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Abstract
The split common fixed point problem is an inverse problem that consists in finding
an element in a fixed point set such that its image under a bounded linear operator
belongs to another fixed point set. Recently Censor and Segal proposed an efficient
algorithm for solving such a problem. However, to employ their algorithm, one needs
to know prior information on the norm of the bounded linear operator. In this paper
we propose a new algorithm that does not need any prior information of the
operator norm, and we establish the weak convergence of the proposed algorithm
under some mild assumptions.
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1 Introduction
There has been growing interest in recent years in the split feasibility problem (SFP) [].
The SFP is very useful in dealing with problems in signal processing and image recon-
struction [], especially in intensity-modulated radiation therapy []. Mathematically, the
SFP is an inverse problem that consists in finding x̂ with the property

x̂ ∈ C, s.t. Ax̂ ∈Q, (.)

where H and K are two Hilbert spaces, C and Q are nonempty closed convex subsets of
H and K , respectively, and A :H → K is a bounded linear operator. In particular, if C and
Q are composed of the fixed point sets of some nonlinear operators, then problem (.)
is known as the split common fixed point problem (SCFP). More specifically, the SCFP
consists in finding

x ∈ Fix(U), s.t. Ax ∈ Fix(T), (.)

where Fix(U) and Fix(T) stand for, respectively, the fixed point sets of U : H → H and
T : K → K .
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One method solving the SFP is Byrne’s CQ algorithm [], which generates a sequence
(xn) by the recursive procedure:

xn+ = PC
(
xn – ρnA∗(I – PQ)Axn

)
, (.)

where ρn is known as the step, and PC , PQ are the orthogonal projections ontoC andQ, re-
spectively.When C andQ are simple in the sense that the associated projections are easily
calculated, for example the half space, then the CQ algorithm is efficient to solve the prob-
lem. However, if C and Q are complex sets, for example the fixed point sets, the efficiency
of the CQ algorithm will be affected because the projections onto such convex sets are
generally hard to be accurately calculated. Alternatively, Censor and Segal [] introduced
the iterative scheme

xn+ =U
(
I – ρnA∗(I – T)A

)
xn (.)

solving problem (.) for directed operators. Subsequently, this algorithmwas extended to
the case of quasi-nonexpansive [] operators, demicontractive operators [], and finitely
many directed operators [].
Let us now consider the SCFP (.) whenever U and T are directed operators. Then, if

the step (ρn) is chosen as

 < ρn ≡ ρ <


‖A‖ ,

algorithm (.) converges to a solution to problem (.) whenever such a solution exists.
However, in order to implement this algorithm, one has first to compute (or, at least, esti-
mate) the norm of A, which is in general not an easy work in practice. A natural question
thus arises: Does there exist a way to select the step ρn in algorithm (.) that does not
depend on the operator norm ‖A‖?
It is the purpose of this paper to answer the above question affirmatively. By introducing

a new way of selections of the step, we obtain a method in a way that the implementation
of algorithm (.) does not need any prior information of the operator norm. By using
the Fejér monotonicity, we state the weak convergence of the new algorithm for demicon-
tractive operators. Particular cases such as quasi-nonexpansive and directed operators are
also considered.

2 Preliminary and notation
Throughout, let I denote the identity operator, Fix(T) denote the set of the fixed points of
an operator T , and let ωw(xn) denote the set of weak cluster points of the sequence (xn).
The notation ‘→’ stands for strong convergence and ‘⇀’ stands for weak convergence.
Given a nonempty closed convex subset Q in K , let us define

A–(Q) := {x ∈ H : Ax ∈Q},

where A :H → K is a linear bounded operator.
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Definition . Assume T :H →H is a nonlinear operator. Then I –T is saide to be demi-
closed at zero, if, for any (xn) in H , the following implication holds:

xn ⇀ x
(I – T)xn → 

]
⇒ x ∈ Fix(T).

It is well known that nonexpansive operators are demiclosed at zero (cf. []). Recall that
an operator T :H → H is called nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈H .

Definition . Let T :H →H be an operator with Fix(T) 
= ∅. Then
(i) T :H → H is called directed if

〈z – Tx,x – Tx〉 ≤ , ∀z ∈ Fix(T),x ∈H ;

(ii) T :H → H is called quasi-nonexpansive if

‖Tx – z‖ ≤ ‖x – z‖, ∀z ∈ Fix(T),x ∈H ;

(iii) T :H → H is called τ -demicontractive with τ < , if

‖Tx – z‖ ≤ ‖x – z‖ + τ
∥∥(I – T)x

∥∥, ∀z ∈ Fix(T),x ∈H ,

or equivalently

〈x – z,Tx – x〉 ≤ τ – 


‖x – Tx‖, ∀z ∈ Fix(T),x ∈ H . (.)

A typical example of a directed operator is an orthogonal projection PC from H onto a
nonempty closed convex subset C ⊂H defined by

PCx := argmin
y∈C

‖x – y‖, x ∈ H . (.)

It is well known that the projection PC is characterized by

PCx ∈ C, 〈x – PCx, z – PCx〉 ≤ , ∀z ∈ C. (.)

Given a sequence (xn) in H , then (xn) is called Fejér monotone with respect to C, if

‖xn+ – c‖ ≤ ‖xn – c‖, ∀n,∀c ∈ C.

The sequence with Fejér monotonicity has the following property.

Lemma . [] If the sequence (xn) is Féjer monotone w.r.t. a nonempty closed convex
subset C, then {PCxn} converges strongly;moreover,

xn ⇀ x∗ ∈ C ⇔ ωw(xn) ⊂ C.
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Lemma . If U :H →H is κ-demicontractive, then

‖Uλx – z‖ ≤ ‖x – z‖ – λ( – κ – λ)
∥∥(I –U)x

∥∥, (.)

where x ∈ H , z ∈ Fix(U), and Uλ := ( – λ)I + λU ( < λ <  – κ).

Proof First we deduce that

‖Uλx – z‖ = ∥∥(x – z) + λ(Ux – x)
∥∥

= ‖x – z‖ + λ〈Ux – x,x – z〉 + λ‖Ux – x‖,

and using inequality (.) we have

λ〈Ux – x,x – z〉 ≤ λ(κ – )‖Ux – x‖.

Adding up these two formulas yields

‖Uλx – z‖ ≤ ‖x – z‖ – λ( – κ – λ)‖Ux – x‖,

which is the inequality as desired. �

Lemma. Let A :H → K be a bounded linear operator and T : K → K a τ -demicontrac-
tive operator with τ < . If A–(Fix(T)) is nonempty, then

(I – T)Ax =  ⇔ A∗(I – T)Ax = , ∀x ∈H .

Proof It is clear that (I –T)Ax =  ⇒ A∗(I –T)Ax = , x ∈H . To see the converse, let x ∈ H
such that A∗(I – T)Ax = . Taking z ∈ A–(Fix(T)),

 – τ


∥∥(I – T)Ax

∥∥ ≤ 〈
(I – T)Ax,Ax –Az

〉
=

〈
A∗(I – T)Ax,x – z

〉
= ,

where the inequality follows from (.), so that Ax = T(Ax). Hence the proof is complete.
�

Lemma. Let A :H → K be a bounded linear operator and T : K → K a τ -demicontrac-
tive operator with τ < . If A–(Fix(T)) 
= ∅, then

∥∥x – ρA∗(I – T)Ax – z
∥∥ ≤ ‖x – z‖ – ( – τ )


‖(I – T)Ax‖

‖A∗(I – T)Ax‖ , (.)

where x ∈ H , Ax 
= T(Ax), z ∈ A–(Fix(T)) and

ρ :=
( – τ )‖(I – T)Ax‖
‖A∗(I – T)Ax‖ .
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Proof Take x ∈ H , Ax 
= T(Ax). Then from the previous lemma ρ is well defined. Since T
is τ -demicontractive,

∥∥x – ρA∗(I – T)Ax – z
∥∥ = ‖x – z‖ – ρ

〈
A∗(I – T)Ax,x – z

〉
+ ρ∥∥A∗(I – T)Ax

∥∥

= ‖x – z‖ – ρ
〈
(I – T)Ax,Ax –Az

〉
+ ρ∥∥A∗(I – T)Ax

∥∥

≤ ‖x – z‖ – ( – τ )ρ
∥∥(I – T)Ax

∥∥ + ρ∥∥A∗(I – T)Ax
∥∥

= ‖x – z‖ – ( – τ )


‖(I – T)Ax‖

‖A∗(I – T)Ax‖ ,

where the inequality follows from (.). �

3 A new iterative algorithm
Let us first consider the SCFP (.) for demicontractive operators. More specifically, we
make use of the following assumptions:
• U :H →H is κ-demicontractive with κ < ;
• T : K → K is τ -demicontractive with τ < ;
• both I –U and I – T are demiclosed at zero;
• it is consistent, i.e., its solution set, denoted by S, is nonempty.
Under these conditions, we propose the following algorithm.

Algorithm . Choose  < λ <  – τ and an initial guess x ∈ H arbitrarily. Assume that
the nth iterate xn has been constructed; then calculate the (n + )th iterate xn+ via the
formula:

xn+ =Uλ

(
xn – ρnA∗(I – T)Axn

)
,

where the step ρn is chosen in such a way that

ρn :=

{
(–τ )‖(I–T)Axn‖
‖A∗(I–T)Axn‖ , Axn 
= T(Axn);
, otherwise.

Remark . By Lemma ., we see that Axn = T(Axn) if and only if A∗(I – T)Axn = . So
Algorithm . is well defined.

Theorem . Let (xn) be the sequence generated by Algorithm .. Then (xn) converges
weakly to a solution x∗ ∈ S.

Proof First we verify that (xn) is Féjer-monotone w.r.t. S. To see this, let yn := xn –ρnA∗(I –
T)Axn and fix z ∈ S. For the case ρn = , we have yn = xn and by (.)

‖xn+ – z‖ = ‖Uλxn – z‖ ≤ ‖xn – z‖ – λ( – κ – λ)
∥∥(I –U)xn

∥∥, (.)

which implies ‖xn+ – z‖ ≤ ‖xn – z‖ because  < λ <  – κ . For the case ρn 
= , we deduce
from (.)-(.) that

‖xn+ – z‖ = ‖Uλyn – z‖

≤ ‖yn – z‖ – λ( – κ – λ)
∥∥(I –U)yn

∥∥
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=
∥∥xn – ρnA∗(I – T)Axn – z

∥∥ – λ( – κ – λ)
∥∥(I –U)yn

∥∥

≤ ‖xn – z‖ – ( – τ )


‖(I – T)Axn‖

‖A∗(I – T)Axn‖ λ( – κ – λ)
∥∥(I –U)yn

∥∥. (.)

Hence we have shown in both cases that ‖xn+ – z‖ ≤ ‖xn – z‖. Consequently (xn) is Féjer-
monotone w.r.t. S and (‖xn – z‖) is therefore a convergent sequence.
We next show the following facts:

∥∥(I – T)Axn
∥∥ → ,

∥∥(I –U)xn
∥∥ → , as n→ ∞. (.)

If ρn = , it is clear that (I – T)Axn = , and in view of (.)

λ( – κ – λ)
∥∥(I –U)xn

∥∥ ≤ (‖xn – z‖ – ‖xn+ – z‖) → ,

because (‖xn – z‖) is convergent. Otherwise, it follows from (.) that

λ( – κ – λ)
∥∥(I –U)yn

∥∥ ≤ (‖xn – z‖ – ‖xn+ – z‖) → 

and

( – τ )


‖(I – T)Axn‖

‖A∗(I – T)Axn‖ ≤ (‖xn – z‖ – ‖xn+ – z‖) → .

This implies that ‖(I –U)yn‖ →  and

‖(I – T)Axn‖
‖A∗(I – T)Axn‖ → ,

so that


‖A‖

∥∥(I – T)Axn
∥∥ =

∥∥(I – T)Axn
∥∥ ‖(I – T)Axn‖
‖A‖‖(I – T)Axn‖

≤ ∥∥(I – T)Axn
∥∥ ‖(I – T)Axn‖
‖A∗(I – T)Axn‖

=
‖(I – T)Axn‖

‖A∗(I – T)Axn‖ → ,

and also that

‖xn – yn‖ = ρn
∥∥A∗(I – T)Axn

∥∥ =
 – τ


‖(I – T)Axn‖

‖A∗(I – T)Axn‖ → .

Having in mind that ‖(I – U)yn‖ → , we conclude that ‖(I – U)xn‖ → . Consequently
(.) holds in both cases.
Finally, we show that (xn) converges weakly to x∗ ∈ S. By Lemma ., it remains to show

that ωw(xn) ⊆ S. To see this let x̂ ∈ ωw(xn) and let {xnk } be a subsequence of (xn) converg-
ing weakly to x̂. By noting that ‖(I –U)xnk‖ → , we then make use of the demiclosedness
of I – U at zero to deduce that x̂ ∈ Fix(U); on the other hand, since, by weak continuity
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Cui and Wang Fixed Point Theory and Applications 2014, 2014:78 Page 7 of 8
http://www.fixedpointtheoryandapplications.com/content/2014/1/78

of A, Axnk converges weakly to Ax̂ and ‖(I – T)Axnk‖ → , this, together with the demi-
closedness of I – T at zero, yields Ax̂ ∈ Fix(T). Altogether x̂ ∈ S, and therefore the proof
is complete. �

Remark . By Lemmas ., we see that the weak limit x∗ of the sequence (xn) generated
by Algorithm . coincides with the limit of the sequence (PSxn), that is, x∗ = limn→∞ PSxn.
In fact, let x̂ be the strong limit of the sequence (PCxn). It follows from (.) that

〈
xn – PCxn,x∗ – PCxn

〉 ≤ . (.)

Noting that xn – PCxn ⇀ x∗ – x̂ and x∗ – PCxn → x∗ – x̂, we obtain by sending n → ∞ in
(.)

∥∥x∗ – x̂
∥∥ =

〈
x∗ – x̂,x∗ – x̂

〉 ≤ .

Hence, x∗ = x̂ and therefore x∗ = limn→∞ PSxn.

4 Some special cases
4.1 The case for quasi-nonexpansive operators
Consider now the SCFP (.) under the following assumptions:
• U :H →H and T : K → K are both quasi-nonexpansive;
• both I –U and I – T are demiclosed at zero;
• it is consistent, i.e., its solution set, denoted by S, is nonempty.
Since every quasi-nonexpansive operator is clearly -demicontractive, we can state the

following result by using Algorithm ..

Algorithm . Choose  < λ <  and an initial guess x ∈ H arbitrarily. Assume that the
nth iterate xn has been constructed; then calculate the (n+)th iterate xn+ via the formula:

xn+ =Uλ

(
xn – ρnA∗(I – T)Axn

)
, (.)

where the step ρn is chosen in such a way that

ρn :=

{ ‖(I–T)Axn‖
‖A∗(I–T)Axn‖ , Axn 
= T(Axn);
, otherwise.

(.)

Corollary . Let (xn) be the sequence generated by Algorithm .. Then (xn) converges
weakly to a solution x∗ ∈ S.

4.2 The case for directed operators
Let us consider the SCFP (.) under the following assumptions:
• U :H →H and T : K → K are both directed;
• I –U and I – T are both demiclosed at zero;
• it is consistent, i.e., its solution set, denoted by S, is nonempty.
A simple calculation shows that every directed operator is –-demicontractive. Thus we

can state the following result by using Algorithm ..
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Algorithm . Choose an initial guess x ∈ H arbitrarily. Assume that the nth iterate xn
has been constructed; then calculate the (n + )th iterate xn+ via the formula:

xn+ =U
(
xn – ρnA∗(I – T)Axn

)
,

where the step ρn is chosen in such a way that

ρn :=

{ ‖(I–T)Axn‖
‖A∗(I–T)Axn‖ , Axn 
= T(Axn);
, otherwise.

Corollary . Let (xn) be the sequence generated by Algorithm .. Then (xn) converges
weakly to a solution x∗ ∈ S.

Remark . Algorithm . covers the algorithm studied in [] for solving the SFP. One
can further apply the above result to the split variational inequality problem [, ] and
the split common null point problem [].
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