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1 Introduction and preliminaries
Let H be a real Hilbert space with the inner product 〈· , ·〉 and norm ‖ · ‖, respectively.
Then for ∀x, y ∈H , and λ ∈ [, ],

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖. (.)

We write xn ⇀ x to indicate that the sequence {xn} converges weakly to x, and xn → x
implies that {xn} converges strongly to x.
Let C be a closed and convex subset of H . Then, for every point x ∈ H , there exists a

unique nearest point inC, denoted by PCx, such that ‖x–PCx‖ ≤ ‖x–y‖ for all y ∈ C. PC is
called themetric projection ofH ontoC. It is well known that PC :H → C is characterized
by the properties:

(i) 〈x – PCx,PCx – y〉 ≥ , for all y ∈ C and x ∈H ;
(ii) For every x, y ∈H , ‖PCx – PCy‖ ≤ 〈x – y,PCx – PCy〉;
(iii) ‖PCx – PCy‖ ≤ ‖x – y‖, for every x, y ∈ H ;
(iv) xn ⇀ x and PCxn → y imply that PCx = y.
A mapping f : C → C is called a contraction if there exists a constant k ∈ (, ) such

that ‖f (x) – f (y)‖ ≤ k‖x – y‖, for ∀x, y ∈ C. We use
∑

C to denote the collection of map-
pings f verifying the above inequality. That is,

∑
C := {f : C → C|f is a contraction with

constant k}.
A mapping T : C → C is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖, for ∀x, y ∈ C.

We use F(T) to denote the fixed point set of T , that is, F(T) := {x ∈ C : Tx = x}.
AmappingA :H ⊃ D(A)→ R(A) ⊂H is called accretive if 〈x–y,Ax–Ay〉 ≥ , for ∀x, y ∈

D(A) and it is called m-accretive if R(I + λA) = H , for ∀λ > . An m-accretive mapping A
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is demi-closed, that is, if {xn} ⊂ D(A) such that xn ⇀ x and Axn → y, then x ∈ D(A) and
y = Ax. LetA– denote the set of zeros ofA, that is,A– := {x ∈ D(A) : Ax = }.We denote
by JAr (for r > ) the resolvent of A, that is, JAr := (I + rA)–. Then JAr is nonexpansive and
F(JAr ) = A–.
Interest in accretivemappings, which is an important class of nonlinear operators, stems

mainly from their firm connection with equations of evolution. It is well known that many
physically significant problems can be modeled by initial value problems of the form

x′(t) +Ax(t) = , x() = x, (.)

where A is an accretive mapping. Typical examples where such evolution equations occur
can be found in the heat, wave or Schrödinger equations. If x(t) is dependent on t, then
(.) is reduced to

Au = , (.)

whose solutions correspond to the equilibrium of the system (.). Consequently, within
the past  years or so, considerable research efforts have been devoted to methods for
finding approximate solutions of (.). An early fundamental result in the theory of accre-
tive operators, due to Browder []. One classical method for studying the problem  ∈ Ax,
where A is anm-accretive mapping, is the following so-called proximal method (cf. []):

x ∈ H , xn+ ≈ Jrnxn, n≥ , (.)

where Jrn := (I+rnA)–. It was shown that the sequence generated by (.) convergesweakly
or strongly to a zero point of A under some conditions.
Recall that the following normal Mann iterative scheme to approximate the fixed point

of a nonexpansive mapping T : C → C was introduced by Mann []:

x ∈ C, xn+ = ( – αn)xn + αnTxn, n≥ . (.)

It was proved that under some conditions, the sequence {xn} produced by (.) converges
weakly to a point in F(T).
Later, many mathematicians tried to combine the ideas of proximal method and Mann

iterative method to approximate the zeros of m-accretive mappings; see, e.g. [–] and
references therein.
Especially, in , Qin and Su [] presented the following iterative scheme:

⎧⎪⎨
⎪⎩
x ∈ C,
yn = βnxn + ( – βn)Jrnxn,
xn+ = αnu + ( – αn)yn,

(.)

where Jrn = (I + rnA)–. They showed that {xn} generated by the above scheme converges
strongly to a zero of A.
Based on iterative schemes (.) and (.), Zegeye and Shahzad extended their discussion

to the case of finite m-accretive mappings. They presented in [] the following iterative
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scheme:

x ∈ C, xn+ = αnu + ( – αn)Srxn, n≥ , (.)

where Sr = aI + aJA + aJA + · · · + alJAl with JAi = (I + Ai)– and
∑l

i= ai = . If⋂l
i=A–

i () �= ∅, they proved that {xn} generated by (.) converges strongly to the common
zeros of Ai (i = , , . . . , l) under some conditions.
Later, their work was extended to the following one presented by Hu and Liu in []:

x ∈ C, xn+ = αnu + βnxn + ϑnSrnxn, n≥ , (.)

where Srn = aI + aJA
rn + aJA

rn + · · · + alJ
Al
rn with JAi

rn = (I + rnAi)– and
∑l

i= ai = .
{αn}, {βn}, {ϑn} ⊂ (, ) and αn + βn + ϑn = . If

⋂l
i=A–

i () �= ∅, they proved that {xn} con-
verges strongly to the common zeros of Ai (i = , , . . . , l) under some conditions.
In this paper, based on thework of (.), (.), and (.), we present the following iterative

scheme:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ C,
yn = βnf (xn) + ( – βn)SAmAm–···A

rn xn,
un = ϑnf (yn) + ( – ϑn)Wrnyn,
xn+ = αnf (un) + ( – αn)un,

(A)

where SAmAm–···A
rn := JAm

rn JAm–
rn · · · JA

rn ,Wrn = aI +aJBrn +aJBrn + · · ·+alJBlrn , JAi
rn = (I + rnAi)–

and JBjrn = (I + rnBj)–, for i = , , . . . ,m; j = , , . . . , l.
∑l

k= ak = , f : C → C is a contraction,
both {Ai}mi= and {Bj}lj= are finite families ofm-accretivemappings.More details of iterative
scheme (A) will be presented in Section .We shall prove a weak convergent theorem and
a strong convergent theorem under different assumptions on {αn}, {βn}, {ϑn}, and {rn},
respectively.
In order to prove our main results, we need the following lemmas.
By using the properties of themetric projection andm-accretivemappings, we can easily

prove the following two lemmas.

Lemma . For ∀x ∈H and ∀y ∈ C, ‖PCx – y‖ + ‖PCx – x‖ ≤ ‖y – x‖.

Lemma . For ∀y ∈ A–, ∀x ∈H and r > ,

∥∥(I + rA)–x – y
∥∥ +

∥∥(I + rA)–x – x
∥∥ ≤ ‖y – x‖.

Lemma . ([]) Let {an} and {bn} be two sequences of nonnegative real numbers satisfy-
ing

an+ ≤ an + bn, ∀n≥ .

If
∑∞

n= bn < +∞, then limn→∞ an exists.

http://www.fixedpointtheoryandapplications.com/content/2014/1/77
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Lemma . ([]) Let H be a real Hilbert space and A be an m-accretive mapping. For
λ,μ >  and x ∈H , we have

JAλ x = JAμ

(
μ

λ
x +

(
 –

μ

λ

)
JAλ x

)
,

where JAλ = (I + λA)– and JAμ = (I +μA)–.

Lemma . ([]) Let H be a real Hilbert space and C be a closed convex subset of H . Let
T : C → C be a nonexpansive mapping with F(T) �= ∅, and f ∈ ∑

C . Then zt , defined by

zt = tf (zt) + ( – t)Tzt , zt ∈ C,

converges strongly to a point in F(T). If one defines Q :
∑

C → F(T) by Q(f ) := limt→ zt ,
f ∈ ∑

C , then Q(f ) solves the following variational inequality:

〈
(I – f )Q(f ),Q(f ) – p

〉 ≤ , ∀p ∈ F(T).

Lemma . ([]) Let {an}, {bn}, and {cn} be three sequences of nonnegative real numbers
satisfying

an+ ≤ ( – cn)an + bncn, ∀n≥ ,

where {cn} ⊂ (, ) such that
(i) cn →  and

∑∞
n= cn = +∞,

(ii) either lim supn→∞ bn ≤  or
∑∞

n= |bncn| < +∞.
Then limn→∞ an = .

Lemma . In a Hilbert space H , we can easily get the following inequality:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H .

2 Weak and strong convergence theorems
Lemma . Let H be a real Hilbert space, C be a nonempty closed and convex subset of
H and Ai,Bj : C → C (i = , , . . . ,m; j = , , . . . , l) be finitely many m-accretive mappings
such that D := (

⋂m
i=A–

i ) ∩ (
⋂l

j= B–
j ) �= ∅. Suppose SAmAm–···A

r := JAm
r JAm–

r · · · JA
r and

Wr := aI + aJBr + aJBr + · · ·+ alJ
Bl
r , where JAi

r = (I + rAi)– (i = , , . . . ,m), JBjr = (I + rBj)–

(j = , , . . . , l), ak ∈ (, ), k = , , . . . , l,
∑l

k= ak = , and r > . Then SAmAm–···A
r : C → C

and Wr : C → C are nonexpansive.

Lemma . can easily be obtained in view of the facts that (I + rAi)– and (I + rBj)– are
nonexpansive, i = , , . . . ,m; j = , , . . . , l.

Theorem . Let H , C, D, and Ai,Bj : C → C (i = , , . . . ,m; j = , , . . . , l) be the same as
those in Lemma .. Suppose that D �= ∅. Let {xn} be generated by the iterative scheme (A).
If {αn}, {βn} and {ϑn} are three sequences in [, ) such that

∑∞
n= αn < +∞,

∑∞
n= βn < +∞,

http://www.fixedpointtheoryandapplications.com/content/2014/1/77
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∑∞
n= ϑn < +∞, {rn} ⊂ (, +∞) with limn→∞ rn = +∞ and f : C → C is a contraction with

contractive constant k ∈ (, ). Then {xn} converges weakly to a point v ∈ D satisfying

lim
n→∞‖xn – v‖ =min

y∈D lim
n→∞‖xn – y‖. (.)

Proof We split our proof into five steps.
Step . {xn}, {un} and {yn} are all bounded.
We can easily know that

⋂m
i=A–

i  ⊂ F(SAm···A
rn ), and

⋂l
j= B–

j  ⊂ F(Wrn ). Then for
∀p ∈D, from Lemma ., we have

∥∥SAm···A
rn xn – p

∥∥ =
∥∥SAm···A

rn xn – SAm···A
rn p

∥∥ ≤ ‖xn – p‖. (.)

Based on (.), we know that

‖yn – p‖ ≤ βn
∥∥f (xn) – p

∥∥ + ( – βn)
∥∥SAm···A

rn xn – p
∥∥

≤ [
 – βn( – k)

]‖xn – p‖ + βn
∥∥f (p) – p

∥∥. (.)

Then (.) and Lemma . imply that

‖un – p‖ ≤ ϑn
∥∥f (yn) – f (p)

∥∥ + ϑn
∥∥f (p) – p

∥∥ + ( – ϑn)‖yn – p‖
≤ [

 – βn( – k)
][
 – ϑn( – k)

]‖xn – p‖
+

[
ϑn + βn – ϑnβn( – k)

]∥∥f (p) – p
∥∥. (.)

Using (.), we know that

‖xn+ – p‖ ≤ αn
∥∥f (un) – f (p)

∥∥ + αn
∥∥f (p) – p

∥∥ + ( – αn)‖un – p‖
≤ [

 – βn( – k)
][
 – αn( – k)

][
 – ϑn( – k)

]‖xn – p‖
+

{[
 – αn( – k)

][
ϑn + βn – ϑnβn( – k)

]
+ αn

}∥∥f (p) – p
∥∥

≤ ‖xn – p‖ + (ϑn + βn + αn)
∥∥f (p) – p

∥∥. (.)

Then Lemma . implies that limn→∞ ‖xn – p‖ exists, which ensures that {xn} is bounded.
Combining with the fact that f is a contraction and noticing (.), (.), and (.), we can
easily know that {f (xn)}, {un}, {yn}, {f (un)}, {f (yn)}, {SAi···A

rn xn} (i = , , . . . ,m), and {JBjrn xn}
(j = , , . . . , l) are all bounded.
Wemay letM =max{sup{‖xn‖ : n≥ }, sup{‖yn‖ : n≥ }, sup{‖un‖ : n ≥ }, sup{‖f (xn)‖ :

n ≥ }, sup{‖f (yn)‖ : n ≥ }, sup{‖f (un)‖ : n ≥ }, sup{‖SAi···A
rn xn‖ : n ≥ , i = , , . . . ,m},

sup{‖JBjrn xn‖ : n≥ , j = , , . . . , l}}.
Step . limn→∞ ‖PDxn – xn‖ exists.
In fact, it follows from the property of PD that

‖PDxn+ – xn+‖ ≤ ‖PDxn – xn+‖. (.)

In view of Lemma ., we know that for ∀v ∈D,

‖v – PDxn‖ ≤ ‖v – xn‖ – ‖PDxn – xn‖ ≤ ‖xn – v‖, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/77
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which implies that {PDxn} is bounded since {xn} is bounded from step . Then {f (PDxn)}
is also bounded.
LetM =max{sup{‖PDxn‖ : n≥ }, sup{‖f (PDxn)‖ : n≥ }}.
Noticing (.) and (.), we have

‖xn+ – PDxn+‖ ≤ ‖xn – PDxn‖ + (ϑn + βn + αn)
∥∥f (PDxn) – PDxn

∥∥
≤ ‖xn – PDxn‖ + (ϑn + βn + αn)M.

Therefore, in view of Lemma ., limn→∞ ‖PDxn – xn‖ exists.
Step . PDxn → v, where v ∈D satisfies (.), as n→ ∞.
We first claim that there exists a unique element v ∈ D such that

lim
n→∞‖xn – v‖ =min

y∈D lim
n→∞‖xn – y‖.

In fact, if we let h(y) = limn→∞ ‖xn–y‖, ∀y ∈ D. Thenwe can easily find that h(y) :D→ R+

is proper, strictly convex and lower-semi-continuous and h(y) → +∞ as ‖y‖ → +∞. This
ensures that there exists a unique element v ∈D such that h(v) =miny∈D h(y).
From (.), we know that

lim
n→∞‖v –PDxn‖ ≤ lim

n→∞
(‖v –xn‖ –‖PDxn –xn‖

)
= h(v)– lim

n→∞‖PDxn –xn‖ ≤ .

Therefore, PDxn → v, as n→ ∞.
Step . ω(xn) ⊂D, where ω(xn) denotes the set consisting all of the weak limit points of

{xn}.
Since {xn} is bounded, then there exists a subsequence of {xn}, for simplicity, we still

denote it by {xn}, such that xn ⇀ x, as n→ ∞.
Since ‖ · ‖ is convex, by using Lemma . and noticing (.), we have, for ∀p ∈D,

‖yn – p‖ ≤ βn
∥∥f (xn) – p

∥∥ + ( – βn)
∥∥SAm···A

rn xn – p
∥∥

≤ βn
∥∥f (xn) – p

∥∥ + ( – βn)
[∥∥SAm–···A

rn xn – p
∥∥

–
∥∥SAm···A

rn xn – SAm–···A
rn xn

∥∥]
≤ βnk‖xn – p‖ + ( – βn)

[‖xn – p‖ – ∥∥SAm···A
rn xn – SAm–···A

rn xn
∥∥]

+ βn
∥∥f (p) – p

∥∥ + βnk‖xn – p‖∥∥f (p) – p
∥∥

≤ ‖xn – p‖ – ( – βn)
∥∥SAm···A

rn xn – SAm–···A
rn xn

∥∥

+ βn
∥∥f (p) – p

∥∥ + βnk‖xn – p‖∥∥f (p) – p
∥∥. (.)

Then using (.), we have

‖un – p‖

≤ ϑn
∥∥f (yn) – p

∥∥ + ( – ϑn)‖Wrnyn –Wrnp‖

≤ [
 – ϑn( – k)

]‖yn – p‖ + ϑnk‖yn – p‖∥∥f (p) – p
∥∥ + ϑn

∥∥f (p) – p
∥∥
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≤ ‖xn – p‖ – ( – βn)
∥∥SAm···A

rn xn – SAm–···A
rn xn

∥∥

+ (ϑn + βn)
∥∥f (p) – p

∥∥ + k
(
βn‖xn – p‖ + ϑn‖yn – p‖)∥∥f (p) – p

∥∥, (.)

which implies that

‖xn+ – p‖

≤ [
 – αn( – k)

]‖un – p‖ + αnk‖un – p‖∥∥f (p) – p
∥∥ + αn

∥∥f (p) – p
∥∥

≤ ‖xn – p‖ – ( – βn)
∥∥SAm···A

rn xn – SAm–···A
rn xn

∥∥

+ (αn + βn + ϑn)
∥∥f (p) – p

∥∥

+ k
(
αn‖un – p‖ + βn‖xn – p‖ + ϑn‖yn – p‖)∥∥f (p) – p

∥∥. (.)

Thus

 ≤ ( – βn)
∥∥SAm···A

rn xn – SAm–···A
rn xn

∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖ + (αn + βn + ϑn)
∥∥f (p) – p

∥∥

+ k
(
αn‖un – p‖ + βn‖xn – p‖ + ϑn‖yn – p‖)∥∥f (p) – p

∥∥. (.)

Since from the proof of step , we know that limn→∞ ‖xn – p‖ exists, then SAm···A
rn xn –

SAm–···A
rn xn → , as n→ ∞.
Going back to (.) again, we know that

‖yn – p‖ ≤ βn
∥∥f (xn) – p

∥∥ + ( – βn)
∥∥SAm–···A

rn xn – p
∥∥

≤ βn
∥∥f (xn) – p

∥∥

+ ( – βn)
[∥∥SAm–···A

rn xn – p
∥∥ –

∥∥SAm–···A
rn xn – SAm–···A

rn xn
∥∥]

≤ βnk‖xn – p‖ + ( – βn)
[‖xn – p‖ – ∥∥SAm–···A

rn xn – SAm–···A
rn xn

∥∥]
+ βn

∥∥f (p) – p
∥∥ + βnk‖xn – p‖∥∥f (p) – p

∥∥
≤ ‖xn – p‖ – ( – βn)

∥∥SAm–···A
rn xn – SAm–···A

rn xn
∥∥

+ βn
∥∥f (p) – p

∥∥ + βnk‖xn – p‖∥∥f (p) – p
∥∥. (.)

Then using (.), repeating the processes of (.)-(.), we know that

SAm–···A
rn xn – SAm–···A

rn xn → , as n→ ∞.

By using the inductive method, we have the following results:

SAm–···A
rn xn – SAm–···A

rn xn → ,

· · ·
(I + rnA)–xn – xn → ,

http://www.fixedpointtheoryandapplications.com/content/2014/1/77
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as n → ∞. Therefore, (I + rnA)–xn ⇀ x, . . . , SAmAm–···A
rn xn = (I + rnAm)– · · · (I + rnA)–

xn ⇀ x, as n→ ∞.
Let vn, = (I+rnA)–xn, thenAvn, =

xn–vn,
rn → , since rn → +∞ and both {xn} and {vn,}

are bounded. This ensures that x ∈ A–
 .

Let vn, = (I + rnA)–(I + rnA)–xn = (I + rnA)–vn,, then Avn, =
vn,–vn,

rn → , which
implies that x ∈ A–

 .
By induction, let vn,m = (I + rnAm)– · · · (I + rnA)–xn = (I + rnAm)–vn,m–, then Amvn,m =

vn,m––vn,m
rn → , which implies that x ∈ A–

m . Thus x ∈ ⋂m
i=A–

i .
Next, we shall show that x ∈ ⋂l

j= B–
j .

From step , we may assume that there exists M >  such that ‖xn – p‖‖f (p) – p‖ +
‖f (p) –p‖ ≤M, ‖yn –p‖‖f (p) –p‖+‖f (p) –p‖ ≤M and ‖un –p‖‖f (p) –p‖+‖f (p) –
p‖ ≤M.
Now, computing the following, ∀p ∈D:

‖yn – p‖ ≤ [
 – βn( – k)

]‖xn – p‖ + βn
∥∥f (p) – p

∥∥

+ βnk‖xn – p‖∥∥f (p) – p
∥∥

≤ [
 – βn( – k)

]‖xn – p‖ + βnM. (.)

By using Lemma .,

‖un – p‖ ≤ kϑn‖yn – p‖ + ϑnk
∥∥f (p) – p

∥∥‖yn – p‖ + ϑn
∥∥f (p) – p

∥∥

+ ( – ϑn)

(
a‖yn – p‖ +

l∑
j=

aj
∥∥(I + rnBj)–yn – p

∥∥
)

≤ kϑn‖yn – p‖ + ϑnk
∥∥f (p) – p

∥∥‖yn – p‖ + ϑn
∥∥f (p) – p

∥∥

+ ( – ϑn)

[
a‖yn – p‖ +

l∑
j=

aj
(‖yn – p‖ – ∥∥(I + rnBj)–yn – yn

∥∥)]

=
[
 – ϑn( – k)

]‖yn – p‖ + ϑnk‖yn – p‖∥∥f (p) – p
∥∥ + ϑn

∥∥f (p) – p
∥∥

– ( – ϑn)
l∑
j=

aj
∥∥(I + rnBj)–yn – yn

∥∥

≤ ‖yn – p‖ – ( – ϑn)
l∑
j=

aj
∥∥(I + rnBj)–yn – yn

∥∥ + ϑnM. (.)

Then (.) and (.) imply that

‖xn+ – p‖

≤ [
 – αn( – k)

]‖un – p‖ + αnk‖un – p‖∥∥f (p) – p
∥∥ + αn

∥∥f (p) – p
∥∥

≤ [
 – αn( – k)

]‖un – p‖ + αnM

≤ [
 – αn( – k)

][‖yn – p‖ – ( – ϑn)
l∑
j=

aj
∥∥(I + rnBj)–yn – yn

∥∥ + ϑnM

]
+ αnM
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≤ [
 – αn( – k)

][
 – βn( – k)

]‖xn – p‖ + [
 – αn( – k)

]
M(βn + ϑn) + αnM

–
[
 – αn( – k)

]
( – ϑn)

l∑
j=

aj
∥∥(I + rnBj)–yn – yn

∥∥. (.)

From step , we know that limn→∞ ‖xn – p‖ exists, then (.) implies that

(I + rnBj)–yn – yn → , as n→ ∞, for j = , , . . . , l. (.)

From the iterative scheme (A), βn → , and the results of step , we know that

yn – SAmAm–···A
rn xn = βn

(
f (xn) – SAmAm–···A

rn xn
) → , as n→ ∞.

Then yn ⇀ x, since SAmAm–···A
rn xn ⇀ x, as n→ ∞.

Thus from (.), we have (I + rnBj)–yn ⇀ x, imitating the proof of x ∈ ⋂m
i=A–

i , we
can see that x ∈ ⋂l

j= B–
j , and then x ∈D.

Step . xn ⇀ v = limn→∞ PDxn.
In fact, for ∀y ∈D,

〈PDxn – y,PDxn – xn〉 ≤ . (.)

From step , we know that PDxn → v, as n → ∞. Let {xni} be a subsequence of {xn}
which is weakly convergent to x. Then x ∈ D from step . Taking the limits on both
sides of (.), we know that 〈v – y, v – x〉 ≤ .
Letting y = x, we have x = v.
Supposing {xnj} is another subsequence of {xn} such that xnj ⇀ x as j → ∞. Then re-

peating the above proof, we have x = v. Since all of the weakly convergent subsequences
of {xn} converge to the same element v, then the whole sequence {xn} converges weakly
to v.
This completes the proof. �

Remark . To prove the strong convergence result in Theorem ., we need to prove the
following two lemmas first and some new proof techniques can be seen.

Lemma . Let H ,C,D,Ai,Bj : C → C (i = , , . . . ,m; j = , , . . . , l), SAmAm–···A
r and Wr be

the same as those in Lemma .. Suppose that D �= ∅. Then F(SAmAm–···A
r ) =

⋂m
i=A–

i  and
F(Wr) =

⋂l
j= B–

j , for ∀r > .

Proof It is easy to check
⋂m

i=A–
i  ⊂ F(SAmAm–···A

r ) and
⋂l

j= B–
j  ⊂ F(Wr), for ∀r > .

Next, we shall show that F(Wr) ⊂ ⋂l
j= B–

j .
For ∀p ∈ F(Wr), ∀q ∈ ⋂l

j= B–
j . Since

⋂l
j= B–

j  ⊂ F(Wr), then q =Wrq. Thus

‖q – p‖ = ∥∥a(q – p) + a
(
JBr q – JBr p

)
+ · · · + al

(
JBlr q – JBlr p

)∥∥
≤ a‖q – p‖ + a

∥∥JBr q – JBr p
∥∥ + · · · + al

∥∥JBlr q – JBlr p
∥∥

≤ ‖q – p‖.

http://www.fixedpointtheoryandapplications.com/content/2014/1/77
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Then a(‖q–p‖–‖q–p‖)+a(‖q–p‖–‖JBr q– JBr p‖)+ · · ·+al(‖q–p‖–‖JBlr q– JBlr p‖) = .
Since ‖q–p‖– ‖JBjr q– JBjr p‖ ≥ , j = , , . . . , l, then ‖q–p‖– ‖JBjr q– JBjr p‖ = , j = , , . . . , l.
That is,

‖q – p‖ = ∥∥JBjr q – JBjr p
∥∥ =

∥∥q – JBjr p
∥∥, j = , , . . . , l. (.)

By using Lemma . and (.), we know that ‖p – JBjr p‖ ≤ ‖q – p‖ – ‖q – JBjr p‖ = , j =
, , . . . , l. Thus p = JBjr p, which implies that p ∈ B–

j , j = , , . . . , l. Then F(Wr) ⊂ ⋂l
j= B–

j ,
for r > .
Finally, we shall show that F(SAmAm–···A

r ) ⊂ ⋂m
i=A–

i .
For ∀p ∈ F(SAmAm–···A

r ), then p = SAmAm–···A
r p. Let q ∈ ⋂m

i=A–
i , then q = SAmAm–···A

r q,
since

⋂m
i=A–

i  ⊂ F(SAmAm–···A
r ). Therefore,

‖q – p‖ = ∥∥SAmAm–···A
r q – SAmAm–···A

r p
∥∥

≤ ∥∥SAm–Am–···A
r q – SAm–Am–···A

r p
∥∥

≤ ∥∥SAm–Am–···A
r q – SAm–Am–···A

r p
∥∥

≤ · · ·
≤ ∥∥(I + rA)–q – (I + rA)–p

∥∥ ≤ ‖q – p‖. (.)

From (.), we know that

∥∥q – (I + rA)–p
∥∥ = ‖q – p‖. (.)

Noticing that (.) and (.) have the same form, then repeating the proof of p = JBjr p,
we know that p = (I + rA)–p and then p ∈ A–

 .
Since p ∈ A–

 , using (.) again, we know that

‖q – p‖ = ∥∥(I + rA)–(I + rA)–q – (I + rA)–(I + rA)–p
∥∥

=
∥∥q – (I + rA)–p

∥∥. (.)

Repeating the above proof again, p ∈ A–
 .

By induction, we have p ∈ A–
m . Therefore, F(SAmAm–···A

r ) ⊂ ⋂m
i=A–

i .
This completes the proof. �

Lemma . Let H ,C,D,Ai,Bj : C → C (i = , , . . . ,m; j = , , . . . , l), SAmAm–···A
r and Wr

be the same as those in Lemma .. Suppose that D �= ∅. Then WrSAmAm–···A
r : C → C is

nonexpansive and F(WrSAmAm–···A
r ) =D, for ∀r > .

Proof It is easy to check thatWrSAmAm–···A
r : C → C is nonexpansive. We are left to show

that F(WrSAmAm–···A
r ) =D.

∀p ∈ D, then, from Lemma ., p = SAmAm–···A
r p and p =Wrp. Thus p =WrSAmAm–···A

r p,
which implies that D ⊂ F(WrSAmAm–···A

r ).
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Wei and Tan Fixed Point Theory and Applications 2014, 2014:77 Page 11 of 17
http://www.fixedpointtheoryandapplications.com/content/2014/1/77

On the other hand, let p ∈ F(WrSAmAm–···A
r ), then p =WrSAmAm–···A

r p. Let q ∈ D, then
q =WrSAmAm–···A

r q, since D ⊂ F(WrSAmAm–···A
r ). Then Lemma . ensures that

‖p – q‖ ≤ ∥∥SAmAm–···A
r p – SAmAm–···A

r q
∥∥

≤ ∥∥SAm–···A
r p – SAm–···A

r q
∥∥

≤ · · · ≤ ∥∥JA
r p – JA

r q
∥∥ ≤ ‖p – q‖,

which implies that

∥∥JA
r p – q

∥∥ =
∥∥SAA

r p – q
∥∥ = · · · = ∥∥SAmAm–···A

r p – q
∥∥ = ‖p – q‖.

Using the same method as that in Lemma ., p ∈ ⋂m
i=A–

i . Thus p = SAmAm–···A
r p. Since

p = WrSAmAm–···A
r p, then p = Wrp, which implies that p ∈ ⋂l

j= B–
j  from Lemma ..

Therefore, F(WrSAmAm–···A
r ) ⊂D.

This completes the proof. �

Theorem . Suppose H , D, C, {Ai}mi=, {Bj}lj= and f are the same as those in Theorem ..
Let {xn} be generated by the iterative scheme (A). If {αn}, {βn} and {ϑn} are three sequences
in (, ) and {rn} ⊂ (, +∞) satisfy the following conditions:

(i)
∑∞

n= |αn+ – αn| < +∞, and αn → , as n→ ∞;
(ii)

∑∞
n= βn = +∞,

∑∞
n= |βn+ – βn| < +∞, and βn → , as n→ ∞;

(iii)
∑∞

n= |ϑn+ – ϑn| < +∞, and ϑn → , as n→ ∞;
(iv)

∑∞
n= |rn+ – rn| < +∞, and rn → r∗ ≥ ε > , as n→ ∞.

Then {xn} converges strongly to a point p ∈D, which is the unique solution of the follow-
ing variational inequality:

〈
f (p) – p,p – q

〉 ≥ , ∀q ∈D. (.)

Proof We shall split the proof into five steps:
Step . {xn} is bounded.

∀p ∈D, ‖yn – p‖ ≤ [
 – βn( – k)

]‖xn – p‖ + βn
∥∥f (p) – p

∥∥,
‖un – p‖ ≤ [

 – ϑn( – k)
]‖yn – p‖ + ϑn

∥∥f (p) – p
∥∥.

Letting δn = αn + βn + ϑn – (αnβn + αnϑn + βnϑn)( – k) + αnβnϑn( – k). Then

‖xn+ – p‖ ≤ [
 – αn( – k)

]‖un – p‖ + αn
∥∥f (p) – p

∥∥
≤ [

 – αn( – k)
][
 – βn( – k)

][
 – ϑn( – k)

]‖xn – p‖
+

{[
 – αn( – k)

]
ϑn + αn +

[
 – αn( – k)

][
 – ϑn( – k)

]
βn

}∥∥f (p) – p
∥∥

=
[
 – δn( – k)

]‖xn – p‖ + δn
∥∥f (p) – p

∥∥
≤ max

{
‖xn – p‖, 

 – k
∥∥f (p) – p

∥∥}
, n≥ .

By induction, ‖xn – p‖ ≤max{‖x – p‖, 
–k ‖f (p) – p‖}, n≥ . Thus {xn} is bounded.
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Step . limn→∞ ‖xn+ – xn‖ =  and limn→∞ ‖xn – un‖ = .
In fact,

‖yn – yn–‖
≤ |βn – βn–|

∥∥f (xn) – SAm···A
rn xn

∥∥ + βn–
∥∥f (xn) – f (xn–)

∥∥
+ ( – βn–)

∥∥SAm···A
rn xn – SAm···A

rn– xn–
∥∥

≤ M|βn – βn–| + βn–k‖xn – xn–‖
+ ( – βn–)

∥∥SAm···A
rn xn – SAm···A

rn– xn–
∥∥. (.)

Next we discuss ‖SAm···A
rn xn – SAm···A

rn– xn–‖.
If rn– ≤ rn, then in view of Lemma .,

∥∥JA
rn xn – JA

rn–xn–
∥∥

=
∥∥∥∥JA

rn–

(
rn–
rn

xn +
(
 –

rn–
rn

)
JA
rn xn

)
– JA

rn–xn–
∥∥∥∥

≤
∥∥∥∥ rn–rn

xn +
(
 –

rn–
rn

)
JA
rn xn – xn–

∥∥∥∥
≤ rn–

rn
‖xn – xn–‖ +

(
 –

rn–
rn

)∥∥JA
rn xn – xn–

∥∥
≤ ‖xn – xn–‖ + rn – rn–

ε

∥∥JA
rn xn – xn–

∥∥. (.)

For ∀p ∈D, letM =M + ‖p‖, then
∥∥JA

rn xn – xn–
∥∥

≤ ∥∥(I + rnA)–xn – p
∥∥ + ‖p – xn–‖

≤ ‖xn – p‖ + ‖p – xn–‖ ≤ M. (.)

From (.) and (.), we know that

∥∥JA
rn xn – JA

rn–xn–
∥∥ ≤ ‖xn – xn–‖ + M

rn – rn–
ε

. (.)

Notice that SAA
rn xn = JA

rn J
A
rn xn and SAA

rn– xn– = JA
rn– J

A
rn–xn–; similar to (.), we have

∥∥SAA
rn xn – SAA

rn– xn–
∥∥ ≤ ∥∥JA

rn xn – JA
rn–xn–

∥∥ + M
rn – rn–

ε
. (.)

Following from (.) and (.), we have

∥∥SAA
rn xn – SAA

rn– xn–
∥∥ ≤ ‖xn – xn–‖ + × M

rn – rn–
ε

.

Then by induction, we can get the following result:

∥∥SAm···A
rn xn – SAm···A

rn– xn–
∥∥ ≤ ‖xn – xn–‖ + ×mM

rn – rn–
ε

. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/77
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Putting (.) into (.), and lettingM =max{ ×mM
ε

, M},

‖yn – yn–‖

≤ [
 – βn( – k)

]‖xn – xn–‖ + ×mM

ε
(rn – rn–) + M|βn – βn–|

≤ [
 – βn( – k)

]‖xn – xn–‖ +M
[
(rn – rn–) + |βn – βn–|

]
. (.)

If rn ≤ rn–, then imitating the above proof, we have

‖yn – yn–‖ ≤ [
 – βn( – k)

]‖xn – xn–‖ +M
[
(rn– – rn) + |βn – βn–|

]
. (.)

Combining (.) and (.),

‖yn – yn–‖ ≤ [
 – βn( – k)

]‖xn – xn–‖ +M
(|rn– – rn| + |βn – βn–|

)
. (.)

Similar to the discussion of (.), we have

‖Wrnyn –Wrn–yn–‖

≤ a‖yn – yn–‖ +
l∑
j=

aj
∥∥JBjrn yn – JBjrn–yn–

∥∥

≤ a‖yn – yn–‖ +
l∑
j=

aj
(

‖yn – yn–‖ + |rn – rn–|
ε

∥∥JBjrn yn – yn–
∥∥)

≤ ‖yn – yn–‖ + M
|rn – rn–|

ε
. (.)

Using (.), then

‖un – un–‖
≤ ϑnk‖yn – yn–‖ + |ϑn – ϑn–|

(∥∥f (yn–)∥∥ + ‖Wrn–yn–‖
)

+ ( – ϑn)‖Wrnyn –Wrn–yn–‖

≤ [
 – ϑn( – k)

]‖yn – yn–‖ + M|ϑn – ϑn–| + M

ε
|rn – rn–|. (.)

Based on (.) and (.), and lettingM =M + M
ε
, we have

‖xn+ – xn‖
≤ αn

∥∥f (un) – f (un–)
∥∥ + |αn – αn–|

∥∥f (un–)∥∥ + ( – αn)‖un – un–‖
+ |αn – αn–|‖un–‖

≤ [
 – αn( – k)

]‖un – un–‖ + M|αn – αn–|
≤ [

 – αn( – k)
][
 – ϑn( – k)

]‖yn – yn–‖ + M
(|ϑn – ϑn–| + |αn – αn–|

)
+
M

ε
|rn – rn–|
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≤ [
 – βn( – k)

]‖xn – xn–‖ +M
(|rn – rn–| + |βn – βn–| + |αn – αn–|

+ |ϑn – ϑn–|
)
.

In view of Lemma ., we know that ‖xn+ – xn‖ → , as n→ ∞. Combining with the fact
that ‖xn+ – un‖ = αn‖f (un) – un‖ → , we can easily know that ‖xn – un‖ ≤ ‖xn+ – xn‖ +
‖xn+ – un‖ → , as n→ ∞.
Step . ‖Wrun – un‖ → , and ‖SAmAm–···A

r un – un‖ → , as n → ∞. In view of
Lemma . again, we know that

∥∥SA
rn xn – SA

r xn
∥∥

=
∥∥∥∥JA

r

(
r
rn
xn +

(
 –

r
rn

)
JA
rn xn

)
– JA

r xn
∥∥∥∥

≤
∣∣∣∣ – r

rn

∣∣∣∣∥∥JA
rn xn – xn

∥∥ ≤ M

∣∣∣∣ – r
rn

∣∣∣∣,
and then

∥∥SAA
rn xn – SAA

r xn
∥∥

≤ r
rn

∥∥JA
rn xn – JA

r xn
∥∥ +

∣∣∣∣ – r
rn

∣∣∣∣∥∥SAA
rn xn – JA

r xn
∥∥ ≤ M

∣∣∣∣ – r
rn

∣∣∣∣
(
r
rn

+ 
)
.

By induction,

∥∥SAm···A
rn xn – SAm···A

r xn
∥∥ ≤ M

∣∣∣∣ – r
rn

∣∣∣∣
[(

r
rn

)m–

+ · · · + r
rn

+ 
]

→ , (.)

as n→ ∞, since rn → r∗.
∀p ∈ D, continuing the computation of (.), we have

 ≤ [
 – αn( – k)

]
( – ϑn)

l∑
j=

aj
∥∥(I + rnBj)–yn – yn

∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖ +M(αn + βn + ϑn).

From step , we know that ‖xn – xn+‖ → , then ‖(I + rnBj)–yn – yn‖ → , j = , , . . . , l,
which implies that

Wrnyn – yn → , as n → ∞. (.)

Noticing that ‖un –Wrnyn‖ = ϑn‖f (yn) –Wrnyn‖ → , and ‖yn – SAm···A
rn xn‖ = βn‖f (xn) –

SAm···A
rn xn‖ → , as n→ ∞.
Combining with the facts of (.), (.), and step , we know that

∥∥un – SAm···A
r un

∥∥
≤ ‖un –Wrnyn‖ + ‖Wrnyn – yn‖ +

∥∥yn – SAm···A
rn xn

∥∥
+

∥∥SAm···A
rn xn – SAm···A

r xn
∥∥ +

∥∥SAm···A
r xn – SAm···A

r un
∥∥ → , as n→ ∞.
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Using Lemma . again, then

‖Wrnyn –Wryn‖ ≤
l∑
j=

aj
∥∥JBjrn yn – JBjr yn

∥∥ ≤ M( – a)
∣∣∣∣ – r

rn

∣∣∣∣ → .

Since ‖Wrun –Wryn‖ ≤ ‖un – yn‖ ≤ ϑn‖f (yn) – yn‖+ (–ϑn)‖Wrnyn – yn‖ → , then ‖un –
Wrun‖ ≤ ‖un –Wrnyn‖ + ‖Wrnyn –Wryn‖ + ‖Wryn –Wrun‖ → , as n→ ∞.
Step . lim supn→∞〈f (p) – p,un – p〉 ≤ , lim supn→∞〈f (p) – p,xn+ – p〉 ≤ ,

lim supn→∞〈f (p) – p, yn – p〉 ≤ , where p satisfies (.).
Using Lemmas . and ., we know that if we let zt = tf (zt)+ (– t)WrSAmAm–···A

r zt , r > 
and t ∈ (, ), then zt → p ∈ F(WrSAmAm–···A

r ) =D, as t → +. And, p satisfies (.).
From step , we may choose tn ∈ (, ) such that tn → , ‖SAm ···A

r un–un‖
tn → , and

‖Wrun–un‖
tn → , as n → ∞.

Using Lemma .,

‖ztn – un‖

≤ ( – tn)
∥∥WrSAm···A

r ztn – un
∥∥ + tn

〈
f (ztn ) – un, ztn – un

〉
≤ ( – tn)

[‖ztn – un‖ +
∥∥un – SAm···A

r un
∥∥ + ‖un –Wrun‖

]
+ tn

〈
f (ztn ) – ztn , ztn – un

〉
+ tn‖ztn – un‖.

Then

〈
f (ztn ) – ztn ,un – ztn

〉
≤ tn


‖ztn – un‖ + ( – tn)

tn
‖ztn – un‖

(∥∥SAm···A
r un – un

∥∥ + ‖un –Wrun‖
)

+
( – tn)

tn
(∥∥SAm···A

r un – un
∥∥ + ‖Wrun – un‖

). (.)

Since {SAm···A
r un}, {Wrun}, {xn}, {un} and {ztn} are all bounded, and ‖SAm ···A

r un–un‖
tn → , and

‖Wrun–un‖
tn → , from (.), lim supn→∞〈f (ztn ) – ztn ,un – ztn〉 ≤ .

Recalling that ztn → p, then 〈ztn – p,un – ztn〉 → . Thus lim supn→∞〈f (ztn ) – p,un –
ztn〉 ≤ . Since 〈f (ztn ) – p,un – p〉 = 〈f (ztn ) – p,un – ztn〉 + 〈f (ztn ) – p, ztn – p〉,
then lim supn→∞〈f (p) – p,un – p〉 ≤ . Then from step , lim supn→∞〈f (p) – p,xn+ –
p〉 ≤ .
Noticing that

〈
f (p) – p, yn – p

〉
=

〈
f (p) – p, yn –Wrnyn

〉
+

〈
f (p) – p,Wrnyn – un

〉
+

〈
f (p) – p,un – xn+

〉
+

〈
f (p) – p,xn+ – p

〉
,

and using (.), iterative scheme (A) and the result of step , we have lim supn→∞〈f (p) –
p, yn – p〉 ≤ .
Step . xn → p, which satisfies (.), as n→ ∞.
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Using Lemma ., we know that

‖yn – p‖ ≤ [
 – βn( – k)

]‖xn – p‖ + βn
〈
f (p) – p, yn – p

〉
. (.)

We have

‖un – p‖ ≤ [
 – ϑn( – k)

]‖yn – p‖ + ϑn
〈
f (p) – p,un – p

〉
. (.)

LettingM =max{(M +‖p‖), (M +‖p‖)(‖f (p)‖+‖p‖)} and using (.) and (.),
we have

‖xn+ – p‖

≤ [
 – αn( – k)

]‖un – p‖ + αn
〈
f (p) – p,xn+ – p

〉
≤ [

 – αn( – k)
][
 – βn( – k)

][
 – ϑn( – k)

]‖xn – p‖

+ 
[
 – αn( – k)

][
 – ϑn( – k)

]
βn

〈
f (p) – p, yn – p

〉
+ 

[
 – αn( – k)

]
ϑn

〈
f (p) – p,un – p

〉
+ αn

〈
f (p) – p,xn+ – p

〉
≤ [

 – ( – k)(αn + βn + ϑn)
]‖xn – p‖ +M( – k)(αnβn + βnϑn + αnϑn)

+ αnϑn( – k)
〈
p – f (p),un – p

〉
+ (αnβn + βnϑn)( – k)

〈
p – f (p), yn – p

〉
+ αnβnϑn( – k)

〈
f (p) – p, yn – p

〉
+ αn

〈
f (p) – p,xn+ – p

〉
+ βn

〈
f (p) – p, yn – p

〉
+ ϑn

〈
f (p) – p,un – p

〉
≤ [

 – ( – k)(αn + βn + ϑn)
]‖xn – p‖ +M( – k)(αnβn + βnϑn + αnϑn)

+M( – k)(αnβn + βnϑn + αnϑn) + Mαnβnϑn( – k)

+ αn
〈
f (p) – p,xn+ – p

〉
+ βn

〈
f (p) – p, yn – p

〉
+ ϑn

〈
f (p) – p,un – p

〉
. (.)

Let cn = (αn + βn + ϑn)( – k), then cn →  and
∑∞

n= cn = +∞.
Let bn = M[ (–k)(αnβn+βnϑn+αnϑn)

αn+βn+ϑn
+ (–k)αnβnϑn

αn+βn+ϑn
] + αn

(αn+βn+ϑn)(–k) 〈f (p) – p,xn+ – p〉 +
ϑn

(αn+βn+ϑn)(–k) 〈f (p) – p,un – p〉 + βn
(αn+βn+ϑn)(–k) 〈f (p) – p, yn – p〉.

Notice that limn→∞ αnβn+βnϑn+αnϑn
αn+βn+ϑn

= , limn→∞ αnβnϑn
αn+βn+ϑn

=  and from the results in
step , we have lim supn→+∞ bn ≤ .
Using Lemma ., xn → p, which satisfies (.), as n→ ∞.
This completes the proof. �

Remark . The iterative construction in this paper generalizes and extends some corre-
sponding ones in [, , , ], etc., in Hilbert spaces.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors read and approved the final manuscript.

http://www.fixedpointtheoryandapplications.com/content/2014/1/77


Wei and Tan Fixed Point Theory and Applications 2014, 2014:77 Page 17 of 17
http://www.fixedpointtheoryandapplications.com/content/2014/1/77

Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 11071053), Natural Science
Foundation of Hebei (No. A2014207010), Key Project of Science and Research of Hebei Education Department
(ZH2012080) and Key Project of Science and Research of Hebei University of Economics and Business (2013KYZ01).

Received: 29 October 2013 Accepted: 7 March 2014 Published: 25 Mar 2014

References
1. Browder, FE: Nonlinear mappings of nonexpansive and accretive type in Banach spaces. Bull. Am. Math. Soc. 73,

875-882 (1967)
2. Rockafellar, RT: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877-898 (1976)
3. Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506-510 (1953)
4. Qin, XL, Su, YF: Approximation of a zero point of accretive operator in Banach spaces. J. Math. Anal. Appl. 329,

415-424 (2007)
5. Mainge, PE: Viscosity methods for zeroes of accretive operators. J. Approx. Theory 140, 127-140 (2006)
6. Qin, XL, Cho, SY, Wang, L: Iterative algorithms with errors for zero points ofm-accretive operators. Fixed Point Theory

Appl. 2013, Article ID 148 (2013)
7. Ceng, LC, Wu, SY, Yao, JC: New accuracy criteria for modified approximate proximal point algorithms in Hilbert

spaces. Taiwan. J. Math. 12, 1691-1705 (2008)
8. Xu, HK: Strong convergence of an iterative method for nonexpansive and accretive operators. J. Math. Anal. Appl.

314, 631-643 (2006)
9. Cho, YJ, Kang, SM, Zhou, HY: Approximate proximal point algorithms for finding zeroes of maximal monotone

operators in Hilbert spaces. J. Inequal. Appl. 2008, Article ID 598191 (2008)
10. Ceng, LC, Khan, AR, Ansari, QH, Yao, JC: Strong convergence of composite iterative schemes for zeros ofm-accretive

operators in Banach spaces. Nonlinear Anal. 70, 1830-1840 (2009)
11. Chen, RD, Liu, YJ, Shen, XL: Iterative approximation of a zero of accretive operator in Banach space. Nonlinear Anal. 71,

e346-e350 (2009)
12. Zegeye, H, Shahzad, N: Strong convergence theorems for a common zero of a finite family ofm-accretive mappings.

Nonlinear Anal. 66, 1161-1169 (2007)
13. Hu, LG, Liu, LW: A new iterative algorithm for common solutions of a finite family of accretive operators. Nonlinear

Anal. 70, 2344-2351 (2009)
14. Tan, KK, Xu, HK: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math.

Anal. Appl. 178, 301-308 (1993)
15. Barbu, V: Nonlinear Semigroups and Differential Equations in Banach Space. Noordhoff, Groningen (1976)
16. Xu, HK: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279-291 (2004)
17. Xu, HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240-256 (2002)

10.1186/1687-1812-2014-77
Cite this article as:Wei and Tan: Strong and weak convergence theorems for common zeros of finite accretive
mappings. Fixed Point Theory and Applications 2014, 2014:77

http://www.fixedpointtheoryandapplications.com/content/2014/1/77

	Strong and weak convergence theorems for common zeros of ﬁnite accretive mappings
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Weak and strong convergence theorems
	Competing interests
	Authors' contributions
	Acknowledgements
	References


