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1 Introduction
In the real world, many important problems have reformulations which require finding
zero points of some nonlinear operator, for instance, evolution equations, complementar-
ity problems, mini-max problems, variational inequalities and optimization problems; see
[–] and the references therein. It is well known thatminimizing a convex function f can
be reduced to finding zero points of the subdifferential mapping A = ∂f . Splitting meth-
ods have recently received much attention due to the fact that many nonlinear problems
arising in applied areas such as image recovery, signal processing, and machine learning
are mathematically modeled as a nonlinear operator equation and this operator is decom-
posed as the sum of two nonlinear operators. The central problem is to iteratively find a
zero point of the sum of two monotone operators; that is,  ∈ (A + B)(x). Many problems
can be formulated as a problem of the above form. For instance, a stationary solution to
the initial value problem of the evolution equation  ∈ Fu + ∂u

∂t , u = u(), can be recast
as the above inclusion problem when the governing maximal monotone F is of the form
F = A + B; for more details; see [] and the references therein.
In this paper, we study a regularization method for treating zero points of the sum of an

inverse-strongly monotone and a maximal monotone operator. The main contribution of
the paper is establish a strong convergence theorem for viscosity zero points undermild re-
strictions imposed on the control sequences. The main results include the corresponding
results in Xu [] as a special case. The organization of this paper is as follows. In Section ,
we provide some necessary preliminaries. In Section , a regularization method is inves-
tigated. A strong convergence theorem for zero points of the sum operator is established.
In Section , applications of the main results are discussed.

2 Preliminaries
In what follows, we always assume that H is a real Hilbert space with inner product 〈· , ·〉
and norm ‖ · ‖. Let C be a nonempty, closed and convex subset of H . Let S : C → C be a

©2014 Qin et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.fixedpointtheoryandapplications.com/content/2014/1/75
mailto:wl64mail@aliyun.com
http://creativecommons.org/licenses/by/2.0


Qin et al. Fixed Point Theory and Applications 2014, 2014:75 Page 2 of 10
http://www.fixedpointtheoryandapplications.com/content/2014/1/75

mapping. F(S) stands for the fixed point set of S; that is, F(S) := {x ∈ C : x = Sx}. Recall that
S is said to be contractive iff there exists a constant κ ∈ (, ) such that

‖Sx – Sy‖ ≤ κ‖x – y‖, ∀x, y ∈ C.

It is well known that every contractive mapping has a unique fixed point in metric spaces.
S is said to be nonexpansive iff

‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C.

If C is a bounded, closed, and convex subset of H , then F(S) is not empty, closed, and
convex; see [] and the references therein.
Let A : C →H be a mapping. Recall that A is said to bemonotone iff

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

Recall that A is said to be inverse-strongly monotone iff there exists a constant α >  such
that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

For such a case, A is also said to be α-inverse-strongly monotone. It is not hard to see that
every inverse-strongly monotone mapping is monotone and continuous.
Recall that a set-valued mapping B : H ⇒ H is said to be monotone iff, for all x, y ∈ H ,

f ∈ Bx and g ∈ By imply 〈x – y, f – g〉 > . In this paper, we use B–() to stand for the zero
point of B. A monotone mapping B :H ⇒H ismaximal iff the graph Graph(B) of B is not
properly contained in the graph of any other monotone mapping. It is well known that a
monotone mapping B is maximal if and only if, for any (x, f ) ∈ H × H , 〈x – y, f – g〉 ≥ ,
for all (y, g) ∈ Graph(B) implies f ∈ Bx. For a maximal monotone operator B on H , and
r > , we may define the single-valued resolvent Jr : H → Dom(B), where Dom(B) denote
the domain of B. It is well known that Jr is firmly nonexpansive, and B–() = F(Jr).
Recently, many authors studied zero points of monotone operators based on different

regularization methods; see [–] and the references therein. The main motivation is
from Xu []. We propose a regularization method for treating zero points of the sum of
two monotone operators. Strong convergence theorems are established in the framework
of Hilbert spaces.
In order to prove our main results, we also need the following lemmas.

Lemma . [] Let A : C → H be a mapping, and B : H ⇒ H a maximal monotone op-
erator. Then F(Jr(I – rA)) = (A + B)–().

Lemma . [] Let {an} be a sequence of nonnegative numbers satisfying the condition
an+ ≤ ( – tn)an + tnbn + cn, ∀n ≥ , where {tn} is a number sequence in (, ) such that
limn→∞ tn =  and

∑∞
n= tn = ∞, {bn} is a number sequence such that lim supn→∞ bn ≤ ,

and {cn} is a positive number sequence such that
∑∞

n= cn < ∞. Then limn→∞ an = .

Lemma . [] Let H be a Hilbert space, and A amaximal monotone operator. For λ > ,
μ > , and x ∈ E,we have Jλx = Jμ(μ

λ
x+(– μ

λ
)Jλx),where Jλ = (I +λA)– and Jμ = (I +μA)–.
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3 Main results
Theorem . Let A : C → H be an α-inverse-strongly monotone mapping and let B be a
maximalmonotone operator on H .Assume thatDom(B) ⊂ C and (A+B)–() is not empty.
Let f : C → C be a fixed κ-contraction and let Jrn = (I + rnB)–. Let {xn} be a sequence in C
in the following process: x ∈ C and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = Jrn (yn – rnAyn + en), ∀n≥ ,

where {αn} is a real number sequence in (, ), {en} is sequence in H and {rn} is a positive
real number sequence in (, α). If the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞ and

∑∞
n= |αn – αn–| < ∞;

(b)  < a≤ rn ≤ b < α and
∑∞

n= |rn – rn–| < ∞;
(c)

∑∞
n= ‖en‖ <∞,

then {xn} converges strongly to a point x̄ ∈ (A + B)–(), where x̄ = Proj(A+B)–() f (x̄).

Proof First, we show that {xn} is bounded. Notice that I – rnA is nonexpansive. Indeed, we
have

∥∥(I – rnA)x – (I – rnA)y
∥∥

= ‖x – y‖ – rn〈x – y,Ax –Ay〉 + rn‖Ax –Ay‖

≤ ‖x – y‖ – rn(α – rn)‖Ax –Ay‖.

In view of the restriction (b), we find that I – rnA is nonexpansive. Fixing p ∈ (A +B)–(),
we find that

‖yn – p‖ ≤ αn
∥∥f (xn) – p

∥∥ + ( – αn)‖xn – p‖ ≤ (
 – αn( – κ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥.
It follows that

‖xn+ – p‖ ≤ ∥∥(yn – rnAyn + en) – (I – rnA)p
∥∥

≤ ∥∥(I – rnA)yn – (I – rnA)p
∥∥ + ‖en‖

≤ (
 – αn( – κ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥ + ‖en‖

≤max

{
‖xn – p‖, ‖f (p) – p‖

 – κ

}
+ ‖en‖

≤max

{
‖xn– – p‖, ‖f (p) – p‖

 – κ

}
+ ‖en–‖ + ‖en‖

...

≤max

{
‖x – p‖, ‖f (p) – p‖

 – κ

}
+

n∑
i=

‖ei‖

≤max

{
‖x – p‖, ‖f (p) – p‖

 – κ

}
+

∞∑
i=

‖ei‖ < ∞.
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This proves that the sequence {xn} is bounded, and so is {yn}. Notice that

‖yn – yn–‖ ≤ (
 – αn( – κ)

)‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) – xn–

∥∥.
Putting zn = yn – rnAyn + en, we find that

‖zn – zn–‖ ≤ ‖yn – yn–‖ + ‖rn – rn–‖‖Ayn–‖ + ‖en‖ + ‖en–‖
≤ (

 – αn( – κ)
)‖xn – xn–‖ + |αn – αn–|

∥∥f (xn–) – xn–
∥∥

+ |rn – rn–|‖Ayn–‖ + ‖en‖ + ‖en–‖.

It follows from Lemma . that

‖xn+ – xn‖ = ‖Jrnzn – Jrn–zn–‖

=
∥∥∥∥Jrn–

(
rn–
rn

zn +
(
 –

rn–
rn

)
Jrnzn

)
– Jrn–zn–

∥∥∥∥
≤

∥∥∥∥ rn–rn
(zn – zn–) +

(
 –

rn–
rn

)
(Jrnzn – zn–)

∥∥∥∥
≤

∥∥∥∥(zn – zn–) +
(
 –

rn–
rn

)
(Jrnzn – zn)

∥∥∥∥
≤ ‖zn – zn–‖ + |rn – rn–|

a
‖Jrnzn – zn‖

≤ (
 – αn( – κ)

)‖xn – xn–‖ + fn,

where

fn = |αn – αn–|
∥∥f (xn–) – xn–

∥∥ + |rn – rn–|
(

‖Ayn–‖ + ‖Jrnzn – zn‖
a

)
+ ‖en‖ + ‖en–‖.

It follows from the restrictions (a), (b), and (c) that
∑∞

n= fn <∞. In view of Lemma ., we
find that limn→∞ ‖xn+ – xn‖ = . In view of ‖yn – xn‖ ≤ αn‖f (xn) – xn‖, we find from the
above that

lim
n→∞‖yn – xn+‖ = lim

n→∞‖yn – xn‖ = . (.)

Next, we show that

lim sup
n→∞

〈
f (x̄) – x̄, yn – x̄

〉 ≤ , (.)

where x̄ is the unique fixed point of the mapping Proj(A+B)–() f . To show this inequality,
we choose a subsequence {yni} of {yn} such that

lim sup
n→∞

〈
f (x̄) – x̄, yn – x̄

〉
= lim

i→∞
〈
f (x̄) – x̄, yni – x̄

〉 ≤ .

Since {yni} is bounded, we find that there exists a subsequence {ynij } of {yni} which con-
verges weakly to x̂. Without loss of generality, we can assume that yni ⇀ x̂.

http://www.fixedpointtheoryandapplications.com/content/2014/1/75
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Now, we show that x̂ ∈ (A + B)–(). Notice that yn – rnAyn + en ∈ xn+ + rnBxn+; that is,

yn – rnAyn + en – xn+
rn

∈ Bxn+.

Let μ ∈ Bν . Since B is monotone, we find that
〈
yn + en – xn+

rn
–Ayn –μ,xn+ – ν

〉
≥ .

In view of the restriction (b), we see from (.) that 〈–Ax̂–μ, x̂– ν〉 ≥ . This implies that
–Ax̂ ∈ Bx̂, that is, x̂ ∈ (A + B)–(). This proves that (.) holds. Notice that

‖yn – x̄‖ ≤ αnκ‖xn – x̄‖‖yn – x̄‖ + αn
〈
f (x̄) – x̄, yn – x̄

〉
+ ( – αn)‖xn – x̄‖‖yn – x̄‖.

It follows that ‖yn – x̄‖ ≤ (–αn(–κ))‖xn – x̄‖ +αn〈f (x̄) – x̄, yn – x̄〉. On the other hand,
we have

‖xn+ – x̄‖ ≤ ∥∥Jrn (yn – rnAyn + en) – x̄
∥∥

≤ ∥∥(yn – rnAyn) – (I – rnA)x̄
∥∥

+ ‖en‖
(‖en‖ + 

∥∥(yn – rnAyn) – (I – rnA)x̄
∥∥)

≤ ‖yn – x̄‖ + ‖en‖
(‖en‖ + 

∥∥(yn – rnAyn) – (I – rnA)x̄
∥∥)

≤ (
 – αn( – κ)

)‖xn – x̄‖ + αn
〈
f (x̄) – x̄, yn – x̄

〉
+ ‖en‖

(‖en‖ + 
∥∥(yn – rnAyn) – (I – rnA)x̄

∥∥)
.

An application of Lemma . to the above inequality yields limn→∞ ‖xn – x̄‖ = . This
completes the proof. �

4 Applications
First, we consider the problem of finding a minimizer of a proper convex lower semicon-
tinuous function.
For a proper lower semicontinuous convex function g :H → (–∞,∞], the subdifferen-

tial mapping ∂g of g is defined by

∂g(x) =
{
x∗ ∈ H : g(x) +

〈
y – x,x∗〉 ≤ g(y),∀y ∈H

}
, ∀x ∈H .

Rockafellar [] proved that ∂g is a maximal monotone operator. It is easy to verify that
 ∈ ∂g(v) if and only if g(v) =minx∈H g(x).

Theorem . Let g : H → (–∞, +∞] be a proper convex lower semicontinuous function
such that (∂g)–() is not empty. Let f :H →H be a κ-contraction and let {xn} be a sequence
in H in the following process: x ∈H and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = argminz∈H{g(z) + ‖z–yn–en‖
rn }, ∀n≥ ,

http://www.fixedpointtheoryandapplications.com/content/2014/1/75
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where {αn} is a real number sequence in (, ), {en} is sequence in H and {rn} is a positive
real number sequence. If the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞ and

∑∞
n= |αn – αn–| < ∞;

(b)  < a≤ rn;
(c)

∑∞
n= ‖en‖ <∞,

then {xn} converges strongly to a point x̄ ∈ (∂g)–(), where x̄ = Proj(∂g)–() f (x̄).

Proof Since g :H → (–∞,∞] is a proper convex and lower semicontinuous function, we
see that subdifferential ∂g of g is maximal monotone. Noting that

xn+ = argmin
z∈H

{
g(z) +

‖z – yn – en‖
rn

}

is equivalent to

 ∈ ∂g(xn+) +

rn
(xn+ – yn – en).

It follows that

yn + en ∈ xn+ + rn∂g(xn+).

Putting A = , we immediately derive from Theorem . the desired conclusion. �

Next, we consider the problem of finding a solution of a classical variational inequality.
Let C be a nonempty closed and convex subset of a Hilbert space H . Let iC be the indi-

cator function of C, that is,

iC(x) =

⎧⎨
⎩
, x ∈ C,

∞, x /∈ C.

Since iC is a proper lower and semicontinuous convex function on H , the subdifferential
∂iC of iC is maximal monotone. So, we can define the resolvent Jr of ∂iC for r > , i.e.,
Jr := (I + r∂iC)–. Letting x = Jry, we find that

y ∈ x + r∂iCx ⇐⇒ y ∈ x + rNCx

⇐⇒ 〈y – x, v – x〉 ≤ , ∀v ∈ C

⇐⇒ x = ProjC y,

where ProjC is the metric projection from H onto C and NCx := {e ∈H : 〈e, v– x〉,∀v ∈ C}.

Theorem . Let A : C → H be an α-inverse-strongly monotone mapping. Assume that
VI(C,A) is not empty. Let f : C → C be a fixed κ-contraction. Let {xn} be a sequence in C
in the following process: x ∈ C and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = ProjC(yn – rnAyn + en), ∀n≥ ,

http://www.fixedpointtheoryandapplications.com/content/2014/1/75
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where {αn} is a real number sequence in (, ), {en} is sequence in H and {rn} is a positive
real number sequence in (, α). If the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞ and

∑∞
n= |αn – αn–| < ∞;

(b)  < a≤ rn ≤ b < α and
∑∞

n= |rn – rn–| < ∞;
(c)

∑∞
n= ‖en‖ <∞,

then {xn} converges strongly to a point x̄ ∈ VI(C,A), where x̄ = ProjVI(C,A) f (x̄).

Proof Putting B = ∂iC in Theorem ., we find that Jrn = ProjC . We can draw the desired
conclusion from Theorem ..
Next, we consider the problem of finding a solution of a Ky Fan inequality, which is

known as an equilibrium problem in the terminology of Blum and Oettli; see [] and
[] and the references therein.
Let F be a bifunction of C × C into R, where R denotes the set of real numbers. Recall

the following equilibrium problem:

Find x ∈ C such that F(x, y)≥ , ∀y ∈ C. (.)

To study the equilibrium problem (.), we may assume that F satisfies the following
restrictions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x)≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C, lim supt↓ F(tz + ( – t)x, y) ≤ F(x, y);
(A) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous. �

The following lemma can be found in [].

Lemma . Let F : C × C → R be a bifunction satisfying (A)-(A). Then, for any r > 
and x ∈H , there exists z ∈ C such that F(z, y) + 

r 〈y – z, z – x〉 ≥ , ∀y ∈ C. Further, define

Trx =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
(.)

for all r >  and x ∈ H . Then () Tr is single-valued and firmly nonexpansive; () F(Tr) =
EP(F) is closed and convex.

Lemma . [] Let F be a bifunction from C ×C to R which satisfies (A)-(A), and let
AF be a multivalued mapping of H into itself defined by

AFx =

⎧⎨
⎩

{z ∈H : F(x, y) ≥ 〈y – x, z〉,∀y ∈ C}, x ∈ C,

∅, x /∈ C.
(.)

Then AF is a maximal monotone operator with the domain D(AF ) ⊂ C, EP(F) = A–
F (),

where FP(F) stands for the solution set of (.), and Trx = (I + rAF )–x, ∀x ∈H , r > , where
Tr is defined as in (.).

Theorem . Let F : C ×C →R be a bifunction satisfying (A)-(A). Assume that EP(F)
is not empty. Let f : C → C be a fixed κ-contraction and let Trn = (I + rnAF )–. Let {xn} be

http://www.fixedpointtheoryandapplications.com/content/2014/1/75
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a sequence in C in the following process: x ∈ C and

xn+ = Trn
(
αnf (xn) + ( – αn)xn + en

)
, ∀n≥ ,

where {αn} is a real number sequence in (, ), {en} is sequence in H and {rn} is a positive
real number sequence. If the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞ and

∑∞
n= |αn – αn–| < ∞;

(b)  < a≤ rn ≤ b < ∞ and
∑∞

n= |rn – rn–| <∞;
(c)

∑∞
n= ‖en‖ <∞,

then {xn} converges strongly to a point x̄ ∈ EP(F), where x̄ = ProjEP(F) f (x̄).

Proof PuttingA =  in Theorem ., we find that Jrn = Trn . FromTheorem ., we can draw
the desired conclusion immediately.
Recall that a mapping T : C → T is said to be α-strictly pseudocontractive if there exists

a constant α ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + α
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

The class of strictly pseudocontractive mappings was first introduced by Browder and
Petryshyn []. It is well known that if T is α-strictly-pseudocontractive, then I – T is
–α
 -inverse-strongly monotone. �

Finally, we consider fixed point problem of α-strictly pseudocontractive mappings.

Theorem. Let T : C → C be an α-strictly pseudocontractive mapping with a nonempty
fixed point set and let f : C → C be a fixed κ-contraction. Let {xn} be a sequence generated
in the following manner: x ∈ C and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = ( – rn)yn + rnTyn, ∀n≥ ,

where {αn} is a real number sequence in (, ) and {rn} is a positive real number sequence
in (,  – α). If the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞ and

∑∞
n= |αn – αn–| < ∞;

(b)  < a≤ rn ≤ b <  – α and
∑∞

n= |rn – rn–| < ∞;
then {xn} converges strongly to a point x̄ ∈ F(T), where x̄ = ProjF(T) f (x̄).

Proof Putting A = I –T , we find A is –α
 -inverse-strongly monotone.We also have F(T) =

VI(C,A) and ProjC(yn – rnAyn) = ( – rn)yn + rnTyn. In view of Theorem ., we obtain the
desired result. �
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