni – u‖ < ‖xni+ – u‖

for all i ∈ N. Then, by Lemma ., there exists a nondecreasing sequence {mk}k∈N ⊂ N

such that mk → ∞,

‖u – xmk‖ ≤ ‖u – xmk+‖ and ‖u – xk‖ ≤ ‖u – xmk+‖

for all k ∈N. This, together with (.), imply that

βmk ( – βmk )‖xmk – Tjxmk‖ ≤ ‖xmk – u‖ – ‖xmk+ – u‖ + αmkM ≤ αmkM

for all k ∈N and j = , . By conditions (a), (c), and (d), we have

lim
k→∞

‖xmk – Tjxmk‖ = , j = , . (.)

By the same argument, as in Case , we arrive at

lim sup
k→∞

〈xmk+ – u, z – u〉 ≤ .

It follows from (.) that

‖xmk+ – u‖ ≤ ( – αmk )‖xmk – u‖ + αmk 〈xmk+ – u, z – u〉. (.)

Since ‖xmk – u‖ ≤ ‖xmk+ – u‖, we have

αmk‖xmk – u‖ ≤ ‖xmk – u‖ – ‖xmk+ – u‖ + αmk 〈xmk+ – u, z – u〉
≤ αmk 〈xmk+ – u, z – u〉. (.)

In particular, since αmk > , we obtain

‖xmk – u‖ ≤ 〈xmk+ – u, z – u〉.

In view of (.), we deduce that

lim
k→∞

‖xmk – u‖ = .

This, together with (.), implies that

lim
k→∞

‖xmk+ – u‖ = .
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On the other hand, we have ‖xk –u‖ ≤ ‖xmk+ –u‖ for all k ∈N which implies that xk → u
as k → ∞. Thus, we have xn → u as n→ ∞. We thus complete the proof. �

Corollary . Let H be a Hilbert space and C be a convex subset of H and z ∈ C. Let
T : C → C a mapping satisfying condition (E) on C such that A(T) �= ∅. Let {αn}n∈N and
{βn}n∈N be two sequences in [, ] satisfying the following control conditions:
(a) limn→∞ αn = ;
(b)

∑∞
n= αn =∞;

(c) lim infn→∞ βn( – βn) > .
Let {xn}n∈N be a sequence generated by

⎧⎪⎨
⎪⎩
x ∈ C chosen arbitrarily,
yn = ( – βn)xn + βnTxn,
xn+ = αnz + ( – αn)yn.

(.)

Then the sequence {xn}n∈N defined in (.) converges strongly to PA(T)z, where PA(T) is the
metric projection from H onto A(T).

Applying Theorem ., we study the approximation of common fixed points of general-
ized nonexpansive mappings and derive a strong convergence theorem by a new iteration
scheme for these mappings.

Theorem . Let H be a Hilbert space and C be a closed convex subset of H and z ∈ C. Let
T : C → C be a mapping satisfying condition (Eλ) on C and T : C → C a mapping satis-
fying condition (Eμ) on C such that F := F(T)∩F(T) �= ∅. Let {αn}n∈N, {βn,}n∈N, {βn,}n∈N,
{βn,}n∈N be sequences in [, ] satisfying the following control conditions:
(a) limn→∞ αn = ;
(b)

∑∞
n= αn =∞;

(c) βn, + βn, + βn, = , ∀n ∈ N;
(d) lim infn→∞ βn,jβn, > , j = , .

Let {xn}n∈N be a sequence generated by

⎧⎪⎨
⎪⎩
x ∈ C chosen arbitrarily,
yn = βn,Txn + βn,Txn + βn,xn,
xn+ = αnz + ( – αn)yn.

(.)

Then the sequence {xn}n∈N defined in (.) converges strongly to some u ∈ F , where

u = argmin
u∈F ‖u – z‖.

Proof Since T and T are mappings satisfying condition (E), for any x ∈ C and u ∈ F , we
have

‖Tx – u‖ ≤ ‖u – x‖

and

‖Tx – u‖ ≤ ‖u – x‖.
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This implies that F ⊆ A(T) ∩ A(T). Thus we obtain A := A(T) ∩ A(T) �= ∅. It follows
from Theorem ., that {xn}n∈N converges strongly to u ∈ A. Since C is closed, we have
u ∈ C. We follow the same argument as in the proof of Theorem . [], we can prove
Theorem .. �

Using Lemma . and Theorem ., we can prove the following result.

Theorem . Let H be a Hilbert space and C be a convex subset of H and z ∈ C. For
any j ∈ N, let Tj : C → C be a mapping satisfying condition (Eλj ) on C such that A :=⋂∞

j=A(Tj) �= ∅. Let {αn}n∈N, {βn,j}n∈N,j∈N∪{} be sequences in [, ] satisfying the following
control conditions:
(a) limn→∞ αn = ;
(b)

∑∞
n= αn =∞;

(c)
∑∞

j= βn,j + βn, = , ∀n ∈N;
(d) lim infn→∞ βn,jβn, > , ∀j ∈N.

Let {xn}n∈N be a sequence generated by

⎧⎪⎨
⎪⎩
x ∈ C chosen arbitrarily,
yn =

∑∞
j= βn,jTjxn + βn,xn,

xn+ = αnz + ( – αn)yn.
(.)

Then the sequence {xn}n∈N defined in (.) converges strongly to PAz,where PA is themetric
projection from H onto A.

Remark . Theorem . improves Theorem . and many fixed point results in the lit-
erature.

4 Applications to multiple sets split feasibility problems
Let H, andH be Hilbert spaces, Q, and Q be nonempty, closed convex subsets ofH,
andH, respectively. Let G :H �H be a multivalued mapping. The effective domain of
G is denoted by D(G), that is, D(G) = {x ∈H :Gx �= ∅}. Then G :H �H is called

(i) a monotone operator on Q if 〈x – y,u – v〉 ≥  for all x, y ∈D(G), u ∈Gx, and
v ∈Gy;

(ii) a maximal monotone operator on H if G is a monotone operator on H and its
graph is not properly contained in the graph of any other monotone operator on H.

A mapping V :Q →H is called α-inverse strongly monotone on Q (in short α-ism), if

〈x – y,Vx –Vy〉 ≥ α‖Vx –Vy‖ for all x, y ∈Q and α > .

Let I and I denote the identity functions on H, and H, respectively. For each i ∈ N,
let

(i) κ , κi, and μi > , Bi be a μi-inverse strongly monotone mapping of Q intoH, Li
be a κi-inverse strongly monotone mapping of Q into H, L be a κ-inverse strongly
monotone mapping of Q into H;

(ii) M andMi be maximal monotone mappings onH such that the domains ofM and
Mi are included in Q, Gi be a maximal monotone mapping onH such that the
domain of Gi includes Q;
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(iii) M–
i  = {x ∈ Hi :  ∈ Mix}, JMi

λn = (I + λnMi)–, λn > ;
(iv) A :H →H and Ai :H →H be bounded linear operators, A and A∗

i be the
adjoints of A and Ai, respectively;

(v) R and Ri be the spectral radii of A∗A and A∗
i Ai, respectively.

Throughout this section, we use these notations and assumptions unless specified oth-
erwise.
A mapping T : H → H is said to be averaged if T = ( – α)I + αS, where α ∈ (, )

and S : H → H is nonexpansive. In this case, we also say that T is α-averaged. A firmly
nonexpansive mapping is 

 -averaged.

Lemma . ([, ]) Let C be a nonempty closed convex subset of a real Hilbert space H ,
and let T : C → C be a mapping. Then the following are satisfied:

(i) T is nonexpansive if and only if the complement (I – T) is a /-ism.
(ii) If S is υ-ism, then for γ > , γ S is a υ/γ -ism.
(iii) S is averaged if and only if the complement I – S is a υ-ism for some υ > /.
(iv) If S and T are both averaged, then the composite ST of S and T is averaged.
(v) If the mappings {Ti}ni= are averaged and have a common fixed point, then⋂n

i= Fix(Ti) = Fix(T · · ·Tn).

In order to study the convergence theorems for the solutions set of multiple sets split
problems, we must give an essential result in this paper. We study the following essential
problem (SFP-):

Find x̄ ∈ H such that Ax̄ ∈ (L +M)–().

Recently, Yu, Lin and Chuang [] proved the following useful result.

Lemma . ([]) Given any x̄ ∈H, we have the following.
(i) If x̄ is a solution of (SFP-), then (I – λA∗(I –U)A)x̄ = x̄, where λ > ,

U = JMσ (I – σL), and σ > .
(ii) Suppose that U = JMσ (I – σL),  < λ < 

R ,  < σ < κ , then JMσ (I – σL), and
I – λA∗(I –U)A are averaged.We assume further that the solution set of (SFP-) is
nonempty, and (I – λA∗(I –U)A)x̄ = x̄. Then x̄ is a solution of (SFP-).

In the following theorem, we study the following multiple sets variational inclusion
problems (MSSVIP-):

Find x̄ ∈ H such that x̄ ∈ (G + B)–∩ (G + B)–∩ · · · ∩ (Gm + Bm)–

and

Ax̄ ∈ (M + L)–, Ax̄ ∈ (M + L)–, . . . , Alx̄ ∈ (Ml + Ll)–,

wherem ∈N and l ∈N.
Let � denote the solution set of the problem (MSSVIP-).
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Theorem . Let z ∈H. Let T :Q →Q be a mapping defined by

T = JG
λ
(I – λB)JG

λ
(I – λB) · · · JGm

λm (I – λmBm),

and T :Q →Q be a mapping defined by

T =
(
I – σA∗

 (I –U)A
)(
I – σA∗

(I –U)A
) · · · (I – σlA∗

l (I –Ul)Al
)
,

where Ui = JMi
δi

(I – δiLi),m ∈N, i ∈ N and l ∈N.
Suppose that � �= ∅.
Let {αn}n∈N, {βn,}n∈N, {βn,}n∈N, {βn,}n∈N be sequences in [, ] satisfying the following

control conditions:
(a) limn→∞ αn = ;
(b)

∑∞
n= αn =∞;

(c) βn, + βn, + βn, = , ∀n ∈ N;
(d) lim infn→∞ βn,jβn, > , j = , ;
(e) for each i ∈N,  < δi < κi,  < λi < μi, and  < σi < 

Ri
.

Let {xn}n∈N be a sequence generated by

⎧⎪⎨
⎪⎩
x ∈ C chosen arbitrarily,
yn = βn,Txn + βn,Txn + βn,xn,
xn+ = αnz + ( – αn)yn.

(.)

Then the sequence {xn}n∈N defined in (.) converges strongly to some u ∈ �, where u =
argminu∈� ‖u – z‖.

Proof By Lemma ., for each i ∈N, JGi
λi
(I –λiBi) and (I –σiA∗

i (I –Ui)) are averaged. Since
� �= ∅, there exists w ∈ �, such that

w ∈ (G + B)–∩ (G + B)–∩ · · · ∩ (Gm + Bm)–

and

Aw ∈ (M + L)–, Aw ∈ (M + L)–, . . . , Alw ∈ (Ml + Ll)–,

m ∈ N and l ∈N.
By Lemma .,

w ∈ F
(
I – σA∗

 (I –U)A
) ∩ F

(
I – σA∗

(I –U)A
) ∩ · · · ∩ F

(
I – σlA∗

l (I –Ul)Al
)
.

We also see that

w ∈ F
(
JG
λ
(I – λB)

) ∩ F
(
JG
λ

(I – λB)
) ∩ · · · ∩ F

(
JGm
λm (I – λmBm)

)
.

By Lemma ., we see that

w ∈ F
(
JG
λ
(I – λB)

)(
JG
λ

(I – λB)
) · · · (JGm

λm (I – λmBm)
)
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and

w ∈ F
(
I – σA∗

 (I –U)A
)(
I – σA∗

(I –U)A
) · · · (I – σlA∗

l (I –Ul)Al
)
.

Therefore w ∈ F := F(T)∩ F(T) and F �= ∅.
By Lemma . again, we see that T and T are averaged. Therefore T and T are non-

expansive mapping. Then by Theorem ., the sequence {xn}n∈N defined in (.) con-
verges strongly to some u ∈ F , where u = argminu∈F ‖u – z‖. Since � �= ∅, it follows
from Lemma . that � = F . This completes the proof. �

Remark . Moudafi [] studied a weak convergence of split monotone variational in-
clusion problem, while Theorem . studied a strong convergence theorem for the multi-
ple sets split monotone variational inclusion problem.

In the following theorem, we study the following multiple sets split inclusion problems
for inverse strongly monotone mappings (MSSVIP-):

Find x̄ ∈H such that x̄ ∈ B–
 ∩ B–

 ∩ · · · ∩ B–
m 

and

Ax̄ ∈ L– , Ax̄ ∈ L– , . . . , Alx̄ ∈ L–l ,

wherem ∈N and l ∈N.
Let � denote the solution set of the problem (MSSVIP-).

Theorem . Let z ∈H. Let T :Q →Q be a mapping defined by

T = (I – λB)(I – λB) · · · (I – λmBm)

and T :Q →Q be a mapping defined by

T =
(
I – σA∗

 (I –U)A
)(
I – σA∗

(I –U)A
) · · · (I – σlA∗

l (I –Ul)Al
)
,

where Ui = (I – δiLi),m ∈N, i ∈N and l ∈N.
Suppose that � �= ∅.
Let {αn}n∈N, {βn,}n∈N, {βn,}n∈N, {βn,}n∈N be sequences in [, ] satisfying the following

control conditions:
(a) limn→∞ αn = ;
(b)

∑∞
n= αn =∞;

(c) βn, + βn, + βn, = , ∀n ∈ N;
(d) lim infn→∞ βn,jβn, > , j = , ;
(e) for each i ∈N,  < δi < κi,  < λi < μi, and  < σi < 

Ri
.

Let {xn}n∈N be a sequence generated by

⎧⎪⎨
⎪⎩
x ∈ C chosen arbitrarily,
yn = βn,Txn + βn,Txn + βn,xn,
xn+ = αnz + ( – αn)yn.

(.)
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Then the sequence {xn}n∈N defined in (.) converges strongly to some u ∈ �, where u =
argminu∈� ‖u – z‖.

Proof By Lemma ., for each i ∈ N, (I – λiBi)Ui = (I – δiLi) are averaged and I – Ui is
ki inverse strongly monotone for some ki ≥ 

 . Following the same argument as in Theo-
rem . [], we can show that for each i ∈ N, A∗

i (I – Ui)Ai, is ki
Ri
-inverse strong mono-

tone. Following the same argument as in Theorem ., we show that the sequence {xn}n∈N
defined in (.) converges strongly to some u ∈ F , where u = argminu∈F ‖u – z‖. Since
� �= ∅, it follows from Lemma ., it is easy to show that � = F . This completes the proof
of Theorem .. �

Remark . To the best of our knowledge, there are many results on inclusion problems
for maximum monotone mappings, but there are no results on inclusion problem for in-
verse strongly monotonemappings or split inclusion problems for inverse strongly mono-
tone mappings.

As an application of the split inclusion problem for inverse strongly monotone map-
pings, we study the following split optimization problem.
Let V and V be nonempty open convex sets in H and H, respectively, Q ⊂ V,

Q ⊂ V. For each i ∈ N, let fi : V → R and gi : V → R be convex Gâteaux differential
functions. In the following theorem, we study the following multiple sets split optimiza-
tion problem (MSSVIP-):

Find x̄ ∈Q such that x̄ ∈ argmin
x∈Q

f(x)∩ argmin
x∈Q

f(x)∩ · · · ∩ argmin
x∈Ql

fl(x)

and

Ax̄ ∈ arg min
w∈Q

g(w), Ax̄ ∈ arg min
w∈Q

g(w), . . . , Alx̄ ∈ arg min
w∈Q

gl(w),

wherem ∈N and l ∈N.
Let � denote the solution set of the problem (MSSVIP-).

Theorem . In Theorem ., we assume further that V and V are nonempty open con-
vex sets in H and H, respectively, Q ⊂ V, Q ⊂ V. For each i ∈ N, let fi : V → R and
gi : V → R be convex Gâteaux differential functions. For each i ∈ N, suppose that Bi and
Li are strongly monotone and Lipschitz continuous on Q and Q, respectively, and Bi and
Li be the Gâteaux derivatives of fi and gi, respectively. Then the sequence {xn}n∈N defined
in (.) converges strongly to some x̄ ∈ �.

Proof Since for each i ∈ N, Bi and Li are Lipschitz and strongly monotone, it is easy to
see that Bi and Li are inverse strongly monotone. By Theorem ., the sequence {xn}n∈N
defined in (.) converges strongly to some x̄ ∈ �. Therefore for each i = , , . . . ,m, j =
, , . . . , l, x̄ ∈ B–

i ,Ajx̄ ∈ L–j . Since for each i ∈N, fi : V →R and gi : V →R are convex
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Gâteaux differential functions with Gâteaux derivatives Bi and Li, respectively, we obtain

 = 〈Bix̄, y – x̄〉 = lim
t→

fi(x̄ + t(y – x̄)) – fi(x̄)
t

= lim
t→

fi(( – t)x̄ + ty) – fi(x̄)
t

≤ lim
t→

( – t)fi(x̄) + tfi(y) – fi(x̄)
t

= fi(y) – fi(x̄)

for all y ∈ V.
Then, for each i = , , . . . ,m, fi(y) ≥ fi(x̄) for all y ∈Q and x̄ ∈ argminy∈Q fi(y).
Similarly, for each j = , , . . . , l, gj(w) ≥ gj(Ajx̄) for all w ∈Q and Ajx̄ ∈ argminw∈Q gj(w).
This shows that x̄ ∈ �. �

Let f be a proper lower semicontinuous convex function of H into (–∞,∞). The sub-
differential ∂f of f is defined as follows:

∂f (x) =
{
z ∈ H : f (x) + 〈z, y – x〉 ≤ f (y),∀y ∈H

}
for all x ∈H. FromRockafellar [], we know that ∂f is amaximalmonotone operator. Let
C be a nonempty closed convex subset of a real Hilbert space H, and iC be the indicator
function of C, i.e.

iCx =

{
 if x ∈ C,
∞ if x /∈ C.

Then iC is a proper lower semicontinuous convex function on H , and the subdifferential
∂iC of iC is a maximal monotone operator. We define the resolvent J∂iCλ x = (I + λ∂iC)–x
for all x ∈H . We have J∂iCλ = PC .
For each i ∈ N, and j ∈ N, let C,C, . . . ,Cm be nonempty closed convex subsets of H

and D,D, . . . ,Dl be nonempty closed convex subsets ofH.
In the following theorem, we study the following multiple sets split feasibility problems

(MSSVIP-):

Find x̄ ∈H such that x̄ ∈ C ∩C ∩ · · · ∩Cm

and Ax̄ ∈D, Ax̄ ∈D, . . . , Alx̄ ∈Dl , wherem ∈ N, l ∈N.
Let � denote the solution set of the problem (MSSVIP-).

Theorem . For each i ∈ N, and j ∈ N, let C,C, . . . ,Cm be the nonempty closed convex
subsets ofH and D,D, . . . ,Dl be nonempty closed convex subsets ofH. Let T :Q →Q

be a mapping defined by

T = PCPC , . . . ,PCm

and T :Q →Q a mapping defined by

T =
(
I – σA∗

 (I – PD )A
)(
I – σA∗

(I – PD )A
) · · · (I – σlA∗

l (I – PDl )Al
)
,

where m ∈N, and l ∈N.
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Suppose that � �= ∅.
Let {αn}n∈N, {βn,}n∈N, {βn,}n∈N, {βn,}n∈N be sequences in [, ] satisfying the following

control conditions:
(a) limn→∞ αn = ;
(b)

∑∞
n= αn =∞;

(c) βn, + βn, + βn, = , ∀n ∈ N;
(d) lim infn→∞ βn,jβn, > , j = , ;
(e) for each i ∈N,  < σi < 

Ri
.

Let {xn}n∈N be a sequence generated by

⎧⎪⎨
⎪⎩
x ∈ C chosen arbitrarily,
yn = βn,Txn + βn,Txn + βn,xn,
xn+ = αnz + ( – αn)yn.

(.)

Then the sequence {xn}n∈N defined in (.) converges strongly to some u ∈ �, where

u = arg min
u∈�

‖u – z‖.

Proof Let Gi = ∂iCi , Bi = , Mj = ∂iDj , Li =  in Theorem .. Then Theorem . follows
from Theorem .. �

Example . Let T :R → [, ] be defined by

Tx =

{
 if x ∈ (–∞, ),
 if x ∈ [,∞).

Then, T is a nonspreading mapping. Indeed, for any x ∈ (–∞, ) and y ∈ [,∞), we have
Tx =  and Ty = . Observe now that

|Tx – Ty| = | – |

≤ |x – | + |y – |

= |x – Ty| + |y – Tx|.

Therefore, T satisfies condition E with A(T) = (–∞, ]. Let z = , αn = 
n , x = , then

Tx = , x = 
 , . . . , xn+ =


n . We see that the sequence xn converges strongly to  ∈ A(T).
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