# Strong and weak convergence theorems for common zeros of finite accretive mappings 

Li Wei* and Ruilin Tan<br>Dedicated to Professor Wataru Takahashi on the occasion of his 70th birthday

Correspondence:
diandianba@yahoo.com School of Mathematics and Statistics, Hebei University of Economics and Business, Shijiazhuang, 050061, China


#### Abstract

In this paper, we present a new iterative scheme to solve the problems of finding common zeros of finite $m$-accretive mappings in a real Hilbert space. Some strong and weak convergence theorems are established under different assumptions, which extends the corresponding works given by some authors.


MSC: 47H05; 47H09
Keywords: accretive mapping; contraction; zero point; iterative scheme; strong (weak) convergence

## 1 Introduction and preliminaries

Let $H$ be a real Hilbert space with the inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, respectively. Then for $\forall x, y \in H$, and $\lambda \in[0,1]$,

$$
\begin{equation*}
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} . \tag{1.1}
\end{equation*}
$$

We write $x_{n} \rightharpoonup x$ to indicate that the sequence $\left\{x_{n}\right\}$ converges weakly to $x$, and $x_{n} \rightarrow x$ implies that $\left\{x_{n}\right\}$ converges strongly to $x$.
Let $C$ be a closed and convex subset of $H$. Then, for every point $x \in H$, there exists a unique nearest point in $C$, denoted by $P_{C} x$, such that $\left\|x-P_{C} x\right\| \leq\|x-y\|$ for all $y \in C . P_{C}$ is called the metric projection of $H$ onto $C$. It is well known that $P_{C}: H \rightarrow C$ is characterized by the properties:
(i) $\left\langle x-P_{C} x, P_{C} x-y\right\rangle \geq 0$, for all $y \in C$ and $x \in H$;
(ii) For every $x, y \in H,\left\|P_{C} x-P_{C} y\right\|^{2} \leq\left\langle x-y, P_{C} x-P_{C} y\right\rangle$;
(iii) $\left\|P_{C} x-P_{C} y\right\| \leq\|x-y\|$, for every $x, y \in H$;
(iv) $x_{n} \rightharpoonup x_{0}$ and $P_{C} x_{n} \rightarrow y_{0}$ imply that $P_{C} x_{0}=y_{0}$.

A mapping $f: C \rightarrow C$ is called a contraction if there exists a constant $k \in(0,1)$ such that $\|f(x)-f(y)\| \leq k\|x-y\|$, for $\forall x, y \in C$. We use $\sum_{C}$ to denote the collection of mappings $f$ verifying the above inequality. That is, $\sum_{C}:=\{f: C \rightarrow C \mid f$ is a contraction with constant $k\}$.
A mapping $T: C \rightarrow C$ is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|$, for $\forall x, y \in C$. We use $F(T)$ to denote the fixed point set of $T$, that is, $F(T):=\{x \in C: T x=x\}$.

A mapping $A: H \supset D(A) \rightarrow R(A) \subset H$ is called accretive if $\langle x-y, A x-A y\rangle \geq 0$, for $\forall x, y \in$ $D(A)$ and it is called $m$-accretive if $R(I+\lambda A)=H$, for $\forall \lambda>0$. An $m$-accretive mapping $A$

[^0]is demi-closed, that is, if $\left\{x_{n}\right\} \subset D(A)$ such that $x_{n} \rightharpoonup x$ and $A x_{n} \rightarrow y$, then $x \in D(A)$ and $y=A x$. Let $A^{-1} 0$ denote the set of zeros of $A$, that is, $A^{-1} 0:=\{x \in D(A): A x=0\}$. We denote by $J_{r}^{A}$ (for $r>0$ ) the resolvent of $A$, that is, $J_{r}^{A}:=(I+r A)^{-1}$. Then $J_{r}^{A}$ is nonexpansive and $F\left(J_{r}^{A}\right)=A^{-1} 0$.

Interest in accretive mappings, which is an important class of nonlinear operators, stems mainly from their firm connection with equations of evolution. It is well known that many physically significant problems can be modeled by initial value problems of the form

$$
\begin{equation*}
x^{\prime}(t)+A x(t)=0, \quad x(0)=x_{0} \tag{1.2}
\end{equation*}
$$

where $A$ is an accretive mapping. Typical examples where such evolution equations occur can be found in the heat, wave or Schrödinger equations. If $x(t)$ is dependent on $t$, then (1.2) is reduced to

$$
\begin{equation*}
A u=0 \tag{1.3}
\end{equation*}
$$

whose solutions correspond to the equilibrium of the system (1.2). Consequently, within the past 40 years or so, considerable research efforts have been devoted to methods for finding approximate solutions of (1.3). An early fundamental result in the theory of accretive operators, due to Browder [1]. One classical method for studying the problem $0 \in A x$, where $A$ is an $m$-accretive mapping, is the following so-called proximal method (cf. [2]):

$$
\begin{equation*}
x_{0} \in H, \quad x_{n+1} \approx J_{r_{n}} x_{n}, \quad n \geq 0 \tag{1.4}
\end{equation*}
$$

where $J_{r_{n}}:=\left(I+r_{n} A\right)^{-1}$. It was shown that the sequence generated by (1.4) converges weakly or strongly to a zero point of $A$ under some conditions.

Recall that the following normal Mann iterative scheme to approximate the fixed point of a nonexpansive mapping $T: C \rightarrow C$ was introduced by Mann [3]:

$$
\begin{equation*}
x_{0} \in C, \quad x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n}, \quad n \geq 0 . \tag{1.5}
\end{equation*}
$$

It was proved that under some conditions, the sequence $\left\{x_{n}\right\}$ produced by (1.5) converges weakly to a point in $F(T)$.
Later, many mathematicians tried to combine the ideas of proximal method and Mann iterative method to approximate the zeros of $m$-accretive mappings; see, e.g. [4-11] and references therein.

Especially, in 2007, Qin and Su [4] presented the following iterative scheme:

$$
\left\{\begin{array}{l}
x_{1} \in C  \tag{1.6}\\
\left.y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\right) r_{n} x_{n} \\
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) y_{n}
\end{array}\right.
$$

where $J_{r_{n}}=\left(I+r_{n} A\right)^{-1}$. They showed that $\left\{x_{n}\right\}$ generated by the above scheme converges strongly to a zero of $A$.
Based on iterative schemes (1.4) and (1.5), Zegeye and Shahzad extended their discussion to the case of finite $m$-accretive mappings. They presented in [12] the following iterative
scheme:

$$
\begin{equation*}
x_{0} \in C, \quad x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) S_{r} x_{n}, \quad n \geq 0 \tag{1.7}
\end{equation*}
$$

where $S_{r}=a_{0} I+a_{1} J_{A_{1}}+a_{2} J_{A_{2}}+\cdots+a_{l} J_{A_{l}}$ with $J_{A_{i}}=\left(I+A_{i}\right)^{-1}$ and $\sum_{i=0}^{l} a_{i}=1$. If $\bigcap_{i=1}^{l} A_{i}^{-1}(0) \neq \emptyset$, they proved that $\left\{x_{n}\right\}$ generated by (1.7) converges strongly to the common zeros of $A_{i}(i=1,2, \ldots, l)$ under some conditions.

Later, their work was extended to the following one presented by Hu and Liu in [13]:

$$
\begin{equation*}
x_{0} \in C, \quad x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\vartheta_{n} S_{r_{n}} x_{n}, \quad n \geq 0, \tag{1.8}
\end{equation*}
$$

where $S_{r_{n}}=a_{0} I+a_{1} J_{r_{n}}^{A_{1}}+a_{2} J_{r_{n}}^{A_{2}}+\cdots+a_{l} J_{r_{n}}^{A_{l}}$ with $J_{r_{n}}^{A_{i}}=\left(I+r_{n} A_{i}\right)^{-1}$ and $\sum_{i=0}^{l} a_{i}=1$. $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\vartheta_{n}\right\} \subset(0,1)$ and $\alpha_{n}+\beta_{n}+\vartheta_{n}=1$. If $\bigcap_{i=1}^{l} A_{i}^{-1}(0) \neq \emptyset$, they proved that $\left\{x_{n}\right\}$ converges strongly to the common zeros of $A_{i}(i=1,2, \ldots, l)$ under some conditions.

In this paper, based on the work of (1.6), (1.7), and (1.8), we present the following iterative scheme:

$$
\left\{\begin{array}{l}
x_{1} \in C  \tag{A}\\
y_{n}=\beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) S_{r_{n}}^{A_{m} A_{m-1} \cdots A_{1}} x_{n} \\
u_{n}=\vartheta_{n} f\left(y_{n}\right)+\left(1-\vartheta_{n}\right) W_{r_{n}} y_{n} \\
x_{n+1}=\alpha_{n} f\left(u_{n}\right)+\left(1-\alpha_{n}\right) u_{n}
\end{array}\right.
$$

where $S_{r_{n}}^{A_{m} A_{m-1} \cdots A_{1}}:=J_{r_{n}}^{A_{m}} J_{r_{n}}^{A_{m-1}} \cdots J_{r_{n}}^{A_{1}}, W_{r_{n}}=a_{0} I+a_{1} J_{r_{n}}^{B_{1}}+a_{2} J_{r_{n}}^{B_{2}}+\cdots+a_{l} J_{r_{n}}^{B_{l}}, J_{r_{n}}^{A_{i}}=\left(I+r_{n} A_{i}\right)^{-1}$ and $J_{r_{n}}^{B_{j}}=\left(I+r_{n} B_{j}\right)^{-1}$, for $i=1,2, \ldots, m ; j=1,2, \ldots, l . \sum_{k=0}^{l} a_{k}=1, f: C \rightarrow C$ is a contraction, both $\left\{A_{i}\right\}_{i=1}^{m}$ and $\left\{B_{j}\right\}_{j=1}^{l}$ are finite families of $m$-accretive mappings. More details of iterative scheme (A) will be presented in Section 2. We shall prove a weak convergent theorem and a strong convergent theorem under different assumptions on $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$, $\left\{\vartheta_{n}\right\}$, and $\left\{r_{n}\right\}$, respectively.

In order to prove our main results, we need the following lemmas.
By using the properties of the metric projection and $m$-accretive mappings, we can easily prove the following two lemmas.

Lemma 1.1 For $\forall x \in H$ and $\forall y \in C,\left\|P_{C} x-y\right\|^{2}+\left\|P_{C} x-x\right\|^{2} \leq\|y-x\|^{2}$.

Lemma 1.2 For $\forall y \in A^{-1} 0, \forall x \in H$ and $r>0$,

$$
\left\|(I+r A)^{-1} x-y\right\|^{2}+\left\|(I+r A)^{-1} x-x\right\|^{2} \leq\|y-x\|^{2} .
$$

Lemma 1.3 ([14]) Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences of nonnegative real numbers satisfying

$$
a_{n+1} \leq a_{n}+b_{n}, \quad \forall n \geq 1
$$

If $\sum_{n=1}^{\infty} b_{n}<+\infty$, then $\lim _{n \rightarrow \infty} a_{n}$ exists.

Lemma 1.4 ([15]) Let $H$ be a real Hilbert space and $A$ be an m-accretive mapping. For $\lambda, \mu>0$ and $x \in H$, we have

$$
J_{\lambda}^{A} x=J_{\mu}^{A}\left(\frac{\mu}{\lambda} x+\left(1-\frac{\mu}{\lambda}\right) J_{\lambda}^{A} x\right)
$$

where $J_{\lambda}^{A}=(I+\lambda A)^{-1}$ and $J_{\mu}^{A}=(I+\mu A)^{-1}$.

Lemma 1.5 ([16]) Let H be a real Hilbert space and C be a closed convex subset of H. Let $T: C \rightarrow C$ be a nonexpansive mapping with $F(T) \neq \emptyset$, and $f \in \sum_{C}$. Then $z_{t}$, defined by

$$
z_{t}=t f\left(z_{t}\right)+(1-t) T z_{t}, \quad z_{t} \in C
$$

converges strongly to a point in $F(T)$. If one defines $Q: \sum_{C} \rightarrow F(T)$ by $Q(f):=\lim _{t \rightarrow 0} z_{t}$, $f \in \sum_{C}$, then $Q(f)$ solves the following variational inequality:

$$
\langle(I-f) Q(f), Q(f)-p\rangle \leq 0, \quad \forall p \in F(T)
$$

Lemma 1.6 ([17]) Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ be three sequences of nonnegative real numbers satisfying

$$
a_{n+1} \leq\left(1-c_{n}\right) a_{n}+b_{n} c_{n}, \quad \forall n \geq 1,
$$

where $\left\{c_{n}\right\} \subset(0,1)$ such that
(i) $c_{n} \rightarrow 0$ and $\sum_{n=1}^{\infty} c_{n}=+\infty$,
(ii) either $\lim \sup _{n \rightarrow \infty} b_{n} \leq 0$ or $\sum_{n=1}^{\infty}\left|b_{n} c_{n}\right|<+\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 1.7 In a Hilbert space $H$, we can easily get the following inequality:

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle, \quad \forall x, y \in H .
$$

## 2 Weak and strong convergence theorems

Lemma 2.1 Let $H$ be a real Hilbert space, $C$ be a nonempty closed and convex subset of $H$ and $A_{i}, B_{j}: C \rightarrow C(i=1,2, \ldots, m ; j=1,2, \ldots, l)$ be finitely many m-accretive mappings such that $D:=\left(\bigcap_{i=1}^{m} A_{i}^{-1} 0\right) \cap\left(\bigcap_{j=1}^{l} B_{j}^{-1} 0\right) \neq \emptyset$. Suppose $S_{r}^{A_{m} A_{m-1} \cdots A_{1}}:=J_{r}^{A_{m}} J_{r}^{A_{m-1}} \cdots J_{r}^{A_{1}}$ and $W_{r}:=a_{0} I+a_{1} J_{r}^{B_{1}}+a_{2} J_{r}^{B_{2}}+\cdots+a_{l} J_{r}^{B_{l}}$, where $J_{r}^{A_{i}}=\left(I+r A_{i}\right)^{-1}(i=1,2, \ldots, m), J_{r}^{B_{j}}=\left(I+r B_{j}\right)^{-1}$ $(j=1,2, \ldots, l), a_{k} \in(0,1), k=0,1, \ldots, l, \sum_{k=0}^{l} a_{k}=1$, and $r>0$. Then $S_{r}^{A_{m} A_{m-1} \cdots A_{1}}: C \rightarrow C$ and $W_{r}: C \rightarrow C$ are nonexpansive.

Lemma 2.1 can easily be obtained in view of the facts that $\left(I+r A_{i}\right)^{-1}$ and $\left(I+r B_{j}\right)^{-1}$ are nonexpansive, $i=1,2, \ldots, m ; j=1,2, \ldots, l$.

Theorem 2.1 Let $H, C, D$, and $A_{i}, B_{j}: C \rightarrow C(i=1,2, \ldots, m ; j=1,2, \ldots, l)$ be the same as those in Lemma 2.1. Suppose that $D \neq \emptyset$. Let $\left\{x_{n}\right\}$ be generated by the iterative scheme (A). If $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\vartheta_{n}\right\}$ are three sequences in $[0,1)$ such that $\sum_{n=1}^{\infty} \alpha_{n}<+\infty, \sum_{n=1}^{\infty} \beta_{n}<+\infty$,
$\sum_{n=1}^{\infty} \vartheta_{n}<+\infty,\left\{r_{n}\right\} \subset(0,+\infty)$ with $\lim _{n \rightarrow \infty} r_{n}=+\infty$ and $f: C \rightarrow C$ is a contraction with contractive constant $k \in(0,1)$. Then $\left\{x_{n}\right\}$ converges weakly to a point $v_{0} \in D$ satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-v_{0}\right\|=\min _{y \in D} \lim _{n \rightarrow \infty}\left\|x_{n}-y\right\| . \tag{2.1}
\end{equation*}
$$

Proof We split our proof into five steps.
Step 1. $\left\{x_{n}\right\},\left\{u_{n}\right\}$ and $\left\{y_{n}\right\}$ are all bounded.
We can easily know that $\bigcap_{i=1}^{m} A_{i}^{-1} 0 \subset F\left(S_{r_{n}}^{A_{m} \cdots A_{1}}\right)$, and $\bigcap_{j=1}^{l} B_{j}^{-1} 0 \subset F\left(W_{r_{n}}\right)$. Then for $\forall p \in D$, from Lemma 2.1, we have

$$
\begin{equation*}
\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-p\right\|=\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-S_{r_{n}}^{A_{m} \cdots A_{1}} p\right\| \leq\left\|x_{n}-p\right\| . \tag{2.2}
\end{equation*}
$$

Based on (2.2), we know that

$$
\begin{align*}
\left\|y_{n}-p\right\| & \leq \beta_{n}\left\|f\left(x_{n}\right)-p\right\|+\left(1-\beta_{n}\right)\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-p\right\| \\
& \leq\left[1-\beta_{n}(1-k)\right]\left\|x_{n}-p\right\|+\beta_{n}\|f(p)-p\| . \tag{2.3}
\end{align*}
$$

Then (2.3) and Lemma 2.1 imply that

$$
\begin{align*}
\left\|u_{n}-p\right\| \leq & \vartheta_{n}\left\|f\left(y_{n}\right)-f(p)\right\|+\vartheta_{n}\|f(p)-p\|+\left(1-\vartheta_{n}\right)\left\|y_{n}-p\right\| \\
\leq & {\left[1-\beta_{n}(1-k)\right]\left[1-\vartheta_{n}(1-k)\right]\left\|x_{n}-p\right\| } \\
& +\left[\vartheta_{n}+\beta_{n}-\vartheta_{n} \beta_{n}(1-k)\right]\|f(p)-p\| . \tag{2.4}
\end{align*}
$$

Using (2.4), we know that

$$
\begin{align*}
\left\|x_{n+1}-p\right\| \leq & \alpha_{n}\left\|f\left(u_{n}\right)-f(p)\right\|+\alpha_{n}\|f(p)-p\|+\left(1-\alpha_{n}\right)\left\|u_{n}-p\right\| \\
\leq & {\left[1-\beta_{n}(1-k)\right]\left[1-\alpha_{n}(1-k)\right]\left[1-\vartheta_{n}(1-k)\right]\left\|x_{n}-p\right\| } \\
& +\left\{\left[1-\alpha_{n}(1-k)\right]\left[\vartheta_{n}+\beta_{n}-\vartheta_{n} \beta_{n}(1-k)\right]+\alpha_{n}\right\}\|f(p)-p\| \\
\leq & \left\|x_{n}-p\right\|+\left(\vartheta_{n}+\beta_{n}+\alpha_{n}\right)\|f(p)-p\| . \tag{2.5}
\end{align*}
$$

Then Lemma 1.3 implies that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists, which ensures that $\left\{x_{n}\right\}$ is bounded. Combining with the fact that $f$ is a contraction and noticing (2.2), (2.3), and (2.4), we can easily know that $\left\{f\left(x_{n}\right)\right\},\left\{u_{n}\right\},\left\{y_{n}\right\},\left\{f\left(u_{n}\right)\right\},\left\{f\left(y_{n}\right)\right\},\left\{S_{r_{n}}^{A_{i} \cdots A_{1}} x_{n}\right\}(i=1,2, \ldots, m)$, and $\left\{r_{r_{n}}^{B_{j}} x_{n}\right\}$ $(j=1,2, \ldots, l)$ are all bounded.

We may let $M_{1}=\max \left\{\sup \left\{\left\|x_{n}\right\|: n \geq 1\right\}, \sup \left\{\left\|y_{n}\right\|: n \geq 1\right\}, \sup \left\{\left\|u_{n}\right\|: n \geq 1\right\}, \sup \left\{\left\|f\left(x_{n}\right)\right\|:\right.\right.$ $n \geq 1\}, \sup \left\{\left\|f\left(y_{n}\right)\right\|: n \geq 1\right\}, \sup \left\{\left\|f\left(u_{n}\right)\right\|: n \geq 1\right\}, \sup \left\{\left\|S_{r_{n}}^{A_{i} \cdots A_{1}} x_{n}\right\|: n \geq 1, i=1,2, \ldots, m\right\}$, $\left.\sup \left\{\left\|J_{r_{n}}^{B_{j}} x_{n}\right\|: n \geq 1, j=1,2, \ldots, l\right\}\right\}$.
Step 2. $\lim _{n \rightarrow \infty}\left\|P_{D} x_{n}-x_{n}\right\|$ exists.
In fact, it follows from the property of $P_{D}$ that

$$
\begin{equation*}
\left\|P_{D} x_{n+1}-x_{n+1}\right\| \leq\left\|P_{D} x_{n}-x_{n+1}\right\| . \tag{2.6}
\end{equation*}
$$

In view of Lemma 1.1, we know that for $\forall v \in D$,

$$
\begin{equation*}
\left\|v-P_{D} x_{n}\right\|^{2} \leq\left\|v-x_{n}\right\|^{2}-\left\|P_{D} x_{n}-x_{n}\right\|^{2} \leq\left\|x_{n}-v\right\|^{2}, \tag{2.7}
\end{equation*}
$$

which implies that $\left\{P_{D} x_{n}\right\}$ is bounded since $\left\{x_{n}\right\}$ is bounded from step 1. Then $\left\{f\left(P_{D} x_{n}\right)\right\}$ is also bounded.

Let $M_{2}=\max \left\{\sup \left\{\left\|P_{D} x_{n}\right\|: n \geq 1\right\}, \sup \left\{\left\|f\left(P_{D} x_{n}\right)\right\|: n \geq 1\right\}\right\}$.
Noticing (2.5) and (2.6), we have

$$
\begin{aligned}
\left\|x_{n+1}-P_{D} x_{n+1}\right\| & \leq\left\|x_{n}-P_{D} x_{n}\right\|+\left(\vartheta_{n}+\beta_{n}+\alpha_{n}\right)\left\|f\left(P_{D} x_{n}\right)-P_{D} x_{n}\right\| \\
& \leq\left\|x_{n}-P_{D} x_{n}\right\|+2\left(\vartheta_{n}+\beta_{n}+\alpha_{n}\right) M_{2} .
\end{aligned}
$$

Therefore, in view of Lemma 1.3, $\lim _{n \rightarrow \infty}\left\|P_{D} x_{n}-x_{n}\right\|$ exists.
Step 3. $P_{D} x_{n} \rightarrow v_{0}$, where $v_{0} \in D$ satisfies (2.1), as $n \rightarrow \infty$.
We first claim that there exists a unique element $v_{0} \in D$ such that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-v_{0}\right\|=\min _{y \in D} \lim _{n \rightarrow \infty}\left\|x_{n}-y\right\| .
$$

In fact, if we let $h(y)=\lim _{n \rightarrow \infty}\left\|x_{n}-y\right\|, \forall y \in D$. Then we can easily find that $h(y): D \rightarrow R^{+}$ is proper, strictly convex and lower-semi-continuous and $h(y) \rightarrow+\infty$ as $\|y\| \rightarrow+\infty$. This ensures that there exists a unique element $v_{0} \in D$ such that $h\left(v_{0}\right)=\min _{y \in D} h(y)$.

From (2.7), we know that

$$
\lim _{n \rightarrow \infty}\left\|v_{0}-P_{D} x_{n}\right\|^{2} \leq \lim _{n \rightarrow \infty}\left(\left\|v_{0}-x_{n}\right\|^{2}-\left\|P_{D} x_{n}-x_{n}\right\|^{2}\right)=h^{2}\left(v_{0}\right)-\lim _{n \rightarrow \infty}\left\|P_{D} x_{n}-x_{n}\right\|^{2} \leq 0 .
$$

Therefore, $P_{D} x_{n} \rightarrow v_{0}$, as $n \rightarrow \infty$.
Step 4. $\omega\left(x_{n}\right) \subset D$, where $\omega\left(x_{n}\right)$ denotes the set consisting all of the weak limit points of $\left\{x_{n}\right\}$.

Since $\left\{x_{n}\right\}$ is bounded, then there exists a subsequence of $\left\{x_{n}\right\}$, for simplicity, we still denote it by $\left\{x_{n}\right\}$, such that $x_{n} \rightharpoonup x$, as $n \rightarrow \infty$.

Since $\|\cdot\|$ is convex, by using Lemma 1.2 and noticing (2.3), we have, for $\forall p \in D$,

$$
\begin{align*}
\left\|y_{n}-p\right\|^{2} \leq & \beta_{n}\left\|f\left(x_{n}\right)-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-p\right\|^{2} \\
\leq & \beta_{n}\left\|f\left(x_{n}\right)-p\right\|^{2}+\left(1-\beta_{n}\right)\left[\left\|S_{r_{n}}^{A_{m-1} \cdots A_{1}} x_{n}-p\right\|^{2}\right. \\
& \left.-\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-S_{r_{n}}^{A_{m-1} \cdots A_{1}} x_{n}\right\|^{2}\right] \\
\leq & \beta_{n} k\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left[\left\|x_{n}-p\right\|^{2}-\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-S_{r_{n}}^{A_{m-1} \cdots A_{1}} x_{n}\right\|^{2}\right] \\
& +\beta_{n}\|f(p)-p\|^{2}+2 \beta_{n} k\left\|x_{n}-p\right\|\|f(p)-p\| \\
\leq & \left\|x_{n}-p\right\|^{2}-\left(1-\beta_{n}\right)\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-S_{r_{n}}^{A_{m-1} \cdots A_{1}} x_{n}\right\|^{2} \\
& +\beta_{n}\|f(p)-p\|^{2}+2 \beta_{n} k\left\|x_{n}-p\right\|\|f(p)-p\| . \tag{2.8}
\end{align*}
$$

Then using (2.8), we have

$$
\begin{aligned}
\| u_{n} & -p \|^{2} \\
& \leq \vartheta_{n}\left\|f\left(y_{n}\right)-p\right\|^{2}+\left(1-\vartheta_{n}\right)\left\|W_{r_{n}} y_{n}-W_{r_{n}} p\right\|^{2} \\
& \leq\left[1-\vartheta_{n}(1-k)\right]\left\|y_{n}-p\right\|^{2}+2 \vartheta_{n} k\left\|y_{n}-p\right\|\|f(p)-p\|+\vartheta_{n}\|f(p)-p\|^{2}
\end{aligned}
$$

$$
\begin{align*}
\leq & \left\|x_{n}-p\right\|^{2}-\left(1-\beta_{n}\right)\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-S_{r_{n}}^{A_{m-1} \cdots A_{1}} x_{n}\right\|^{2} \\
& +\left(\vartheta_{n}+\beta_{n}\right)\|f(p)-p\|^{2}+2 k\left(\beta_{n}\left\|x_{n}-p\right\|+\vartheta_{n}\left\|y_{n}-p\right\|\right)\|f(p)-p\|, \tag{2.9}
\end{align*}
$$

which implies that

$$
\begin{align*}
& \left\|x_{n+1}-p\right\|^{2} \\
& \leq\left[1-\alpha_{n}(1-k)\right]\left\|u_{n}-p\right\|^{2}+2 \alpha_{n} k\left\|u_{n}-p\right\|\|f(p)-p\|+\alpha_{n}\|f(p)-p\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}-\left(1-\beta_{n}\right)\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-S_{r_{n}}^{A_{m-1} \cdots A_{1}} x_{n}\right\|^{2} \\
& +\left(\alpha_{n}+\beta_{n}+\vartheta_{n}\right)\|f(p)-p\|^{2} \\
& +2 k\left(\alpha_{n}\left\|u_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\vartheta_{n}\left\|y_{n}-p\right\|\right)\|f(p)-p\| . \tag{2.10}
\end{align*}
$$

Thus

$$
\begin{align*}
0 \leq & \left(1-\beta_{n}\right)\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-S_{r_{n}}^{A_{m-1} \cdots A_{1}} x_{n}\right\|^{2} \\
\leq & \left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\left(\alpha_{n}+\beta_{n}+\vartheta_{n}\right)\|f(p)-p\|^{2} \\
& +2 k\left(\alpha_{n}\left\|u_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\vartheta_{n}\left\|y_{n}-p\right\|\right)\|f(p)-p\| . \tag{2.11}
\end{align*}
$$

Since from the proof of step 1, we know that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists, then $S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-$ $S_{r_{n}}^{A_{m-1} \cdots A_{1}} x_{n} \rightarrow 0$, as $n \rightarrow \infty$.
Going back to (2.8) again, we know that

$$
\begin{align*}
\left\|y_{n}-p\right\|^{2} \leq & \beta_{n}\left\|f\left(x_{n}\right)-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|S_{r_{n}}^{A_{m-1} \cdots A_{1}} x_{n}-p\right\|^{2} \\
\leq & \beta_{n}\left\|f\left(x_{n}\right)-p\right\|^{2} \\
& +\left(1-\beta_{n}\right)\left[\left\|S_{r_{n}}^{A_{m-2} \cdots A_{1}} x_{n}-p\right\|^{2}-\left\|S_{r_{n}}^{A_{m-1} \cdots A_{1}} x_{n}-S_{r_{n}}^{A_{m-2} \cdots A_{1}} x_{n}\right\|^{2}\right] \\
\leq & \beta_{n} k\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left[\left\|x_{n}-p\right\|^{2}-\left\|S_{r_{n}}^{A_{m-1} \cdots A_{1}} x_{n}-S_{r_{n}}^{A_{m-2} \cdots A_{1}} x_{n}\right\|^{2}\right] \\
& +\beta_{n}\|f(p)-p\|^{2}+2 \beta_{n} k\left\|x_{n}-p\right\|\|f(p)-p\| \\
\leq & \left\|x_{n}-p\right\|^{2}-\left(1-\beta_{n}\right)\left\|S_{r_{n}}^{A_{m-1} \cdots A_{1}} x_{n}-S_{r_{n}}^{A_{m-2} \cdots A_{1}} x_{n}\right\|^{2} \\
& +\beta_{n}\|f(p)-p\|^{2}+2 \beta_{n} k\left\|x_{n}-p\right\|\|f(p)-p\| . \tag{2.12}
\end{align*}
$$

Then using (2.12), repeating the processes of (2.9)-(2.11), we know that

$$
S_{r_{n}}^{A_{m-1} \cdots A_{1}} x_{n}-S_{r_{n}}^{A_{m-2} \cdots A_{1}} x_{n} \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

By using the inductive method, we have the following results:

$$
\begin{aligned}
& S_{r_{n}}^{A_{m-2} \cdots A_{1}} x_{n}-S_{r_{n}}^{A_{m-3} \cdots A_{1}} x_{n} \rightarrow 0 \\
& \ldots \\
& \left(I+r_{n} A_{1}\right)^{-1} x_{n}-x_{n} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Therefore, $\left(I+r_{n} A_{1}\right)^{-1} x_{n} \rightharpoonup x, \ldots, S_{r_{n}}^{A_{m} A_{m-1} \cdots A_{1}} x_{n}=\left(I+r_{n} A_{m}\right)^{-1} \cdots\left(I+r_{n} A_{1}\right)^{-1}$ $x_{n} \rightharpoonup x$, as $n \rightarrow \infty$.

Let $v_{n, 1}=\left(I+r_{n} A_{1}\right)^{-1} x_{n}$, then $A_{1} v_{n, 1}=\frac{x_{n}-v_{n, 1}}{r_{n}} \rightarrow 0$, since $r_{n} \rightarrow+\infty$ and both $\left\{x_{n}\right\}$ and $\left\{v_{n, 1}\right\}$ are bounded. This ensures that $x \in A_{1}^{-1} 0$.
Let $v_{n, 2}=\left(I+r_{n} A_{2}\right)^{-1}\left(I+r_{n} A_{1}\right)^{-1} x_{n}=\left(I+r_{n} A_{2}\right)^{-1} v_{n, 1}$, then $A_{2} v_{n, 2}=\frac{v_{n, 1}-v_{n, 2}}{v_{n}} \rightarrow 0$, which implies that $x \in A_{2}^{-1} 0$.
By induction, let $v_{n, m}=\left(I+r_{n} A_{m}\right)^{-1} \cdots\left(I+r_{n} A_{1}\right)^{-1} x_{n}=\left(I+r_{n} A_{m}\right)^{-1} v_{n, m-1}$, then $A_{m} v_{n, m}=$ $\frac{v_{n, m-1}-v_{n, m}}{r_{n}} \rightarrow 0$, which implies that $x \in A_{m}^{-1} 0$. Thus $x \in \bigcap_{i=1}^{m} A_{i}^{-1} 0$.
Next, we shall show that $x \in \bigcap_{j=1}^{l} B_{j}^{-1} 0$.
From step 1, we may assume that there exists $M_{3}>0$ such that $2\left\|x_{n}-p\right\|\|f(p)-p\|+$ $\|f(p)-p\|^{2} \leq M_{3}, 2\left\|y_{n}-p\right\|\|f(p)-p\|+\|f(p)-p\|^{2} \leq M_{3}$ and $2\left\|u_{n}-p\right\|\|f(p)-p\|+\| f(p)-$ $p \|^{2} \leq M_{3}$.
Now, computing the following, $\forall p \in D$ :

$$
\begin{align*}
\left\|y_{n}-p\right\|^{2} \leq & {\left[1-\beta_{n}(1-k)\right]\left\|x_{n}-p\right\|^{2}+\beta_{n}\|f(p)-p\|^{2} } \\
& +2 \beta_{n} k\left\|x_{n}-p\right\|\|f(p)-p\| \\
\leq & {\left[1-\beta_{n}(1-k)\right]\left\|x_{n}-p\right\|^{2}+\beta_{n} M_{3} . } \tag{2.13}
\end{align*}
$$

By using Lemma 1.2 ,

$$
\begin{align*}
\left\|u_{n}-p\right\|^{2} \leq & k \vartheta_{n}\left\|y_{n}-p\right\|^{2}+2 \vartheta_{n} k\|f(p)-p\|\left\|y_{n}-p\right\|+\vartheta_{n}\|f(p)-p\|^{2} \\
& +\left(1-\vartheta_{n}\right)\left(a_{0}\left\|y_{n}-p\right\|^{2}+\sum_{j=1}^{l} a_{j}\left\|\left(I+r_{n} B_{j}\right)^{-1} y_{n}-p\right\|^{2}\right) \\
\leq & k \vartheta_{n}\left\|y_{n}-p\right\|^{2}+2 \vartheta_{n} k\|f(p)-p\|\left\|y_{n}-p\right\|+\vartheta_{n}\|f(p)-p\|^{2} \\
& +\left(1-\vartheta_{n}\right)\left[a_{0}\left\|y_{n}-p\right\|^{2}+\sum_{j=1}^{l} a_{j}\left(\left\|y_{n}-p\right\|^{2}-\left\|\left(I+r_{n} B_{j}\right)^{-1} y_{n}-y_{n}\right\|^{2}\right)\right] \\
= & {\left[1-\vartheta_{n}(1-k)\right]\left\|y_{n}-p\right\|^{2}+2 \vartheta_{n} k\left\|y_{n}-p\right\|\|f(p)-p\|+\vartheta_{n}\|f(p)-p\|^{2} } \\
& -\left(1-\vartheta_{n}\right) \sum_{j=1}^{l} a_{j}\left\|\left(I+r_{n} B_{j}\right)^{-1} y_{n}-y_{n}\right\|^{2} \\
\leq & \left\|y_{n}-p\right\|^{2}-\left(1-\vartheta_{n}\right) \sum_{j=1}^{l} a_{j}\left\|\left(I+r_{n} B_{j}\right)^{-1} y_{n}-y_{n}\right\|^{2}+\vartheta_{n} M_{3} . \tag{2.14}
\end{align*}
$$

Then (2.13) and (2.14) imply that

$$
\begin{aligned}
& \left\|x_{n+1}-p\right\|^{2} \\
& \quad \leq\left[1-\alpha_{n}(1-k)\right]\left\|u_{n}-p\right\|^{2}+2 \alpha_{n} k\left\|u_{n}-p\right\|\|f(p)-p\|+\alpha_{n}\|f(p)-p\|^{2} \\
& \quad \leq\left[1-\alpha_{n}(1-k)\right]\left\|u_{n}-p\right\|^{2}+\alpha_{n} M_{3} \\
& \quad \leq\left[1-\alpha_{n}(1-k)\right]\left[\left\|y_{n}-p\right\|^{2}-\left(1-\vartheta_{n}\right) \sum_{j=1}^{l} a_{j}\left\|\left(I+r_{n} B_{j}\right)^{-1} y_{n}-y_{n}\right\|^{2}+\vartheta_{n} M_{3}\right]+\alpha_{n} M_{3}
\end{aligned}
$$

$$
\begin{align*}
\leq & {\left[1-\alpha_{n}(1-k)\right]\left[1-\beta_{n}(1-k)\right]\left\|x_{n}-p\right\|^{2}+\left[1-\alpha_{n}(1-k)\right] M_{3}\left(\beta_{n}+\vartheta_{n}\right)+\alpha_{n} M_{3} } \\
& -\left[1-\alpha_{n}(1-k)\right]\left(1-\vartheta_{n}\right) \sum_{j=1}^{l} a_{j}\left\|\left(I+r_{n} B_{j}\right)^{-1} y_{n}-y_{n}\right\|^{2} \tag{2.15}
\end{align*}
$$

From step 1, we know that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists, then (2.15) implies that

$$
\begin{equation*}
\left(I+r_{n} B_{j}\right)^{-1} y_{n}-y_{n} \rightarrow 0, \quad \text { as } n \rightarrow \infty, \text { for } j=1,2, \ldots, l . \tag{2.16}
\end{equation*}
$$

From the iterative scheme (A), $\beta_{n} \rightarrow 0$, and the results of step 1 , we know that

$$
y_{n}-S_{r_{n}}^{A_{m} A_{m-1} \cdots A_{1}} x_{n}=\beta_{n}\left(f\left(x_{n}\right)-S_{r_{n}}^{A_{m} A_{m-1} \cdots A_{1}} x_{n}\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty .
$$

Then $y_{n} \rightharpoonup x$, since $S_{r_{n}}^{A_{m} A_{m-1} \cdots A_{1}} x_{n} \rightharpoonup x$, as $n \rightarrow \infty$.
Thus from (2.16), we have $\left(I+r_{n} B_{j}\right)^{-1} y_{n} \rightharpoonup x$, imitating the proof of $x \in \bigcap_{i=1}^{m} A_{i}^{-1} 0$, we can see that $x \in \bigcap_{j=1}^{l} B_{j}^{-1} 0$, and then $x \in D$.
Step 5. $x_{n} \rightharpoonup v_{0}=\lim _{n \rightarrow \infty} P_{D} x_{n}$.
In fact, for $\forall y \in D$,

$$
\begin{equation*}
\left\langle P_{D} x_{n}-y, P_{D} x_{n}-x_{n}\right\rangle \leq 0 . \tag{2.17}
\end{equation*}
$$

From step 3, we know that $P_{D} x_{n} \rightarrow v_{0}$, as $n \rightarrow \infty$. Let $\left\{x_{n_{i}}\right\}$ be a subsequence of $\left\{x_{n}\right\}$ which is weakly convergent to $x_{0}$. Then $x_{0} \in D$ from step 4 . Taking the limits on both sides of (2.17), we know that $\left\langle v_{0}-y, v_{0}-x_{0}\right\rangle \leq 0$.
Letting $y=x_{0}$, we have $x_{0}=v_{0}$.
Supposing $\left\{x_{n_{j}}\right\}$ is another subsequence of $\left\{x_{n}\right\}$ such that $x_{n_{j}} \rightharpoonup x_{1}$ as $j \rightarrow \infty$. Then repeating the above proof, we have $x_{1}=v_{0}$. Since all of the weakly convergent subsequences of $\left\{x_{n}\right\}$ converge to the same element $v_{0}$, then the whole sequence $\left\{x_{n}\right\}$ converges weakly to $v_{0}$.

This completes the proof.

Remark 2.1 To prove the strong convergence result in Theorem 2.2, we need to prove the following two lemmas first and some new proof techniques can be seen.

Lemma 2.2 Let $H, C, D, A_{i}, B_{j}: C \rightarrow C(i=1,2, \ldots, m ; j=1,2, \ldots, l), S_{r}^{A_{m} A_{m-1} \cdots A_{1}}$ and $W_{r}$ be the same as those in Lemma 2.1. Suppose that $D \neq \emptyset$. Then $F\left(S_{r}^{A_{m} A_{m-1} \cdots A_{1}}\right)=\bigcap_{i=1}^{m} A_{i}^{-1} 0$ and $F\left(W_{r}\right)=\bigcap_{j=1}^{l} B_{j}^{-1} 0$, for $\forall r>0$.

Proof It is easy to check $\bigcap_{i=1}^{m} A_{i}^{-1} 0 \subset F\left(S_{r}^{A_{m} A_{m-1} \cdots A_{1}}\right)$ and $\bigcap_{j=1}^{l} B_{j}^{-1} 0 \subset F\left(W_{r}\right)$, for $\forall r>0$.
Next, we shall show that $F\left(W_{r}\right) \subset \bigcap_{j=1}^{l} B_{j}^{-1} 0$.
For $\forall p \in F\left(W_{r}\right), \forall q \in \bigcap_{j=1}^{l} B_{j}^{-1} 0$. Since $\bigcap_{j=1}^{l} B_{j}^{-1} 0 \subset F\left(W_{r}\right)$, then $q=W_{r} q$. Thus

$$
\begin{aligned}
\|q-p\| & =\left\|a_{0}(q-p)+a_{1}\left(J_{r}^{B_{1}} q-J_{r}^{B_{1}} p\right)+\cdots+a_{l}\left(J_{r}^{B_{l}} q-J_{r}^{B_{l}} p\right)\right\| \\
& \leq a_{0}\|q-p\|+a_{1}\left\|J_{r}^{B_{1}} q-J_{r}^{B_{1}} p\right\|+\cdots+a_{l}\left\|J_{r}^{B_{l}} q-J_{r}^{B_{l}} p\right\| \\
& \leq\|q-p\| .
\end{aligned}
$$

Then $a_{0}(\|q-p\|-\|q-p\|)+a_{1}\left(\|q-p\|-\left\|J_{r}^{B_{1}} q-J_{r}^{B_{1}} p\right\|\right)+\cdots+a_{l}\left(\|q-p\|-\left\|J_{r}^{B_{l}} q-J_{r}^{B_{l}} p\right\|\right)=0$. Since $\|q-p\|-\left\|J_{r}^{B_{j}} q-J_{r}^{B_{j}} p\right\| \geq 0, j=1,2, \ldots, l$, then $\|q-p\|-\left\|j_{r}^{B_{j}} q-J_{r}^{B_{j}} p\right\|=0, j=1,2, \ldots, l$. That is,

$$
\begin{equation*}
\|q-p\|=\left\|J_{r}^{B_{j}} q-J_{r}^{B_{j}} p\right\|=\left\|q-J_{r}^{B_{j}} p\right\|, \quad j=1,2, \ldots, l . \tag{2.18}
\end{equation*}
$$

By using Lemma 1.2 and (2.18), we know that $\left\|p-\int_{r}^{B_{j}} p\right\|^{2} \leq\|q-p\|^{2}-\left\|q-J_{r}^{B_{j}} p\right\|^{2}=0, j=$ $1,2, \ldots, l$. Thus $p=J_{r}^{B_{j}} p$, which implies that $p \in B_{j}^{-1} 0, j=1,2, \ldots, l$. Then $F\left(W_{r}\right) \subset \bigcap_{j=1}^{l} B_{j}^{-1} 0$, for $r>0$.

Finally, we shall show that $F\left(S_{r}^{A_{m} A_{m-1} \cdots A_{1}}\right) \subset \bigcap_{i=1}^{m} A_{i}^{-1} 0$.
For $\forall p \in F\left(S_{r}^{A_{m} A_{m-1} \cdots A_{1}}\right)$, then $p=S_{r}^{A_{m} A_{m-1} \cdots A_{1}} p$. Let $q \in \bigcap_{i=1}^{m} A_{i}^{-1} 0$, then $q=S_{r}^{A_{m} A_{m-1} \cdots A_{1}} q$, since $\bigcap_{i=1}^{m} A_{i}^{-1} 0 \subset F\left(S_{r}^{A_{m} A_{m-1} \cdots A_{1}}\right)$. Therefore,

$$
\begin{align*}
\|q-p\| & =\left\|S_{r}^{A_{m} A_{m-1} \cdots A_{1}} q-S_{r}^{A_{m} A_{m-1} \cdots A_{1}} p\right\| \\
& \leq\left\|S_{r}^{A_{m-1} A_{m-2} \cdots A_{1}} q-S_{r}^{A_{m-1} A_{m-2} \cdots A_{1}} p\right\| \\
& \leq\left\|S_{r}^{A_{m-2} A_{m-3} \cdots A_{1}} q-S_{r}^{A_{m-2} A_{m-3} \cdots A_{1}} p\right\| \\
& \leq \cdots \\
& \leq\left\|\left(I+r A_{1}\right)^{-1} q-\left(I+r A_{1}\right)^{-1} p\right\| \leq\|q-p\| . \tag{2.19}
\end{align*}
$$

From (2.19), we know that

$$
\begin{equation*}
\left\|q-\left(I+r A_{1}\right)^{-1} p\right\|=\|q-p\| . \tag{2.20}
\end{equation*}
$$

Noticing that (2.20) and (2.18) have the same form, then repeating the proof of $p=\int_{r}^{B_{j}} p$, we know that $p=\left(I+r A_{1}\right)^{-1} p$ and then $p \in A_{1}^{-1} 0$.

Since $p \in A_{1}^{-1} 0$, using (2.19) again, we know that

$$
\begin{align*}
\|q-p\| & =\left\|\left(I+r A_{2}\right)^{-1}\left(I+r A_{1}\right)^{-1} q-\left(I+r A_{2}\right)^{-1}\left(I+r A_{1}\right)^{-1} p\right\| \\
& =\left\|q-\left(I+r A_{2}\right)^{-1} p\right\| . \tag{2.21}
\end{align*}
$$

Repeating the above proof again, $p \in A_{2}^{-1} 0$.
By induction, we have $p \in A_{m}^{-1} 0$. Therefore, $F\left(S_{r}^{A_{m} A_{m-1} \cdots A_{1}}\right) \subset \bigcap_{i=1}^{m} A_{i}^{-1} 0$.
This completes the proof.

Lemma 2.3 Let $H, C, D, A_{i}, B_{j}: C \rightarrow C(i=1,2, \ldots, m ; j=1,2, \ldots, l), S_{r}^{A_{m} A_{m-1} \cdots A_{1}}$ and $W_{r}$ be the same as those in Lemma 2.1. Suppose that $D \neq \emptyset$. Then $W_{r} S_{r}^{A_{m} A_{m-1} \cdots A_{1}}: C \rightarrow C$ is nonexpansive and $F\left(W_{r} S_{r}^{A_{m} A_{m-1} \cdots A_{1}}\right)=D$, for $\forall r>0$.

Proof It is easy to check that $W_{r} S_{r}^{A_{m} A_{m-1} \cdots A_{1}}: C \rightarrow C$ is nonexpansive. We are left to show that $F\left(W_{r} S_{r}^{A_{m} A_{m-1} \cdots A_{1}}\right)=D$.
$\forall p \in D$, then, from Lemma 2.2, $p=S_{r}^{A_{m} A_{m-1} \cdots A_{1}} p$ and $p=W_{r} p$. Thus $p=W_{r} S_{r}^{A_{m} A_{m-1} \cdots A_{1}} p$, which implies that $D \subset F\left(W_{r} S_{r}^{A_{m} A_{m-1} \cdots A_{1}}\right)$.

On the other hand, let $p \in F\left(W_{r} S_{r}^{A_{m} A_{m-1} \cdots A_{1}}\right)$, then $p=W_{r} S_{r}^{A_{m} A_{m-1} \cdots A_{1}} p$. Let $q \in D$, then $q=W_{r} S_{r}^{A_{m} A_{m-1} \cdots A_{1}} q$, since $D \subset F\left(W_{r} S_{r}^{A_{m} A_{m-1} \cdots A_{1}}\right)$. Then Lemma 2.1 ensures that

$$
\begin{aligned}
\|p-q\| & \leq\left\|S_{r}^{A_{m} A_{m-1} \cdots A_{1}} p-S_{r}^{A_{m} A_{m-1} \cdots A_{1}} q\right\| \\
& \leq\left\|S_{r}^{A_{m-1} \cdots A_{1}} p-S_{r}^{A_{m-1} \cdots A_{1}} q\right\| \\
& \leq \cdots \leq\left\|J_{r}^{A_{1}} p-J_{r}^{A_{1}} q\right\| \leq\|p-q\|,
\end{aligned}
$$

which implies that

$$
\left\|J_{r}^{A_{1}} p-q\right\|=\left\|S_{r}^{A_{2} A_{1}} p-q\right\|=\cdots=\left\|S_{r}^{A_{m} A_{m-1} \cdots A_{1}} p-q\right\|=\|p-q\| .
$$

Using the same method as that in Lemma 2.2, $p \in \bigcap_{i=1}^{m} A_{i}^{-1} 0$. Thus $p=S_{r}^{A_{m} A_{m-1} \cdots A_{1}} p$. Since $p=W_{r} S_{r}^{A_{m} A_{m-1} \cdots A_{1}} p$, then $p=W_{r} p$, which implies that $p \in \bigcap_{j=1}^{l} B_{j}^{-1} 0$ from Lemma 2.2. Therefore, $F\left(W_{r} S_{r}^{A_{m} A_{m-1} \cdots A_{1}}\right) \subset D$.

This completes the proof.

Theorem 2.2 Suppose $H, D, C,\left\{A_{i}\right\}_{i=1}^{m},\left\{B_{j}\right\}_{j=1}^{l}$ and $f$ are the same as those in Theorem 2.1. Let $\left\{x_{n}\right\}$ be generated by the iterative scheme (A). If $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\vartheta_{n}\right\}$ are three sequences in $(0,1)$ and $\left\{r_{n}\right\} \subset(0,+\infty)$ satisfy the following conditions:
(i) $\sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<+\infty$, and $\alpha_{n} \rightarrow 0$, as $n \rightarrow \infty$;
(ii) $\sum_{n=1}^{\infty} \beta_{n}=+\infty, \sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<+\infty$, and $\beta_{n} \rightarrow 0$, as $n \rightarrow \infty$;
(iii) $\sum_{n=1}^{\infty}\left|\vartheta_{n+1}-\vartheta_{n}\right|<+\infty$, and $\vartheta_{n} \rightarrow 0$, as $n \rightarrow \infty$;
(iv) $\sum_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<+\infty$, and $r_{n} \rightarrow r^{*} \geq \varepsilon>0$, as $n \rightarrow \infty$.

Then $\left\{x_{n}\right\}$ converges strongly to a point $p_{0} \in D$, which is the unique solution of the following variational inequality:

$$
\begin{equation*}
\left\langle f\left(p_{0}\right)-p_{0}, p_{0}-q\right\rangle \geq 0, \quad \forall q \in D \tag{2.22}
\end{equation*}
$$

Proof We shall split the proof into five steps:
Step 1. $\left\{x_{n}\right\}$ is bounded.

$$
\begin{aligned}
& \forall p \in D, \quad\left\|y_{n}-p\right\| \leq\left[1-\beta_{n}(1-k)\right]\left\|x_{n}-p\right\|+\beta_{n}\|f(p)-p\|, \\
& \left\|u_{n}-p\right\| \leq\left[1-\vartheta_{n}(1-k)\right]\left\|y_{n}-p\right\|+\vartheta_{n}\|f(p)-p\| .
\end{aligned}
$$

Letting $\delta_{n}=\alpha_{n}+\beta_{n}+\vartheta_{n}-\left(\alpha_{n} \beta_{n}+\alpha_{n} \vartheta_{n}+\beta_{n} \vartheta_{n}\right)(1-k)+\alpha_{n} \beta_{n} \vartheta_{n}(1-k)^{2}$. Then

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| \leq & {\left[1-\alpha_{n}(1-k)\right]\left\|u_{n}-p\right\|+\alpha_{n}\|f(p)-p\| } \\
\leq & {\left[1-\alpha_{n}(1-k)\right]\left[1-\beta_{n}(1-k)\right]\left[1-\vartheta_{n}(1-k)\right]\left\|x_{n}-p\right\| } \\
& +\left\{\left[1-\alpha_{n}(1-k)\right] \vartheta_{n}+\alpha_{n}+\left[1-\alpha_{n}(1-k)\right]\left[1-\vartheta_{n}(1-k)\right] \beta_{n}\right\}\|f(p)-p\| \\
= & {\left[1-\delta_{n}(1-k)\right]\left\|x_{n}-p\right\|+\delta_{n}\|f(p)-p\| } \\
\leq & \max \left\{\left\|x_{n}-p\right\|, \frac{1}{1-k}\|f(p)-p\|\right\}, \quad n \geq 1 .
\end{aligned}
$$

By induction, $\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{1}-p\right\|, \frac{1}{1-k}\|f(p)-p\|\right\}, n \geq 1$. Thus $\left\{x_{n}\right\}$ is bounded.

Step 2. $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0$.
In fact,

$$
\begin{align*}
\| y_{n}- & y_{n-1} \| \\
\leq & \left|\beta_{n}-\beta_{n-1}\right|\left\|f\left(x_{n}\right)-S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}\right\|+\beta_{n-1}\left\|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right\| \\
& +\left(1-\beta_{n-1}\right)\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-S_{r_{n-1}}^{A_{m} \cdots A_{1}} x_{n-1}\right\| \\
\leq & 2 M_{1}\left|\beta_{n}-\beta_{n-1}\right|+\beta_{n-1} k\left\|x_{n}-x_{n-1}\right\| \\
& +\left(1-\beta_{n-1}\right)\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-S_{r_{n-1}}^{A_{m} \cdots A_{1}} x_{n-1}\right\| . \tag{2.23}
\end{align*}
$$

Next we discuss $\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-S_{r_{n-1}}^{A_{m} \cdots A_{1}} x_{n-1}\right\|$.
If $r_{n-1} \leq r_{n}$, then in view of Lemma 1.4,

$$
\begin{align*}
& \left\|J_{r_{n}}^{A_{1}} x_{n}-J_{r_{n-1}}^{A_{1}} x_{n-1}\right\| \\
& \quad=\left\|J_{r_{n-1}}^{A_{1}}\left(\frac{r_{n-1}}{r_{n}} x_{n}+\left(1-\frac{r_{n-1}}{r_{n}}\right) J_{r_{n}}^{A_{1}} x_{n}\right)-J_{r_{n-1}}^{A_{1}} x_{n-1}\right\| \\
& \quad \leq\left\|\frac{r_{n-1}}{r_{n}} x_{n}+\left(1-\frac{r_{n-1}}{r_{n}}\right) J_{r_{n}}^{A_{1}} x_{n}-x_{n-1}\right\| \\
& \quad \leq \frac{r_{n-1}}{r_{n}}\left\|x_{n}-x_{n-1}\right\|+\left(1-\frac{r_{n-1}}{r_{n}}\right)\left\|J_{r_{n}}^{A_{1}} x_{n}-x_{n-1}\right\| \\
& \quad \leq\left\|x_{n}-x_{n-1}\right\|+\frac{r_{n}-r_{n-1}}{\varepsilon}\left\|J_{r_{n}}^{A_{1}} x_{n}-x_{n-1}\right\| . \tag{2.24}
\end{align*}
$$

For $\forall p \in D$, let $M_{4}=M_{1}+\|p\|$, then

$$
\begin{align*}
& \left\|J_{r_{n}}^{A_{1}} x_{n}-x_{n-1}\right\| \\
& \quad \leq\left\|\left(I+r_{n} A_{1}\right)^{-1} x_{n}-p\right\|+\left\|p-x_{n-1}\right\| \\
& \quad \leq\left\|x_{n}-p\right\|+\left\|p-x_{n-1}\right\| \leq 2 M_{4} . \tag{2.25}
\end{align*}
$$

From (2.24) and (2.25), we know that

$$
\begin{equation*}
\left\|J_{r_{n}}^{A_{1}} x_{n}-J_{r_{n-1}}^{A_{1}} x_{n-1}\right\| \leq\left\|x_{n}-x_{n-1}\right\|+2 M_{4} \frac{r_{n}-r_{n-1}}{\varepsilon} \tag{2.26}
\end{equation*}
$$

Notice that $S_{r_{n}}^{A_{2} A_{1}} x_{n}=J_{r_{n}}^{A_{2}} J_{r_{n}}^{A_{1}} x_{n}$ and $S_{r_{n-1}}^{A_{2} A_{1}} x_{n-1}=J_{r_{n-1}}^{A_{2}} J_{r_{n-1}}^{A_{1}} x_{n-1}$; similar to (2.26), we have

$$
\begin{equation*}
\left\|S_{r_{n}}^{A_{2} A_{1}} x_{n}-S_{r_{n-1}}^{A_{2} A_{1}} x_{n-1}\right\| \leq\left\|J_{r_{n}}^{A_{1}} x_{n}-J_{r_{n-1}}^{A_{1}} x_{n-1}\right\|+2 M_{4} \frac{r_{n}-r_{n-1}}{\varepsilon} \tag{2.27}
\end{equation*}
$$

Following from (2.26) and (2.27), we have

$$
\left\|S_{r_{n}}^{A_{2} A_{1}} x_{n}-S_{r_{n-1}}^{A_{2} A_{1}} x_{n-1}\right\| \leq\left\|x_{n}-x_{n-1}\right\|+2 \times 2 M_{4} \frac{r_{n}-r_{n-1}}{\varepsilon} .
$$

Then by induction, we can get the following result:

$$
\begin{equation*}
\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-S_{r_{n-1}}^{A_{m} \cdots A_{1}} x_{n-1}\right\| \leq\left\|x_{n}-x_{n-1}\right\|+2 \times m M_{4} \frac{r_{n}-r_{n-1}}{\varepsilon} \tag{2.28}
\end{equation*}
$$

Putting (2.28) into (2.23), and letting $M_{5}=\max \left\{\frac{2 \times m M_{4}}{\varepsilon}, 2 M_{1}\right\}$,

$$
\begin{align*}
& \left\|y_{n}-y_{n-1}\right\| \\
& \quad \leq\left[1-\beta_{n}(1-k)\right]\left\|x_{n}-x_{n-1}\right\|+\frac{2 \times m M_{4}}{\varepsilon}\left(r_{n}-r_{n-1}\right)+2 M_{1}\left|\beta_{n}-\beta_{n-1}\right| \\
& \quad \leq\left[1-\beta_{n}(1-k)\right]\left\|x_{n}-x_{n-1}\right\|+M_{5}\left[\left(r_{n}-r_{n-1}\right)+\left|\beta_{n}-\beta_{n-1}\right|\right] . \tag{2.29}
\end{align*}
$$

If $r_{n} \leq r_{n-1}$, then imitating the above proof, we have

$$
\begin{equation*}
\left\|y_{n}-y_{n-1}\right\| \leq\left[1-\beta_{n}(1-k)\right]\left\|x_{n}-x_{n-1}\right\|+M_{5}\left[\left(r_{n-1}-r_{n}\right)+\left|\beta_{n}-\beta_{n-1}\right|\right] . \tag{2.30}
\end{equation*}
$$

Combining (2.29) and (2.30),

$$
\begin{equation*}
\left\|y_{n}-y_{n-1}\right\| \leq\left[1-\beta_{n}(1-k)\right]\left\|x_{n}-x_{n-1}\right\|+M_{5}\left(\left|r_{n-1}-r_{n}\right|+\left|\beta_{n}-\beta_{n-1}\right|\right) . \tag{2.31}
\end{equation*}
$$

Similar to the discussion of (2.24), we have

$$
\begin{align*}
& \left\|W_{r_{n}} y_{n}-W_{r_{n-1}} y_{n-1}\right\| \\
& \quad \leq a_{0}\left\|y_{n}-y_{n-1}\right\|+\sum_{j=1}^{l} a_{j}\left\|j_{r_{n}}^{B_{j}} y_{n}-J_{r_{n-1}}^{B_{j}} y_{n-1}\right\| \\
& \quad \leq a_{0}\left\|y_{n}-y_{n-1}\right\|+\sum_{j=1}^{l} a_{j}\left(\left\|y_{n}-y_{n-1}\right\|+\frac{\left|r_{n}-r_{n-1}\right|}{\varepsilon}\left\|j_{r_{n}}^{B_{j}} y_{n}-y_{n-1}\right\|\right) \\
& \quad \leq\left\|y_{n}-y_{n-1}\right\|+2 M_{1} \frac{\left|r_{n}-r_{n-1}\right|}{\varepsilon} . \tag{2.32}
\end{align*}
$$

Using (2.32), then

$$
\begin{align*}
\| u_{n}- & u_{n-1} \| \\
\leq & \vartheta_{n} k\left\|y_{n}-y_{n-1}\right\|+\left|\vartheta_{n}-\vartheta_{n-1}\right|\left(\left\|f\left(y_{n-1}\right)\right\|+\left\|W_{r_{n-1}} y_{n-1}\right\|\right) \\
& +\left(1-\vartheta_{n}\right)\left\|W_{r_{n}} y_{n}-W_{r_{n-1}} y_{n-1}\right\| \\
\leq & {\left[1-\vartheta_{n}(1-k)\right]\left\|y_{n}-y_{n-1}\right\|+2 M_{1}\left|\vartheta_{n}-\vartheta_{n-1}\right|+\frac{2 M_{1}}{\varepsilon}\left|r_{n}-r_{n-1}\right| . } \tag{2.33}
\end{align*}
$$

Based on (2.31) and (2.33), and letting $M_{6}=M_{5}+\frac{2 M_{1}}{\varepsilon}$, we have

$$
\begin{aligned}
&\left\|x_{n+1}-x_{n}\right\| \\
& \leq \alpha_{n}\left\|f\left(u_{n}\right)-f\left(u_{n-1}\right)\right\|+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|f\left(u_{n-1}\right)\right\|+\left(1-\alpha_{n}\right)\left\|u_{n}-u_{n-1}\right\| \\
&+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|u_{n-1}\right\| \\
& \leq {\left[1-\alpha_{n}(1-k)\right]\left\|u_{n}-u_{n-1}\right\|+2 M_{1}\left|\alpha_{n}-\alpha_{n-1}\right| } \\
& \leq {\left[1-\alpha_{n}(1-k)\right]\left[1-\vartheta_{n}(1-k)\right]\left\|y_{n}-y_{n-1}\right\|+2 M_{1}\left(\left|\vartheta_{n}-\vartheta_{n-1}\right|+\left|\alpha_{n}-\alpha_{n-1}\right|\right) } \\
& \quad+\frac{2 M_{1}}{\varepsilon}\left|r_{n}-r_{n-1}\right|
\end{aligned}
$$

$$
\begin{aligned}
\leq & {\left[1-\beta_{n}(1-k)\right]\left\|x_{n}-x_{n-1}\right\|+M_{6}\left(\left|r_{n}-r_{n-1}\right|+\left|\beta_{n}-\beta_{n-1}\right|+\left|\alpha_{n}-\alpha_{n-1}\right|\right.} \\
& \left.+\left|\vartheta_{n}-\vartheta_{n-1}\right|\right) .
\end{aligned}
$$

In view of Lemma 1.6, we know that $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$, as $n \rightarrow \infty$. Combining with the fact that $\left\|x_{n+1}-u_{n}\right\|=\alpha_{n}\left\|f\left(u_{n}\right)-u_{n}\right\| \rightarrow 0$, we can easily know that $\left\|x_{n}-u_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\|+$ $\left\|x_{n+1}-u_{n}\right\| \rightarrow 0$, as $n \rightarrow \infty$.
Step 3. $\left\|W_{r} u_{n}-u_{n}\right\| \rightarrow 0$, and $\left\|S_{r}^{A_{m} A_{m-1} \cdots A_{1}} u_{n}-u_{n}\right\| \rightarrow 0$, as $n \rightarrow \infty$. In view of Lemma 1.4 again, we know that

$$
\begin{aligned}
& \left\|S_{r_{n}}^{A_{1}} x_{n}-S_{r}^{A_{1}} x_{n}\right\| \\
& \quad=\left\|J_{r}^{A_{1}}\left(\frac{r}{r_{n}} x_{n}+\left(1-\frac{r}{r_{n}}\right) J_{r_{n}}^{A_{1}} x_{n}\right)-J_{r}^{A_{1}} x_{n}\right\| \\
& \quad \leq\left|1-\frac{r}{r_{n}}\right|\left\|J_{r_{n}}^{A_{1}} x_{n}-x_{n}\right\| \leq 2 M_{1}\left|1-\frac{r}{r_{n}}\right|
\end{aligned}
$$

and then

$$
\begin{aligned}
& \left\|S_{r_{n}}^{A_{2} A_{1}} x_{n}-S_{r}^{A_{2} A_{1}} x_{n}\right\| \\
& \quad \leq \frac{r}{r_{n}}\left\|J_{r_{n}}^{A_{1}} x_{n}-J_{r}^{A_{1}} x_{n}\right\|+\left|1-\frac{r}{r_{n}}\right|\left\|S_{r_{n}}^{A_{2} A_{1}} x_{n}-J_{r}^{A_{1}} x_{n}\right\| \leq 2 M_{1}\left|1-\frac{r}{r_{n}}\right|\left(\frac{r}{r_{n}}+1\right) .
\end{aligned}
$$

By induction,

$$
\begin{equation*}
\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-S_{r}^{A_{m} \cdots A_{1}} x_{n}\right\| \leq 2 M_{1}\left|1-\frac{r}{r_{n}}\right|\left[\left(\frac{r}{r_{n}}\right)^{m-1}+\cdots+\frac{r}{r_{n}}+1\right] \rightarrow 0 \tag{2.34}
\end{equation*}
$$

as $n \rightarrow \infty$, since $r_{n} \rightarrow r^{*}$.
$\forall p \in D$, continuing the computation of (2.15), we have

$$
\begin{aligned}
0 & \leq\left[1-\alpha_{n}(1-k)\right]\left(1-\vartheta_{n}\right) \sum_{j=1}^{l} a_{j}\left\|\left(I+r_{n} B_{j}\right)^{-1} y_{n}-y_{n}\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+M_{3}\left(\alpha_{n}+\beta_{n}+\vartheta_{n}\right) .
\end{aligned}
$$

From step 2, we know that $\left\|x_{n}-x_{n+1}\right\| \rightarrow 0$, then $\left\|\left(I+r_{n} B_{j}\right)^{-1} y_{n}-y_{n}\right\| \rightarrow 0, j=1,2, \ldots, l$, which implies that

$$
\begin{equation*}
W_{r_{n}} y_{n}-y_{n} \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{2.35}
\end{equation*}
$$

Noticing that $\left\|u_{n}-W_{r_{n}} y_{n}\right\|=\vartheta_{n}\left\|f\left(y_{n}\right)-W_{r_{n}} y_{n}\right\| \rightarrow 0$, and $\left\|y_{n}-S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}\right\|=\beta_{n} \| f\left(x_{n}\right)-$ $S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n} \| \rightarrow 0$, as $n \rightarrow \infty$.

Combining with the facts of (2.34), (2.35), and step 2 , we know that

$$
\begin{aligned}
\| u_{n} & -S_{r}^{A_{m} \cdots A_{1}} u_{n} \| \\
\leq & \left\|u_{n}-W_{r_{n}} y_{n}\right\|+\left\|W_{r_{n}} y_{n}-y_{n}\right\|+\left\|y_{n}-S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}\right\| \\
& +\left\|S_{r_{n}}^{A_{m} \cdots A_{1}} x_{n}-S_{r}^{A_{m} \cdots A_{1}} x_{n}\right\|+\left\|S_{r}^{A_{m} \cdots A_{1}} x_{n}-S_{r}^{A_{m} \cdots A_{1}} u_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Using Lemma 1.4 again, then

$$
\left\|W_{r_{n}} y_{n}-W_{r} y_{n}\right\| \leq \sum_{j=1}^{l} a_{j}\left\|J_{r_{n}}^{B_{j}} y_{n}-J_{r}^{B_{j}} y_{n}\right\| \leq 2 M_{1}\left(1-a_{0}\right)\left|1-\frac{r}{r_{n}}\right| \rightarrow 0
$$

Since $\left\|W_{r} u_{n}-W_{r} y_{n}\right\| \leq\left\|u_{n}-y_{n}\right\| \leq \vartheta_{n}\left\|f\left(y_{n}\right)-y_{n}\right\|+\left(1-\vartheta_{n}\right)\left\|W_{r_{n}} y_{n}-y_{n}\right\| \rightarrow 0$, then $\| u_{n}-$ $W_{r} u_{n}\|\leq\| u_{n}-W_{r_{n}} y_{n}\|+\| W_{r_{n}} y_{n}-W_{r} y_{n}\|+\| W_{r} y_{n}-W_{r} u_{n} \| \rightarrow 0$, as $n \rightarrow \infty$.

Step 4. $\lim \sup _{n \rightarrow \infty}\left\langle f\left(p_{0}\right)-p_{0}, u_{n}-p_{0}\right\rangle \leq 0, \lim \sup _{n \rightarrow \infty}\left\langle f\left(p_{0}\right)-p_{0}, x_{n+1}-p_{0}\right\rangle \leq 0$, $\lim \sup _{n \rightarrow \infty}\left\langle f\left(p_{0}\right)-p_{0}, y_{n}-p_{0}\right\rangle \leq 0$, where $p_{0}$ satisfies (2.22).

Using Lemmas 1.5 and 2.3, we know that if we let $z_{t}=t f\left(z_{t}\right)+(1-t) W_{r} S_{r}^{A_{m} A_{m-1} \cdots A_{1}} z_{t}, r>0$ and $t \in(0,1)$, then $z_{t} \rightarrow p_{0} \in F\left(W_{r} S_{r}^{A_{m} A_{m-1} \cdots A_{1}}\right)=D$, as $t \rightarrow 0^{+}$. And, $p_{0}$ satisfies (2.22).
From step 3, we may choose $t_{n} \in(0,1)$ such that $t_{n} \rightarrow 0, \frac{\left\|S_{r}^{A_{m} \cdots A_{1}} u_{n}-u_{n}\right\|}{t_{n}} \rightarrow 0$, and $\frac{\left\|W_{r} u_{n}-u_{n}\right\|}{t_{n}} \rightarrow 0$, as $n \rightarrow \infty$.

Using Lemma 1.7,

$$
\begin{aligned}
\| z_{t_{n}} & -u_{n} \|^{2} \\
\quad \leq & \left(1-t_{n}\right)^{2}\left\|W_{r} S_{r}^{A_{m} \cdots A_{1}} z_{t_{n}}-u_{n}\right\|^{2}+2 t_{n}\left\langle f\left(z_{t_{n}}\right)-u_{n}, z_{t_{n}}-u_{n}\right\rangle \\
& \leq\left(1-t_{n}\right)^{2}\left[\left\|z_{t_{n}}-u_{n}\right\|+\left\|u_{n}-S_{r}^{A_{m} \cdots A_{1}} u_{n}\right\|+\left\|u_{n}-W_{r} u_{n}\right\|\right]^{2} \\
& +2 t_{n}\left\langle f\left(z_{t_{n}}\right)-z_{t_{n}}, z_{t_{n}}-u_{n}\right\rangle+2 t_{n}\left\|z_{t_{n}}-u_{n}\right\|^{2} .
\end{aligned}
$$

Then

$$
\begin{align*}
& \left\langle f\left(z_{t_{n}}\right)-z_{t_{n}}, u_{n}-z_{t_{n}}\right\rangle \\
& \quad \leq \frac{t_{n}}{2}\left\|z_{t_{n}}-u_{n}\right\|^{2}+\frac{\left(1-t_{n}\right)^{2}}{t_{n}}\left\|z_{t_{n}}-u_{n}\right\|\left(\left\|S_{r}^{A_{m} \cdots A_{1}} u_{n}-u_{n}\right\|+\left\|u_{n}-W_{r} u_{n}\right\|\right) \\
& \quad+\frac{\left(1-t_{n}\right)^{2}}{2 t_{n}}\left(\left\|S_{r}^{A_{m} \cdots A_{1}} u_{n}-u_{n}\right\|+\left\|W_{r} u_{n}-u_{n}\right\|\right)^{2} . \tag{2.36}
\end{align*}
$$

Since $\left\{S_{r}^{A_{m} \cdots A_{1}} u_{n}\right\},\left\{W_{r} u_{n}\right\},\left\{x_{n}\right\},\left\{u_{n}\right\}$ and $\left\{z_{t_{n}}\right\}$ are all bounded, and $\frac{\left\|S_{r}^{A_{m} \cdots A_{1}} u_{n}-u_{n}\right\|}{t_{n}} \rightarrow 0$, and $\frac{\left\|W_{r} u_{n}-u_{n}\right\|}{t_{n}} \rightarrow 0$, from (2.36), $\lim \sup _{n \rightarrow \infty}\left\langle f\left(z_{t_{n}}\right)-z_{t_{n}}, u_{n}-z_{t_{n}}\right\rangle \leq 0$.

Recalling that $z_{t_{n}} \rightarrow p_{0}$, then $\left\langle z_{t_{n}}-p_{0}, u_{n}-z_{t_{n}}\right\rangle \rightarrow 0$. Thus $\limsup _{n \rightarrow \infty}\left\langle f\left(z_{t_{n}}\right)-p_{0}, u_{n}-\right.$ $\left.z_{t_{n}}\right\rangle \leq 0$. Since $\left\langle f\left(z_{t_{n}}\right)-p_{0}, u_{n}-p_{0}\right\rangle=\left\langle f\left(z_{t_{n}}\right)-p_{0}, u_{n}-z_{t_{n}}\right\rangle+\left\langle f\left(z_{t_{n}}\right)-p_{0}, z_{t_{n}}-p_{0}\right\rangle$, then $\lim \sup _{n \rightarrow \infty}\left\langle f\left(p_{0}\right)-p_{0}, u_{n}-p_{0}\right\rangle \leq 0$. Then from step 2, $\limsup _{n \rightarrow \infty}\left\langle f\left(p_{0}\right)-p_{0}, x_{n+1}-\right.$ $\left.p_{0}\right\rangle \leq 0$.

Noticing that

$$
\begin{aligned}
& \left\langle f\left(p_{0}\right)-p_{0}, y_{n}-p_{0}\right\rangle \\
& \quad=\left\langle f\left(p_{0}\right)-p_{0}, y_{n}-W_{r_{n}} y_{n}\right\rangle+\left\langle f\left(p_{0}\right)-p_{0}, W_{r_{n}} y_{n}-u_{n}\right\rangle \\
& \quad+\left\langle f\left(p_{0}\right)-p_{0}, u_{n}-x_{n+1}\right\rangle+\left\langle f\left(p_{0}\right)-p_{0}, x_{n+1}-p_{0}\right\rangle,
\end{aligned}
$$

and using (2.35), iterative scheme (A) and the result of step 2, we have limsup $\sup _{n \rightarrow \infty}\left\langle f\left(p_{0}\right)-\right.$ $\left.p_{0}, y_{n}-p_{0}\right\rangle \leq 0$.

Step 5. $x_{n} \rightarrow p_{0}$, which satisfies (2.22), as $n \rightarrow \infty$.

Using Lemma 1.7, we know that

$$
\begin{equation*}
\left\|y_{n}-p_{0}\right\|^{2} \leq\left[1-\beta_{n}(1-k)\right]\left\|x_{n}-p_{0}\right\|^{2}+2 \beta_{n}\left(f\left(p_{0}\right)-p_{0}, y_{n}-p_{0}\right\rangle . \tag{2.37}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left\|u_{n}-p_{0}\right\|^{2} \leq\left[1-\vartheta_{n}(1-k)\right]\left\|y_{n}-p_{0}\right\|^{2}+2 \vartheta_{n}\left(f\left(p_{0}\right)-p_{0}, u_{n}-p_{0}\right) . \tag{2.38}
\end{equation*}
$$

Letting $M_{7}=\max \left\{\left(M_{1}+\left\|p_{0}\right\|\right)^{2}, 2\left(M_{1}+\left\|p_{0}\right\|\right)\left(\left\|f\left(p_{0}\right)\right\|+\left\|p_{0}\right\|\right)\right\}$ and using (2.37) and (2.38), we have

$$
\begin{align*}
\| x_{n+1} & -p_{0} \|^{2} \\
\leq & {\left[1-\alpha_{n}(1-k)\right]\left\|u_{n}-p_{0}\right\|^{2}+2 \alpha_{n}\left\langle f\left(p_{0}\right)-p_{0}, x_{n+1}-p_{0}\right\rangle } \\
\leq & {\left[1-\alpha_{n}(1-k)\right]\left[1-\beta_{n}(1-k)\right]\left[1-\vartheta_{n}(1-k)\right]\left\|x_{n}-p_{0}\right\|^{2} } \\
& +2\left[1-\alpha_{n}(1-k)\right]\left[1-\vartheta_{n}(1-k)\right] \beta_{n}\left\langle f\left(p_{0}\right)-p_{0}, y_{n}-p_{0}\right\rangle \\
& +2\left[1-\alpha_{n}(1-k)\right] \vartheta_{n}\left\langle f\left(p_{0}\right)-p_{0}, u_{n}-p_{0}\right\rangle+2 \alpha_{n}\left\langle f\left(p_{0}\right)-p_{0}, x_{n+1}-p_{0}\right\rangle \\
\leq & {\left[1-(1-k)\left(\alpha_{n}+\beta_{n}+\vartheta_{n}\right)\right]\left\|x_{n}-p_{0}\right\|^{2}+M_{7}(1-k)^{2}\left(\alpha_{n} \beta_{n}+\beta_{n} \vartheta_{n}+\alpha_{n} \vartheta_{n}\right) } \\
& +2 \alpha_{n} \vartheta_{n}(1-k)\left\langle p_{0}-f\left(p_{0}\right), u_{n}-p_{0}\right\rangle+2\left(\alpha_{n} \beta_{n}+\beta_{n} \vartheta_{n}\right)(1-k)\left\langle p_{0}-f\left(p_{0}\right), y_{n}-p_{0}\right\rangle \\
& +2 \alpha_{n} \beta_{n} \vartheta_{n}(1-k)^{2}\left\langle f\left(p_{0}\right)-p_{0}, y_{n}-p_{0}\right\rangle \\
& +2 \alpha_{n}\left\langle f\left(p_{0}\right)-p_{0}, x_{n+1}-p_{0}\right\rangle+2 \beta_{n}\left\langle f\left(p_{0}\right)-p_{0}, y_{n}-p_{0}\right\rangle+2 \vartheta_{n}\left\langle f\left(p_{0}\right)-p_{0}, u_{n}-p_{0}\right\rangle \\
\leq & {\left[1-(1-k)\left(\alpha_{n}+\beta_{n}+\vartheta_{n}\right)\right]\left\|x_{n}-p_{0}\right\|^{2}+M_{7}(1-k)^{2}\left(\alpha_{n} \beta_{n}+\beta_{n} \vartheta_{n}+\alpha_{n} \vartheta_{n}\right) } \\
& +M_{7}(1-k)\left(\alpha_{n} \beta_{n}+\beta_{n} \vartheta_{n}+\alpha_{n} \vartheta_{n}\right)+2 M_{7} \alpha_{n} \beta_{n} \vartheta_{n}(1-k)^{2} \\
& +2 \alpha_{n}\left\langle f\left(p_{0}\right)-p_{0}, x_{n+1}-p_{0}\right\rangle \\
& +2 \beta_{n}\left\langle f\left(p_{0}\right)-p_{0}, y_{n}-p_{0}\right\rangle+2 \vartheta_{n}\left\langle f\left(p_{0}\right)-p_{0}, u_{n}-p_{0}\right\rangle . \tag{2.39}
\end{align*}
$$

Let $c_{n}=\left(\alpha_{n}+\beta_{n}+\vartheta_{n}\right)(1-k)$, then $c_{n} \rightarrow 0$ and $\sum_{n=1}^{\infty} c_{n}=+\infty$.
Let $b_{n}=M_{7}\left[\frac{(2-k)\left(\alpha_{n} \beta_{n}+\beta_{n} \vartheta_{n}+\alpha_{n} \vartheta_{n}\right)}{\alpha_{n}+\beta_{n}+\vartheta_{n}}+\frac{2(1-k) \alpha_{n} \beta_{n} \vartheta_{n}}{\alpha_{n}+\beta_{n}+\vartheta_{n}}\right]+\frac{2 \alpha_{n}}{\left(\alpha_{n}+\beta_{n}+\vartheta_{n}\right)(1-k)}\left\langle f\left(p_{0}\right)-p_{0}, x_{n+1}-p_{0}\right\rangle+$ $\frac{2 \vartheta_{n}}{\left(\alpha_{n}+\beta_{n}+\vartheta_{n}\right)(1-k)}\left\langle f\left(p_{0}\right)-p_{0}, u_{n}-p_{0}\right\rangle+\frac{2 \beta_{n}}{\left(\alpha_{n}+\beta_{n}+\vartheta_{n}\right)(1-k)}\left\langle f\left(p_{0}\right)-p_{0}, y_{n}-p_{0}\right\rangle$.
Notice that $\lim _{n \rightarrow \infty} \frac{\alpha_{n} \beta_{n}+\beta_{n} \vartheta_{n}+\alpha_{n} \vartheta_{n}}{\alpha_{n}+\beta_{n}+\vartheta_{n}}=0, \lim _{n \rightarrow \infty} \frac{\alpha_{n} \beta_{n} \vartheta_{n}}{\alpha_{n}+\beta_{n}+\vartheta_{n}}=0$ and from the results in step 4 , we have $\lim \sup _{n \rightarrow+\infty} b_{n} \leq 0$.
Using Lemma 1.6, $x_{n} \rightarrow p_{0}$, which satisfies (2.22), as $n \rightarrow \infty$.
This completes the proof.

Remark 2.2 The iterative construction in this paper generalizes and extends some corresponding ones in $[2,4,12,13]$, etc., in Hilbert spaces.

## Competing interests

The authors declare that they have no competing interests.

## Authors' contributions

The authors read and approved the final manuscript.

## Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11071053), Natural Science Foundation of Hebei (No. A2014207010), Key Project of Science and Research of Hebei Education Department (ZH2012080) and Key Project of Science and Research of Hebei University of Economics and Business (2013KYZ01).

Received: 29 October 2013 Accepted: 7 March 2014 Published: 25 Mar 2014

## References

1. Browder, FE: Nonlinear mappings of nonexpansive and accretive type in Banach spaces. Bull. Am. Math. Soc. 73, 875-882 (1967)
2. Rockafellar, RT: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877-898 (1976)
3. Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506-510 (1953)
4. Qin, XL, Su, YF: Approximation of a zero point of accretive operator in Banach spaces. J. Math. Anal. Appl. 329, 415-424 (2007)
5. Mainge, PE: Viscosity methods for zeroes of accretive operators. J. Approx. Theory 140, 127-140 (2006)
6. Qin, XL, Cho, SY, Wang, L: Iterative algorithms with errors for zero points of $m$-accretive operators. Fixed Point Theory Appl. 2013, Article ID 148 (2013)
7. Ceng, LC, Wu, SY, Yao, JC: New accuracy criteria for modified approximate proximal point algorithms in Hilbert spaces. Taiwan. J. Math. 12, 1691-1705 (2008)
8. Xu, HK: Strong convergence of an iterative method for nonexpansive and accretive operators. J. Math. Anal. Appl. 314, 631-643 (2006)
9. Cho, YJ, Kang, SM, Zhou, HY: Approximate proximal point algorithms for finding zeroes of maximal monotone operators in Hilbert spaces. J. Inequal. Appl. 2008, Article ID 598191 (2008)
10. Ceng, LC, Khan, AR, Ansari, QH, Yao, JC: Strong convergence of composite iterative schemes for zeros of $m$-accretive operators in Banach spaces. Nonlinear Anal. 70, 1830-1840 (2009)
11. Chen, RD, Liu, YJ, Shen, XL: Iterative approximation of a zero of accretive operator in Banach space. Nonlinear Anal. 71 e346-e350 (2009)
12. Zegeye, $H$, Shahzad, $N$ : Strong convergence theorems for a common zero of a finite family of $m$-accretive mappings. Nonlinear Anal. 66, 1161-1169 (2007)
13. Hu, LG, Liu, LW: A new iterative algorithm for common solutions of a finite family of accretive operators. Nonlinear Anal. 70, 2344-2351 (2009)
14. Tan, KK, Xu, HK: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl. 178, 301-308 (1993)
15. Barbu, V: Nonlinear Semigroups and Differential Equations in Banach Space. Noordhoff, Groningen (1976)
16. Xu, HK: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279-291 (2004)
17. Xu, HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240-256 (2002)
10.1186/1687-1812-2014-77

Cite this article as: Wei and Tan: Strong and weak convergence theorems for common zeros of finite accretive mappings. Fixed Point Theory and Applications 2014, 2014:77

## Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article


[^0]:    ©2014 Wei and Tan; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

