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Abstract

The purpose of this paper is to modify the generalized equilibrium problem
introduced by Ceng et al. (J. Glob. Optim. 43:487-502, 2012) and to introduce the
K-mapping generated by a finite family of strictly pseudo-contractive mappings and
finite real numbers modifying the results of Kangtunyakarn and Suantai (Nonlinear
Anal. 71:4448-4460, 2009). Then we prove the strong convergence theorem for
finding a common element of the set of fixed points of a finite family of strictly
pseudo-contractive mappings and a finite family of the set of solutions of the
modified generalized equilibrium problem. Moreover, using our main result, we
obtain the additional results related to the generalized equilibrium problem.
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1

Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H with the inner product

(-,-) and the norm | - ||. A mapping f : C — C is contractive if there exists a constant
o € (0,1) such that

lF ) -fo)| <allx-yl, VxyeC.

We now recall some well-known concepts and results as follows.

Definition 1.1 Let B: C — C be a mapping. Then B is called

(i) monotone if
(Bx—By,x-y)>0, Vx,yeC,
(ii) v-strongly monotone if there exists a positive real number v such that
(Bx—By,x-y) > vlx—yl> VxyeC,
(ili) &-inverse strongly monotone if there exists a positive real number & such that

(x—y,Bx—By) > £||Bx - By|?>, Vx,y€C,
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(iv) w-Lipschitz continuous if there exists a nonnegative real number p > 0 such that
1Bx —By|l < wllx=yll, Vx,yeC.

Definition 1.2 Let 7': C — C be a mapping. Then:
(i) An element x € C is said to be a fixed point of T if Tx = x and
F(T) = {x € C: Tx = x} denotes the set of fixed points of T.
(i) Mapping T is called nonexpansive if

(iii) T is said to be k-strictly pseudo-contractive if there exists a constant « € [0,1) such

that

2
I Tx - TyllI* < llx = y* + k|- T)x = U - Ty,

Note that the class of « -strictly pseudo-contractions strictly includes the class of nonex-
pansive mappings, that is, nonexpansive mapping is a 0-strictly pseudo-contraction map-

ping. In a real Hilbert space H (1.1) is equivalent to

1-
(Tx - Ty,x-y) < |lx—ylI> = —— |- T)x— (I-T)y

K 2
’
2

Vx,y € C.

Remark1.l1 T:C — Cisa«-strictly pseudo-contraction ifand only if / — T'is 1’T"—inverse

strongly monotone.

In the last decades, many researcher have studied fixed point theorems associated with
various types of nonlinear mapping; see, for instance, [1-4]. Fixed point problems arise in
many fields such as the vibration of masses attached to strings or nets [5] and a network
bandwidth allocation problem [6] which is one of the central issues in modern commu-
nication networks. For applications to neural networks, fixed point theorems can be used
to design dynamic neural network in order to solve steady state solutions [7]. For general

information on neural networks, see for instance, [8, 9].

Let F: C x C — R be bifunction. The equilibrium problem for F is to determine its

equilibrium point, i.e., the set

EP(F) = {x € C:F(x,y) > 0,¥y € C}. (1.2)

Equilibrium problems were introduced by [10] in 1994 where such problems have had
a significant impact and influence in the development of several branches of pure and
applied sciences. Various problems in physics, optimization, and economics are related

to seeking some elements of EP(F); see [10, 11]. Many authors have been investigating

iterative algorithms for the equilibrium problems; see, for example, [11-15].

Let CB(H) be the family of all nonempty closed bounded subsets of H and H(, -) be the

Hausdorff metric on CB(H) defined as

H(U, V) = max{sup d(u, V), supd(U, v)], VU,V € CB(H),

uel veV

where d(u, V) = inf, ¢y d(u,v), d(U,v) = inf,c;; d(u,v) and d(u,v) = ||lu —v|.

Vx,y € C. (L1)
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Let C be a nonempty closed convex subset of H. Let ¢ : C — R be a real-valued func-
tion, T : C — CB(H) a multivalued mapping and ® : H x C x C — R an equilibrium-like
function, that is, ®(w, u,v) + ®(w,v,u) = 0 for all (w,u,v) € H x C x C which satisfies the
following conditions with respect to the multivalued mapping 7 : C — CB(H).

(H1) Foreach fixedv e C, (w,u) — ®(w,u,v) is an upper semicontinuous function from

H x C — R, that is, for (w,u) € H x C, whenever w,, — w and u,, — u as n — 00,

limsup ®(w,, uy, v) < O(w, u,v).

n—00

(H2) For each fixed (w,v) € H x C, u+> ®(w, u,v) is a concave function.
(H3) For each fixed (w,u) € H x C, vi—> ®(w, u,v) is a convex function.
In 2009, Ceng et al. [16] introduced the generalized equilibrium problem (GEP) as fol-

lows:

Find # € C and w € T(u) such that
(GEP) 1.3)

D(w,u,v) +o(v) —e(u) >0, VveC.

The set of such solutions u € C of (GEP) is denoted by (GEP)(®, ¢). In the case of ¢ =0
and ®(w, u,v) = G(u,v), then (GEP),(®, ¢) is denoted by EP(G).

By using Nadler’s theorem [17], they introduced the following algorithm:

Let x; € C and wy € T(x;), there exist sequences {w,} € H and {x,}, {¢,} € C such that

Wwp € T(®y),  Wn—wpall <0+ %)H(T(xn)r T (%n+1))s
DWy, i, V) + @) = @) + o (thy = X,V = t1y) =0, Vv eC, (14)
KXnl = ar(f(xn) +(1-a,)Su, n=12,....

They proved the strong convergence theorem of the sequence {x,} generated by (1.4) as
follows.

Theorem 1.2 ([16]) Let C be a nonempty, bounded, closed and convex subset of a real
Hilbert space H and let ¢ : C — R be a lower semicontinuous and convex functional. Let
T : C — CB(H) be H-Lipschitz continuous with constant u, ® : H x C x C — R be an
equilibrium-like function satisfying (H1)-(H3) and S be a nonexpansive mapping of C into
itself such that F(S) N (GEP)s(®, ) # D). Let f be a contraction of C into itself and let {x,},
{w,}, and {u,} be sequences generated by (1.4), where {«,} < [0,1] and {r,} C (0, 00) sat-

isfy
o0 o0
lim «, =0, E oy = 00, E |ot41 — aty| < 00,
n— 00
n=1 n=1
[o¢]
liminfr, >0 and E |Fye1 — 1| < 0O.
Hn— 00 1
=

If there exists a constant ). > 0 such that

(Wi, Ty (%1), Try (3%2)) + D (wa, Try (32), Ty (1)) < =1 || Ty (31) = Ty (2) ||2,
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for all (ri,r3) € E X &, (x1,43) € C x C and w; € T(x;), i =1,2, where E = {r, : n > 1},
then for x = Pps)n(ep)s(o,0)f (X), there exists w € T(X) such that (X, w) is a solution of (GEP)
and

X, — X, wW,—> W and u,—>XxX asn-— oo.
In 2012, Kangtunyakarn [12] introduced the iterative algorithm as follows.

Algorithm 1.3 ([12]) Let T;:i = 1,2,...,N, be k;-pseudo-contraction mappings of C
into itself and « = max{k; : i =1,2,...,N} and let S, be the S-mappings generated by
T1,Ts,..., Ty and a{"),aén),...,al(\';), where a}") = (af’j,a;’/,ag’]) el xIxI I=1]01],
aln’j + a;’j + ag’j =landk <a < af’j,ag’j <b<lforal;j=12,....N-1,« < af’N <1,
Kk < ag'N <d<l,k< o:g‘N <e<lforallj=12,...,N. Let x; € C = C; and w} € T(xy),
w? € D(x;), there exist sequences {w.}, {w?} € H, and {x,}, {#,}, {v,} € C such that

wh € T(x), |[Wh = Wi | < A+ D) H(T (%), T(x01)),

w2 € D(xy), [|w? = w2 || < @+ 2YH(D(x,), D(%11)),

D(Wy, thy 1) + 1(1) = Q1 () + 7 (g = Xy i —t) = 0, VueC,
DWp Vi V) + 92(V) = 2 (V) + - (Vu =X, v = v) =20, VveC, L5)
2y = 8,Pc(I = AA)uy + (1= 8,)Pc( = nB) vy,

Vn = nZn + (1 = @) Sz,

Cn+1 = {Z € Cn : ”yn _Z” = ”xn _Z||}7

Xntl = PCn+1x1! Vn > ]-;

where D, T : C — CB(H) are H-Lipschitz continuous with constants p1, 42, respectively,
dq, P, : H x C x C — Rare equilibrium-like functions satisfying (H1)-(H3), A: C — H is
an o-inverse strongly monotone mappingand B : C — H is a B-inverse strongly monotone
mapping.

He proved under some control conditions on {3,}, {«,}, {s.}, and {r,} that the sequence
{x,} generated by (1.5) converges strongly to Prx;, where F = ﬂf\il F(T;)N(GEP)s(®1, )N
(GEP)s(®,,¢2) N F(Gy) N F(Gy), G1,Gy : C — C are defined by Gj(x) = Pc(x — LAx),
Gay(x) = Pc(x — nBx), Yx € C and Prx; is a solution of the following system of variational

inequalities:

(Ax*,x —x*) >0,

(Bx*,x —x*) > 0.

By modifying the generalized equilibrium problem (1.3), we introduced the modified
generalized equilibrium problem (MGEP) as follows:

Findue Candwe T(I - AA)u, VA>0,
(MGEP) (1.6)

d(w,u,v)+ o) —o(u) + (v—u,Au) >0, VYveC,
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where A : C — C is a mapping. The set of such solutions of (MGEP) is denoted by
(MGEP)s(®,0,A). If A =0, (1.6) reduces to (1.3).

In this paper, motivated by Theorem 1.2, Algorithm 1.3 and (1.6), we modify the gener-
alized equilibrium problem introduced by Ceng et al. [16] and introduce the K-mapping
generated by a finite family of strictly pseudo-contractive mappings and finite real num-
bers modifying the results of Kangtunyakarn and Suantai [13]. Then we prove the strong
convergence theorem for finding a common element of the set of fixed points of a finite
family of strictly pseudo-contractive mappings and a finite family of the set of solutions
of the modified generalized equilibrium problem. Moreover, using our main result, we
obtain the additional results related to the generalized equilibrium problem.

2 Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. We denote

weak convergence and strong convergence by the notations ‘—’ and ‘— respectively.
Recall that the (nearest point) projection P from H onto C assigns to each x € H the

unique point Pcx € C satisfying the property

llx — Pcx|l = min [|x — y].
yeC

The following lemmas are needed to prove the main theorem.

Lemma 2.1 ([18]) Let H be a real Hilbert space. Then the following identities hold:
@) e £y0% = x> £ 2(x,9) + IyI?, V2,5 € H;
(i) e+ y1? < I%ll* +2(y,x + ), Vx,y € H.

Lemma 2.2 ([19]) Let H be a real Hilbert space. Then for all x; € H and «; € [0,1] for
i=0,1,2,...,nsuch that y__, o; = 1 the following equality holds:

2 n
2 2
=Y aillwl® = Y ailla— )1
i=0

0<ij<n

n
E QX
i=0

Lemma 2.3 ([18]) Foragivenz€ H and u € C,
u=Pcz & (u-—-zyv-u)>0, VveC.

Furthermore, Pc is a firmly nonexpansive mapping of H onto C and satisfies
|Pcx — Pcyl|® < (Pcx — Pcy,x—y), Vx,y€H.

Lemma 2.4 (Demiclosedness principle [20]) Assume that T is a nonexpansive self-
mapping of closed convex subset C of a Hilbert space H. If T has a fixed point, then I — T is
demiclosed. That is, whenever {x,} is a sequence in C weakly converging to some x € C and
the sequence {(I — T)x,} strongly converges to some y it follows that (I — T)x = y. Here, I is
the identity mapping of H.

Lemma 2.5 ([21]) Let C be a nonempty closed convex subset of a real Hilbert space H and
S :C — C be a self-mapping of C. If S is a k-strict pseudo-contractive mapping, then S
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satisfies the Lipschitz condition
1+k
152 =Syl = 7—-llx =yl vaoyeC.
—K
Lemma 2.6 ([22]) Let {s,} be a sequence of nonnegative real numbers satisfying
Sni1 < (L= ap)sn + 8y V1 20,

where a,, is a sequence in (0,1) and {3,} is a sequence such that
1) Doty =00;
(2) limsup,_, o, 2—‘:{ <0o0rYy 2218, < o0.

Then lim,_, o s, = 0.

Definition 2.1 A multivalued mapping T : C — CB(H) is said to be H-Lipschitz contin-

uous if there exists a constant & > 0 such that
’H(T(u), T(v)) <ulu-v|, VuvecC,
where (-, ) is the Hausdorff metric on CB(H).

Lemma 2.7 (Nadler’s theorem [17]) Let (X, || - ||) be a normed vector space and H(-,-) is the
Hausdorff metric on CB(H). If U,V € CB(H), then for every € > 0 and u € U, there exists
v e V such that

lu—v|| <A+e)HU,V).

Theorem 2.8 ([16]) Let C be a nonempty, bounded, closed, and convex subset of a real
Hilbert space H, and let ¢ : C — R be a lower semicontinuous and convex functional. Let
T : C — CB(H) be H-Lipschitz continuous with constant w, and ® : H x C x C — R be
an equilibrium-like function satisfying (H1)-(H3). Let r > 0 be a constant. For each x € C,
take wy € T (x) arbitrarily and define a mapping T, : C — C as follows:

T, (x) = {uEC:CID(wx,u,V)+<p(v)—<p(u)+ %(u—x,v—u) >0,Vve C}.

Then we have the following:
(a) T, is single-valued;
(b) T, is firmly nonexpansive (that is, for any u,v € C, || T,u — Tyv||* < (Tyu— T,v,u—v))

if
O (wy, Tr(x1), Tp(x2)) + P (wa, Tr(x2), Tr(1)) <0,
forall (x1,%,) € C x Cand allw; € T(x;),i=1,2;
(c) E(T;) = (GEP)s(®, );

(d) (GEP)¢(®, ) is closed and convex.

Definition 2.2 ([13]) Let C be a nonempty closed convex subset of a real Banach space.
Let {T;}, be a finite family of «;-strictly pseudo-contractive mapping of C into itself and
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let A1, Ay, ..., An bereal numbers with 0 < A; <1foreveryi=1,2,...,N. Define a mapping
K :C — C as follows:

Uh=mT+Q1Q-M),

Uy = A Tolh + (1 - AUy,

Us = 23Ty + (1 - A3) Uy,

Un-1=AnaTnalyn-s + (1= o) Un-a,

K = UN = )\NTNUN—I + (1 - )LN)UN—L (2.1)

Such a mapping K is called the K-mapping generated by T3, T5, ..., Ty and A1, Ag, ..., An.
The following lemmas are needed to prove our main result.

Lemma 2.9 Let C be a nonempty closed convex subset of a real Hilbert space H. Let {T;},
be a finite family of k;-strictly pseudo-contractive mapping of C into itself with k; < y, for
alli=1,2,...,N, and ﬂf\il F(T;) #9. Let A, Aa, ..., An be real numbers with 0 < A; < y», for
alli=1,2,...,N and y; + y, < 1. Let K be the K-mapping generated by T\, T,, ..., Ty and
M, Ag,...,An. Then the following properties hold:

(i) F(K) = ML F(T);

(i) K is a nonexpansive mapping.

Proof To prove (i), it is easy to see that ﬂi\:[1 F(T;) C F(K).
Next, we claim that F(K) C ﬂf\il F(T;). To show this, let x € F(K) and y € ﬂf\il F(T;).
By the definition of K-mapping, we get
llx =l
= ||Kx - yI>
= ||ANTNUN,1x + (1= An)Unax —y||2
= | An(TnUn-x =) + (1= An)(Un-1x - 9) ||2
= Ml T Un-1x = 11 + (1= An)* [ Un-1x — )2
+ 20N (L= AN(TnUnax =y, Unax — y)
= A% (1Un-12 = 17 + k| T Un-1 = Unael?) + (L= an)* [ Un-ax =y

l—KN
2

+ 2y (1 - m)(nule—yn2 - | T Un-1x — uN1x||2)

= (A% + Q= An)* + 228 (1= An)) 1 Un-1x - )1

+ (Agren = An (L= An) (1 = kp)) | T Un-1% — Unax))?
= (v +1=An)* | Unax -yl

+ v (Ankn = (1= An) A = kn) | T Unax — Uy

= | Un-1x - yII?
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+ A (Ankn = (L= kn) + An (L= k) | Tn Unax — Uy
= | Un-1x = yII* + An(kn + An = Dl TnUn-1x — Un-1x|1?
< [ Unax = yI” + An(n + va = DI TnUn-rx — Unax|)?

< lUnax-yl?

= || Lhx - y|*

= [Aa(Talhx ) + (1= 2o)(Uhx - )|

= M1 Tolhx — yII” + (1= Aa)?(|Uhx -yl
+ 201 = Ap)(Tolhx — y, Unx — y)

= 15 (I1tha = yI1? + ol ToUyx — Unxl|?) + (1 = 2)? (| Ui = y |12
1-«
+ 2)»2(1—)»2)<||U1x—y||2 - TzuTzulx— u1x||2)

= (33 + (1= 212)* + 24a(1 = o)) 1 Uhx — yII
+ (M2 = Aa(1 = A2)(1 = k) | T Uhx — Unx||
= (A + 1= X)?(|Uhx -yl
+ Ao (Aaka — (1= A2) (1 — k) | T lhx — Unx||
= |Lhx = y11* + Aa(icy + Ay = 1) || Tolhyx — Unx||®
< |thx = ylI* + 22 (11 + v2) = D) | Tolhx — Unx|®
< | thx -yl
= ATz =) + (1= ) —9) |
=T —y)I> + A= ) e — ]2
+ 200 - ) (Tix —y,x - )
=13 (Il = ylI* + 1 | Tax — &%) + (1 = A1) [l = ylI
420 xl)(nx—ynZ A ||T1x—x||2)
= (A + 1 -2)” + 2001 - 1) lx -yl
+ (A = M1 = ) (L = k1)) | Tax — ]
= (A +1-211)*lx -yl
+ M (Aakr = (L= 2)(A = 1) [| Tax — ]|
= [lx = yII” + Ay + 2q = D) Ty — x>

<llx=yI* + 2 (O +2) = 1) | Tox — x| (2.2)
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From (2.2), it yields

M(1=(n+ 7)) 1T — x> < 0.
This implies that

[|Tx — x| = 0.
Therefore x = Tyx, that is,

x € F(Ty). (2.3)
By the definition of U/; and (2.3), we have

Uix=MTix+(1—-x)x =2,
that is,

x € F(Lh). (2.4)
Again by (2.2) and (2.4), we obtain

o = yI* < [thax = y1I* + o (O + v2) = 1) | Tolhx — Unx||

= llx =17 + A2 (1 + 12) = 1) Tox — x|,

which implies that x = T»x, that is,

x € F(T»). (25)
By the definition of U, (2.4), and (2.5), we get

Upx = A Tolhx + (1 — A)Uix = x,
from which it follows that

x € F(L).
Using the same argument, we can conclude that

xeF(T;) and xeF(U;), Yi=12,..,N-L
Next, we show that x € F(Ty). Since

0=Kx—-x
= A.NTNUN_lx + (1 - AN)UN_lx —-X

=An(Tyx —x)
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and Ay € (0,1], we obtain

x € F(Ty),

from which it follows that

N
xe ﬂ F(T;) (2.6)
i=1
Therefore
N
F(K) S [ E(T). 27)
i=1
Hence
N
F(K) = () E(T). (2.8)

i=1

To prove (ii), we claim that K is a nonexpansive mapping.
Let x,y € C. Then we obtain

| Kx — Ky||*
o [ (e TogUvae + (1= ho) Unoa®) — (e Tl + (1= A Un1y) |
= || (Un-1% = An (Un-1% — TnUn-1%)) = (Un-1y = An(Un-1y = TnUn-1) | ?
U = Une-13) = doe (L = T U1 = (0 = To)Une-13) |
= | Unor = Unoayl? + 33| (= Ta)Unae = (0 = To) Uy |
= 20n(Un-1% = Unay, (= Tn)Unoix — (= Ty)Un-1y)

< |Unax = Un -yl + 25| (0 = Ta)Unax = (I = Ti)Un-1y|)?

1—
. ZAN< ZKN> (T = Tn) Uy - (T - TN)UN—IJ’HZ

= [ Un-1x = Un-1yII?
+An(An = (L= kn)) |0 = Tn) Uy — I - TN)UN—U/”2
<[ Un-x = Un-ayll?
A + 2 = D = Ta)Unax = (= Ta)Un 1y
= | Un-1x — Un-1y|I?
— (L= 01 +92) [ = Tw)Unoax = (I = T Unay|”
= | (A T U + (1= Aoy ) Un-2%) = (s Tna U2y + (1= 2y ) Un29) ||
(1= (n+9)|U - Tn)Unax - (T - TN)UN—1y||2

= [ (Un-2% = Anaa(T = Ty-1)Un-2%) = (Un-2y = Anaa(I = Tiv-1)Un-2y) Hz
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— (1= + )| U = Ta) Unax = (I = Tn)Un-1|)?

= | (Unat = Uny-2) = dona (U = Ty Unat = (I = Tiv)Uny) |
— (1= + )| U = Tn)Unax = (I - Tn)Unry|)?

= Un-2x = UnoyII? + 23 | = T ) Un-2x = (I = Ty 1) Un ||
= 2An-1(Un-2% = Un-2y, (I = Tn-1)Un-2% — (I = Tn-1)Un—2y)
(= 0+ 1)) [ (= Tl — (1 = T Unay|*

2
< Un-2x = Un_oy? + 234 || = Tno)Un—2x = (I = Ty-1)Un—2y ||

1—kn_
- 2AN1( IZCN 1) | = Tn-) Unox — (I - TN—I)UN—Z_V”Z

— (1= (01 + 1) |4 = Ta)Unox = (I - Ti) -y
= |Un 2% - Un-ayI?
+ Ano1(Anot = (= kno)) [ (I = Tva)Uncax — (I - T1\1—1)UN—2}’||2
—an (1= (1 + 7)) | (= Ta)Unax = (= Ta) U1y
< [Un-2x — Un-oyII”
a1 +v2 = V|| = Tne)Un-ax — (= T Un2y|)”
— (1= (1 +92) |4 = Tw)Unoax - (I = To) Uy
= | Un-2x — Un-oyl?
—Aner (L= 0n + ) [ (= T Un-ax = (I = T Un-ay |
— (L= (1 + 7)) | (4 = T Unax = (= T Un-1y)

= | Un—ox — Un—2y|?

N

~(1-0a+ ) Y AU = T)Uiax — (- T)Uiry|)*
i=N-1

N

<lx=yl* - (1= (n+ ) ZMH (I-T)Ujiax—~ (I~ Ti)Ut—1)’H2,
i1

which implies that

N
1K= Kyl < =312 = (L= G + 92)) 0| = T)Uiae— (I = T Uiy

i=1

From (2.9) and y; + y» <1, we obtain
[Kx - Kyl < llx—yll,  Vx,y€C,

that is, K is a nonexpansive mapping.

(2.9)
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Lemma2.10 Let C be a nonempty closed convex subset of a real Hilbert space H. Let {T;}72,
be a finite family of k;-strictly pseudo-contractive mappings of C into itself with k; < yy and
MY, F(T;) # 0. Foreveryi=1,2,...,N andn € N, let A1, A, ..., Ay and M7, A%, ..., A%, be real
numbers with 0 < A;, \? < y» and y + ya <1 such that . — Ajasn— oo and Y ooq [N/ —
M| < c0. Forevery n € N, let K and K, be the K-mappings generated by T1, T, ..., Ty and
Moo, osAn and Th, To,..., Tn and M, A%, AN, respectively. Then, for every bounded
sequence {x,} in C, the following properties hold.:

(i) limy—s o | Kyy — Ky || = 0;

(i) D02y 1K1 = Kyaxa || < o0,

Proof Let {x,} be a bounded sequence in C and let Uy and U, be generated by
Ty, Ti,..., Ty and Ag, Ao,..., Ay and T4, T, ..., Ty and Af, A%, ..., AR, respectively.
First, we shall prove that (i) holds. For each n € N, we obtain
U, = Uhoxull = || A7 Taes + (1= A7) = (A T + (1= A1), |
= ||)Jf Ty — A%y — M Tix, + Aixy, ”
= | (A = 22) Tan = (A = 2 )|

= A = M| 1 Taen = - (2.10)
For k € {2,3,...,N}, we have

U jcxn — Uil
= | A Telugordon + (1= Af) Ungerrzon — (A Telkcan + (1= A U |
= | AL Tl porn = Mic Tilan + (1= AR) U orn — (1= die) Unor6 |
= || Af Tl gordon — M Tillgorn + A TiUa6, — M T Ui 1%,
+ (1= A Ungrtn — (1= M) Unerzn + (1= A7) U6
= (L= M) Unr6n|
= | AU (Teldgr%n — Tiellian) + (A = Aie) Til16n
+ (1= 28) Ungordn — Urcrn) + (1= A7 = (1= Age)) Una6 |
< M Telgo1%n — Telleonll + | A = dae || T U6l
+ (1= AN g1n = Uaiall + |2ac = A [ | Uiatn|

S)\21+Kk

. U126 — U1l + | A7 = Aae|[ Il Til-126,l
— Kk

+ (1 - )‘]y(l) ”un,k—lxn = Up1xnll + |}‘k - Z| [ U1 ||

1+ kg 1— ki
< || Un,k—lxn - Uk—lxn || + || un,k—lxn - uk—lxn”
1—«y 1—«y
+ AL = | (I T Ukcan | + 1 U101
2
=T ” Un,k—lxn - Uk—lxn ”
1- K

+ A = a1 Telieatull + | Ukl (2.11)
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By (2.10) and (2.11), we get

1K — Koty ||
= ||Un,an - uan”
2
1- KN

+ [ = An | (1T Uncaull + 1 U1}

=

1 U N-1%1 — Un-1%4 |

2 2
< | Uy n—2%n — Un_2%4|l
1- KN 1- KN-1

+ | My = Anet | (1 e Un—axa |l + ”uN—an”))

+ [ A = x| (1 T Uncatall + 1 Un-126]1)

2 2
= | U n—2%n — Un_2%, ||
1- KN 1- KN-1

|M1 = At | (I T Un—2%ull + [ Un-2%a 1)

+
l—KN

+ [ = An | (1T Uncaall + U1}

2
= (1 | U N-2%n — Un_2%, ||
_1 —Kj

N 9 N-j
e () s 1)

1-k1

N
2
< ]‘[(1 _K,> 1L = U

N ) N-j
D e IR (TR Py TV
j=2 — Kj+l

N
2 n
= H(m) ’)\1 _)\1“|Tlxn = %]
]

N

2\
D Ces RN (L TASK Py TV}
1 Kj+1

Jj=2

By (2.12) and the fact that A} — X; as n — oo for all i = 1,2,...,N, we deduce that

1imyyes o0 | K — Kt = O.
Next, we will claim that (ii) holds. For each # € N, we obtain
| Uni%xn1 = Up-10%01]l
= ||)\.f Tlxn,l + (1 - )\;‘)xn,l - ()\.}11_1 Tlxn,l + (1 - Af‘l)xn,l) ”

= || )\,11 Tlx,,_l - A?xn_l - )»1171 Tlx,,_l + A;”lxn_l ||

(2.12)
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=10 =37 Tata - 04 -3

= A = A I Tt = 2 - (213)
For k € {2,3,...,N}, we have

U ixn = Uprjn

= | A Telyperzna + (1= M) U pertng — (A Tellpog o1 %n
+ (L= 27 Unrprtnan) |

= || A Tl gordnoy = A Tellpeg iy + (1= A7) U jearn
(-1 s

= || A Tl gordn1 = A Tl o1 + A} Tl o1 %n-1
=M Tl i + (1= A7) Ungeertns — (1= M) Ut k1%
+ (1= 2 Unorjernt — (1= A ) U pernas |

= | M Teldngr%ns = Tellpa 1) + (Af = A7) Teldpoy k1%01
+ (1= A0) (U ger%n-1 = Uy jc1%n-1)
# (U= 2 = (1= 1) Ui |

<M Tilkr%n-1 — Tellnoyjern-a | + | A% = A0 Telln-vke1n-1 |
+ (L= AN g12n1 = Uy gana |+ A7 = A3 1 |

n 1 + Kk n n-1
= Mo M Unkeany = Uy geanall + |AE = A N Teld ey g ona |
- Kk

-1
+ (1= A N U grn-1 = Un-verna || + [AE = A7 1 Uy i1 |

1+ K
= U i-1%n-1 — Up-1k-1%n-1])
1— ki
1- K
+ ” un,k—lxn—l - Un—l,k—lxn—l ”
11—«

+ [ Af = M (I Te U e ||+ 1 U g% |
1o | U j1%n-1 — Un-1 6-1%n-11]
+ |2 = M (I Tl ki |+ 1 Ut g ®ona ). (2.14)
From (2.13) and (2.14), we obtain

”1(nxn—1 - Kn—lxn—l ”

= |Upn%n-1 — Uy Ny ||

< 1 Uy N=-1%p-1 = Up_1n-1%n-1 |

l—KN

+ M = M (TN Unean-1%na |+ [ Ui n-1%n- )

2 2
< —— Uy n-2%n-1 — Uy N-2%01 ]l
1- KN 1- KN-1
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-1
+ |)\X1,1 - )‘-X[,l|(||TN—1un—l,N—2xn—1” + ”Unl,Nanl”))

+ |8 = A7 (I TN U v |+ 1 U1 1% 1)

2 2
| Uy N—-2%0-1 — Uy N-2%n-1l
1- KN 1- KN-1

-1
+ —K |)\X[,1 - )‘-}1\[,1 (” TN—I un—l,N—an—l ” + ” un—l,N—an—l ”)
N

1-

+ |28 = M7 (I TN Ui v |+ 1 U n-1%0-11)

N2
- l—[ (1 _ K') ”un,N—an—l - u”—LN—an—IH
j=N-1 j
N 5 N-j
' Z (1 K ) ‘)L;l_A7_1|(||1}Uﬂ—1,j—lxn—1|| + |\ Uy jor%na )
j=N-1 — K+l

N
2
< ]"[(1 = ) 1%t = U111

Kj

2\ .
< ) ’%" =\ |(||Tjun-1,j—1xn-1|| + |\ U1 j16n 1)

j=2 1- Kj+1
N2
i l_[(l )W S [V ERE
o2 N TR
N 5 Noj
’ Z(l — K 1) W - A';l_1|(||7}uﬂ—l,/—lxn—l|| + |\ U161l
j=2 J+
N 9 N ) .
- n_ qn-1 n_ }?_1
SE(l_Kj)Pq A |M+2;(1—K,‘+1) |)‘I A |M, (2.15)

where M = max,en{l| T1%n-1 = %p-1 | | TjUp-1j-1%p-1 |, |1Up-1j1%0-1 I}, for all j = 2,3,...,N.
Hence, by (2.15) and Y 02, |A/*1 — A7 < oo forall i = 1,2,...,N, we have > o) [|K,x,-1 —
Kn_lx,,_1|| < 0. O

In 2010, Kangtunyakarn and Suantai [23] introduced the S-mapping generated by the
finite family of «;-strictly pseudo-contractions in Hilbert space as in the following defini-
tion.

Definition 2.3 ([23]) Let C be a nonempty closed convex subset of real Hilbert space.
Let {T;}Y, be a finite family of ;-strictly pseudo-contractions of C into itself. For each
j=12,...,N,leta;= (a{,aé,aé) €I x1IxIwherele[0,1] and a{ +a£ +aé = 1. Define the
mappings S: C — C as follows:

Uo =1,
Uy = oy Ty + ay Uy + a3,

U2 = 0[12T2U1 + oz%l,ll +Ol32.1,
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Us = a3 T3l + a3l + 31,

N-1 N-1 N-1
UN_1 =0 TN_luN_z + oy UN_2 + 03 1,

S= UN = OI{VTNUN_l + aé\[UN_l + Olé\ll
This mapping is called S-mapping generated by T3, T, ..., Ty and oy, a3, ..., an.
Furthermore, they obtained the following important lemma.

Lemma 2.11 ([23]) Let C be a nonempty closed convex subset of real Hilbert space. Let
(TN, be a finite family of k;-strictly pseudo-contractions of C into itself with ﬂf\il F(T;) #0
and k = max{k; :i=1,2,...,N} and let oj = (ot{,ozé,oté) elxIxIj=12,...,N, where
I1=10,1], oz{ + aé + aé =1, a{,aé € (k1) forallj=1,2,...,N -1 and o € (k,1], ol €
[«,1), aé €lk,1) forallj=1,2,...,N. Let S be the mapping generated by T1, T», ..., Ty and
o1, ,...,ay. Then F(S) = ﬂf\il F(T;) and S is a nonexpansive mapping.

By putting a{ =1; and 0/2 =0, forallj=1,2,...,N, we see that the S-mapping reduces
to the K-mapping as defined in Definition 2.2. Moreover, from Lemma 2.11, we have the

following result.

Lemma 2.12 Let C be a nonempty closed convex subset of real Hilbert space. Let {T;}¥,
be a finite family of k;-strictly pseudo-contractions of C into itself with ﬂf\il F(T;) #9 and
k =max{x;:i=1,2,...,N}andlet A; € (x,1) C [0,1], forallj=1,2,...,N—1and iy € («,1].
Let K be the mapping generated by Ty, Ty, ..., T and A, Ay, ..., An. Then F(K) = ﬂi\il F(T))
and K is a nonexpansive mapping.

Remark 2.13 For the result of Lemma 2.9 in our work, we obtain some improvement as
follows:
(i) We relax the conditions of «; and A; in Lemma 2.12 in sense that «; is not depended
onA,foralli=1,2,...,N.
(ii) We do not assume the condition ¥ = max{x;:i=1,2,...,N}.

Example 2.14 Let R be the set of real numbers and let T; : R — R be defined by
Tix=—(i+1)x, forallxeR,

and A; = %, foralli=1,2,...,5. Let K be the K-mapping generated by T3, T5,..., T5 and
A A, .5 hs. Then F(K) = ()2, F(T}) = {0}.

Solution. It is easy to see that 7 is ;-strictly pseudo-contractive mapping with «; = ﬁ
We obtain k¥ = max{k;:i=1,2,...,5} = % and A; € (5,1], foralli=1,2,...,5. By the defini-
tion of a K-mapping, we have

! (7) < 7) ’
l{x_ 31{){: I l{x
2 <8)( ! ) < 8) e
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Uax = A4l x 1 U>x
Uyx = | — J(-5U3x) + 1—— Usx

Kx =Usx = (%) (—6Uyx) + (1 — E) Uyx. (2.16)

Observe that ﬂle F(T;) = {0}. Then, by Lemma 2.12, we obtain
5
F(K) =) F(T) = {0}.
i=1
Next, we give an example for Lemma 2.9.

Example 2.15 Let R be the set of real numbers and let T7; : R — R be defined by
Tw=—-(+1)x, foralxel,

and A; = 5 L foralli=1,2,...,5.Let K be the K-mapping generated by T3, T, .. T5 and

AL, A2,...,As. Choose y; = % and y, = 52,

26 - ;’gi < 1. Then, by Lemma 2.9, we obtain F(K) = (>, F(T;) = {0}.

from which it follows that 1 + 5 = 75 + 5—2 =

3 Strong convergence theorem

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. For
everyi=1,2,...,N, S;: C — CB(H) be H-Lipschitz continuous with coefficients ;, ®; :
H x C x C — R be equilibrium-like function satisfying (H1)-(H3). Let ¢ : C — R be a
lower semicontinuous and convex function and A : C — C be an a-inverse strongly mono-
tone mapping. Let { TN, be a finite family of k;-strictly pseudo-contractive mappings and
ki <y with F := ﬂf\il F(T) N ﬂfil(MGEP)S(CDi,w,A) # . For every n € N, let K, be the
K-mapping generated by Th, Ts, ..., Tn and A, A5,..., A5 where 0 < ¢ < A7 < <y, for
alli=1,2,...,Nand y, + y» <1. Foreveryi=1,2,...,N, let {x,} be the sequence generated
by x1 € C and w' € S;(I — riA)x1, there exist sequences {w'} € H and {x,},{u’} C C such
that

Iwh, = wh o | < (L+ DYHESU -1l A)xn, S =7l A)xia),
w e Si(I-rlAx,

Di(wy, 14,,9) + 90) = 9(6,) + 5 (14, = %,y = ) + (A y = 283) 3.1
>0, Vye(C,

Xt = 0f () + Bu (L i) + 8K, V21,

where f : C — C be a contraction mapping with a constant & and {ay},{Bu}, {84} < (0,1)
with a, + B, + 8, =1, Yn > 1. Suppose the following conditions hold:
(i) limy oy =0andy o) o, = 00;
(i) 0<t<Bnd, <v<l;
(ili) 0<n<al <o<lforalli=12,....N-land 0 <n <a <o <1with
Zg 14, =1
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(iv) 0<e STL <w<2u, forallneNandi=1,2,...,N;

) 2;1“;1 letys1 — o] < 00, Z:il |Brs1 — Bul < 00, 2221 [841 — 8 < 00,
> |y = il < 00, I |, — al,| < 00, Y02 1A = M| < oo, for all
i=12,...,N;

(vi) foreachi=1,2,...,N, there exists p; > 0 such that

®; (Wi, Ti@1), T, (%)) + @i (w5, T (x2), Ti (x1))

2 (3.2)

< —pi T (x1) = T} (%2)

forall (ri,r}) € ©; x O, (x1,%7) € C x C and wjf € Si(xy), for j =1,2, where
Q;={ri :n>1}.
Then {x,} and {u'} converges strongly to q = Pxf(q), for everyi=1,2,...,N.

Proof The proof shall be divided into seven steps.
Step 1. We will prove that I — . A is nonexpansive, forall i =1,2,...,N.
From (3.1), we have

o . 1, . . .
D (wy, 1), ¥) + () — o (u,) + r—l(u; - ([ -rA)x,y—u) >0, (3.3)

for every y € C. From (3.3) and Theorem 2.8, we obtain
w, =T, (I-r,A)x, Vi=12,..,N.
Put7i e ®; foralli=1,2,...,N. From (3.2), we have

(W, Tyi(xr), Ti(x2)) + @i (wh, Ti(x2), Tri(w1))
<-pi “ Tri(xl) - Tri(xZ) ||2 < 0! (34)
for all (x7,%42) € C x C and w} € Si(xy), j=1,2.
From (3.4), we find the implication that Theorem 2.8 holds.

It obvious to see that / — A is a nonexpansive mapping, for every i =1,2,...,N.
Indeed, A is a-inverse strongly monotone with 7, € (0,2a), we get

[(1-riA)x—(1-rA)y]’
= |-y - ri(Ax - a9)|”
=l - yI1? - 2} (6 — 3, Ax — Ay) + (r1)” 1 Ax - Ay|)®
< Il = y11* = 207} | Ax - Ay|1? + (1)1 Ax - Ay|)®
= llx = y11? + 1, (ry, = 20¢) [ Ax = Ay|®
< llx =yl

Thus I - A is a nonexpansive mapping, foralli =1,2,...,N.
Step 2. We will show that {x,} is bounded.
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Let z € F. By nonexpansiveness of K,,, we have
%641 = 2|

=ay ”f(xn) - Z“ + Bu + 8, | K — 2|

N . .
>4, - 2)
i-1

N
<o, |[f(en) —f(@) +f (@) = 2| + Bu Yl |, — 2| + 8 llxs — 2]

i=1

N
<a(lf ) ~f@] + @) -z]) B, | T, (1~ i) 2]

i=1

+8ulxn — zll

N
< au(Ellxn =2l + |[f@) —2]) + Bu Y alllz — 2]l + 8,120 — 2l

i=1
= (- 0y = &))llxn — 2ll + | f(2) — 2|,

If(z) - ZII}
1-¢ |

< maX{ lloer = 2l

By induction, we have ||x, — z|| < max{|x; -z, 'WZ) Z”} Vn € N. It follows that {x,} is
bounded and so is {u'}, Vi=1,2,...,N.

Step 3. We will show that lim,,_, o [|%,41 — 4] =0

By the definition of x,, we obtain

[1%241 = %,
N
onf (%) + B (Z alnu’n) + 8, K%,
i=1

N
- <Oln—lf(xn—l) + Bn1 (Z di,1”21> + Sn—lKn—lxn—l>

i=1

<oy Hf(xn) _f(xn—l) H + |Oln - Ol;’1—1| “f(xn—l) ||

Zd Zan lun 1 Zan lun 1

+ 8;«1 ”I(nxn - Knxn—l ” + 8;1 ”I(nxn—l - I<n—1xn—1 ”

+:3n +|ﬁn ﬁn 1|

+ |8n - 8n—1| ||1<n—1xn—1 ”
=< Olnf ”xn — Xn-1 || + |an - an—1| Hf(xn—l) ||

N N N N

i i 0 i 0 i i
E :anun - z :dnun—l + z :anun—l - E :an—lun—l
i=1 i=1 i=1 i=1

+ B

N
F1Bu = Buaal Yy [ty + Sulln — s |

i=1

+ (Sn ||1<nxn—l - I<n—1xn—1 ” + |5n - 8n—1| ”I(n—lxn—l ”


http://www.fixedpointtheoryandapplications.com/content/2014/1/86

Suwannaut and Kangtunyakarn Fixed Point Theory and Applications 2014, 2014:86
http://www.fixedpointtheoryandapplications.com/content/2014/1/86

N

Dy~ )

i=1

= Olné‘- ”xn — Xn-1 ” + |an - an—1| “f(xn—l) || + ,Bn

N

Z(“; - “2-1)”2-1

i=1

N . .
+ B +1Bn = Bual D iy ||

i=1

+ (Sn ”xn — Xn-1 ” + 6;1 ”I(nxn—l - I<n—1xn—1 ” + |6n - 871—1 | ”I(n—lxn—l ”

N
=< Olnf ”xn — Xn-1 ” + |an - an—1| “f(xn—l) || + ﬂn Z ai, || Mi,, - ufq,l H
i=1

¥ Ba Y |al = |y |+ 1Ba = Buaal Dl i |
i=1

i=1

+ 671 ”xn — Xn-1 ” + (Sn ||I(nxn—1 - I<n—1xn—1 ” + |5n - (Sn—l | ”I(n—lxn—l ”

From u}, = T, (I - r},A)xy, forall i =1,2,..., N, we have

i(whul,y) + o) — (i) + rll(u; - ([~ A)xy-u)>0, VyeC

n

and

D1 (Wt U1 9) + 00) = 0(1,,1)

+ i—(ui - (1 - VLHA)x,,H,y - ufm) >0, VyeC.

n+l
n+l

In particular, we obtain

i (Wt 1) + @ (1) = 0 () + (1, = (I = 1 A) s 1,1 — 14,) 2 O
n

and

Qi (W1 010 14,) + 9 (4) = 0 (1,.1)

+ L<u‘ (I-r >

i
i n+l n+l

i i
A) X1,y — 1) = 0.
)

Summing up (3.6) with (3.7) and applying (3.4), we get

1

i
Tn

(u’n - (I - riA)xn, Mim - u’n>

i p—
n+l

1 ) ) .
(s = (= 1 A)nts = t,1) 2 0,

n+l

which implies that

>0.

<ui ui Lti,l - (I - ri,A)x,, _ uf’l+1 - (I - r£1+1A)xn+1>
i

i
T'n T4l

(3.5)

(3.7)
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It follows that

;
<u;+1 — U Uy — Uy + Uy — (I =10, A) %, — f—"( uy — (- r,,+1A)xm1)> >0. (3.8

n+l

From (3.8), we obtain

et =26

. ) r
= <Mn 1 u Z’tn+1 (I—r;A)x,, - rl_rl( n+l (1 rn+1A)x”+1)>

n+l

= < i’”l ([ rn+1A)xn+1 - (I - ri,A)x,,

i

(S (R )

T4l

“ un+1 (1 - rf'1+1A)xn+1 - (] - I"ﬁlA)xn

+ (1 - ?ﬂ )( Uyl — (1 rn+1A)x”+1)

rn+1

<y —u H[H (L= r A = (L= M)y + (I = A),

- (I—rLA)x,, ” +(1-

H u”ﬂ (1 - rfﬁlA)xml ”]

n+1

< i = [ 10 ) = (=)

+ || (1 7 A)x,, - (I - rﬁlA)xn ||

n+l
1 i
to |er+1 r |||un+1 (]_ rn+1A)xn+1 “
rn+1
= Hu’”l i, ” |:||x"+1 =%l + | Typa1 — |”Axn||
2t =l = (= A)sa |

from which it follows that

=t || < otwea = 2l + [Py = 7] AR

|| u n+l

n+l

{rm—l 7’ ‘ || un+1 (I - Vﬁl+114)‘x”+1 || : (39)
From (3.9), we have

e, = sy || < Novw = s |l + |7y = 7y [ A% |

1, . . )
to vt = v ety = (1 = 7 A) ]| (3.10)
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From (3.5) and (3.10), we obtain

141 — %

N

< @kl = o] + oty — aua || f@nd) | + Ba Y 4 [nxn — %l

i=1

. . 1, . . , ,
+ |rf4 - rj,_1| 1A%, + < |r£, - er! ||u’n - (I - r;A)xn ||]

N . . . N . .
+ By Z’ﬂln - ﬂly,_1| Huln_l ” + B4 = Bu-1l Zﬂln_l ”"‘2_1 || + 8l = 2 |l
i=1

i=1
+ 8;1 ”Knxn—l - I<n—lxn—1 ” + |8n - (Sn—l | ”I(n—lxn—l ”

N
= o€ %0 — %p1 |l + |ty =y | “f(xn—l)” + B Za;”xn = Xp-1]|
i=1

Noooo Bo L , ,
B Yl = a1zl + Y Dl =l = (= A
i=1

i=1

N N
+Bn Y _|a = ahy ||y +1Ba = Buaal Y by |ty | + Sulln — 2 |
i=1 i=1

+ (Sn ||I<nxn—l - I(n—lxn—l ” + |5n - 8n—1| ||I(n—lxn—1 ”

=< (1 —a,(1- g)) %0 — %1l + |otn — ety Hf(xn—l) ”

Moo 1Y, . , :
+ E vt =7 [l A%, || + ; E |rt = ri |y = (1 = ), |
i=1 i=1

N ' N
+ Z|aln —al, |||y ]| +1Ba = Butl Zﬂﬁﬂ [
i1

i=1

+ ||1<nxn—1 - I<n—1xn—l ” + |3n - 8n—1| ||I<n—lxn—1 ”
Applying the conditions (i), (v), Lemma 2.6, and Lemma 2.10(ii), we obtain
lim ||%,41 — %, = 0. (3.11)
n— o0

Step 4. We will show that lim,,, o ||}, — &, || = lim,—, 0 [| Ky, — %]l =0, Vi=1,2,...,N.
Since T); is a firmly nonexpansive mapping, for every i =1,2,...,N, we obtain
|7, (1 i), 2]
= ” Trf;, (1 - FLA)X,, - Trf;, (I - }"LA)ZHZ
< ((I - rf,A)x,, - (1 - rﬁ,A)z, ul, - z)
1 ; . .
= S (1= rA)s, — (1 = A)e]* + s, —2]

(1)~ (1= )z (u =) )
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1 )
< 5 (=21 + [t = 2" = | (o = ) = ri(Am — AD)[)
1 )
= 5 (=2l + =] = v =26, [ = () A = A2
+ ZrL(x,, - uil,Axn —Az))
1 , ) , ,
< §(||x,, —z® + ||ui1 —zH2 - Hx,, - u, ||2 +2r, Hx,, —u, || | Ax, —Az||),
which implies that
|, = 2||* < llan = 202 = || — el |* + 27 || 0 — |1 A, — Az]. (312)
From the nonexpansiveness of Trf; and uln = Trf; (1 rLA)x,,, foreveryi=1,2,...,N, we have
|l —z|* = | T (1= 1A — T,y (1 - riA)2|*
< | = 2) - ri(Ax, — A2)|®
= o, — 2]1% = 27 (3, — 2, A, — AZ) + (1) | A, — Az])?
< llxn — 2lI* - 20 | Az, — Az + (TL)2||Axn - Az|)?
=l — zl|* = 7 (2 = 1) | Ax, — Az (3.13)

From the definition of x, and (3.13), we get
”xn+1 - ZHZ

N
<o f ) =2+ B Y b~ 2|* + 8l — 21

N
<@ [f ) 2] + B Y (Il — 2117 — 7} (20 = 13) [ Aty — Azl|?) + 8,1, — 2
i=1

= o, | () — 2 +ﬁn2a o — 211 - ﬂnZa (20 = 4 1A, — Az||?

+ 8ullxn — Z”

< lon — 2117 + o [ () — 2 —ﬁnZa (2 - 1) I Ax, — Az|)%,

i=1

from which it follows that

ﬂnZa (20 - 78) | A, — Az])?

< 20 = 2% = 6n1 = 2I1% + ot | f (@) - 2|
< (10 = 2l + i1 = 211) i = ) + e £ ) — 2] (314)
From (3.11), (3.14), and the conditions (i), (ii), (iii), and (iv), we obtain
(3.15)

lim ||Ax, — Az| =
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From the definition of x, and (3.12), we have
”xn+l - Z”2

N
< |f(xn) —sz + By Za; [, —z||2 + 8,1, — 2|12
i1

N
<, |fea) 2] + B2 3l (s — 2l = [a — |
i=1

+ 27 || % — | 1A%, — Azl) + 8,10 — 2]

N N
< ot |[fGen) — 2"+ B Y i lln — 2l ~ B Y s — 1ds |
i=1 i=1
N
+2B0 Y alyrh|| % — || 1A%, — Azl + 841, — 21|
i=1

N
< =2l + a|f ) =2 = B >l Joeu — |

i=1

N
+28, Zaﬁlri ”x,, - u’n H |Ax, — Az|,
i=1

which implies that

Bu Yy ai s — |
i=1
< 116 = 2l1% = %1 — 212 + @ | f () — 2]
N
+2B, Y a0 — ul || I Ax, — Az
i=1
< (16 = 2l + 19651 = 2I1) 19651 — %]l + 0 [ f ) — 2|

N
+2B0 Y alyrh|| % — || 1A%, - Az]. (3.16)
i=1

From (3.11), (3.15), (3.16), and the conditions (i), (ii), (iii), we get

lim |x, —u,]| =0, foralli=1,2,...,N. (317)

n—00

By the definition of x,,, we obtain

N
Xp+l —Xp = ar(f(xn) + Bn (Z a;”;) + 8, K, — %y
i=1

N

= oy, (f(xn) —x,,) + By Za;(u’n - x,,) + 8, (K, — %5,).

i=1
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From (3.11), (3.17), and the conditions (i) and (ii), we get

lim | K,x, — x| = 0. (3.18)
n—0o0

Step 5. We show that {x,}, {w,} and {r’} are Cauchy sequences, for every i=1,2,...,N.
Let a € (0,1), by (3.11), there exists N € N such that

%41 — %ull <a”, Vn>N. (3.19)

Thus, for any # > N € Nand p € N, we have

n+p-1 n+p-1 [} 4
k k
”anrp —xu|l < Z k1 — |l < Z a < Za = m (3.20)
k=n k=n k=n

Since a € (0,1), we get lim,_, o a” = 0. From (3.20), taking n — oo, we obtain {x,} is a
Cauchy sequence in a Hilbert space H. Let lim,,_, » %, = «*. Since S; : C — CB(H) be H-
Lipschitz continuous on H with coefficients p;, for every i=1,2,...,N, and (3.1), we have

i
|| Wy = Win ||

1+ )'H (I = b A) %, Si(I = 74,1 A) 001

( ol

<<1+ )M,HI LAY~ (1= 1 A |
< (102 )il 0= i), = (=)o
[ (1 =7 A) w1 = (=731 A) % ])

1
Lt — i1 = 2uall + [1)0 = 7 | 1A% 1)
1
1 + - Ml(”xn =Xl + |Vy,+1 ‘M); (3.21)
where M = max,en{||Ax,|}. From (3.11), (3.21), and the condition (v), we obtain

nlggo”w ~-w,,| =0, foreveryi=12,...,N.
By continuing the same argument as (3.19) and (3.20), we have {w! } is a Cauchy sequence
in a Hilbert space H, foralli =1,2,...,N. Let lim,,_, , wi, =w}, foreveryi=1,2,...,N. Us-
ing the same method as above and the condition (v), we see that {r’} is a Cauchy sequence,
foralli=1,2,...,N. Putlim, o7, =1}, foreveryi=1,2,...,N.
Next, we will prove that w} € S;(I —rfA)x*, foralli=1,2,...,N.
Since w', € S;(I - r,A)x,,, we obtain

d(w., Si(I - rfA)x¥)

< max{d(w, Si(I - riA)x"),  sup  d(Si(I-riA) )|

ﬂ/,‘ ES,‘ (I—r;.“A)x*
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< max sup  d(W;, Si(I-rfA)x*),  sup  d(Si(I-riA)x,, 171/,-)]

wieS;i(I-rl A)xy, Wi eS;(I-rF A)x*

= 'H(Si (I - rflA)x,,,Si (I - r;‘A)x*), foreveryi=1,2,...,N. (3.22)
Since

d(w),Si(1 = rfA)a") < |wi = w, || + d(w), Si(1 - rA)x")
<|lwi = wi,| + H(Si(I = 1, A) %, Si(I - rfA)x¥)

= [[wi = will + i (1= A)w = (1= r7A)27|

= [wi =il + | e = 7) = (A = rfAR")
taking 7 — 0o, we have

d(wi,Si(I-rfA)x*) =0,
which implies that

w; € Si(I-rfA)x*, foralli=1,2,...,N. (3.23)

Step 6. We will show that limsup,,_, .. {f(q) — q,%, — q) <0, where g = Prf(q).
To show this, choose a subsequence {x,, } of {x,} such that

lim suplf(q) - g%, - q) = lim (f(q) - 4%, - q)

n—0oQ
Without loss of generality, we can assume that x,, — X as k — oo.
Foreveryi=1,2,....,N,0<¢ <A <y <y <1, forali=12,...,N, without loss of
generality, we may assume that
1E—2;€(0,1) ask— oo, foreveryi=1,2,...,N.
Let K be the K-mapping generated by T3, T5,..., Ty and A1, A3,..., Ay. By Lemma 2.9, we
see that K is nonexpansive and F(K) = ﬂf\il F(T;).
From Lemma 2.10(i), we obtain
lim | Ky %, — Kty || = 0. (3.24)
k—00
Since
”xnk - I<xnk ” = ”xnk - I(nkxnk ” + ”I(Vlerlk _I<xnk ”)

by (3.18) and (3.24), we have

klggo %6, — K, |l = 0. (3.25)
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Since x,,, — X as n — 00, by (3.25) and Lemma 2.4, we have
N
X e F(K)=(F(T)). (3.26)

i=1

Next, we show that x* € ﬂf\il(GEP)S(CD,', @, A).

Since x,,, — x* as k — oo and (3.17), we have

U —x* ask— oo, foralli=1,2,...,N. (3.27)

ng
From (3.1), we obtain
i i L i i
CD,-(wnk, unk'y) +9() - <P(Mnk) + ,T<”nk — XY — u,,k) + (Ax,,k,y - unk> >0,
N

for every y € Cand i =1,2,...,N. From (3.17), (3.27), the condition (H1), and the lower
semicontinuity of ¢, we get

(W), 2", y) + () — p(x*) + (Ax*,y —x*) > 0,
foreveryye Cand i=1,2,...,N, from which it follows by (3.23) that

x* € (GEP)y(®;,0,A), foreveryi=1,2,...,N.

It implies that

N
x* €[ ((GEP)(®1, ¢, A). (3.28)
i=1

Since x,, — X and x,, — x* as n — o0, then X = x*. From (3.26) and (3.28), we have
x* e F. (3.29)

Indeed, since x,, — x* as k — 00, by (3.29) and Lemma 2.3, we obtain

limsup{f(g) - ¢, - q) = lim [f(q) - @, - q) = {f(@) - 9.%" -~ q) < 0. (3.30)
Step 7. Finally, we will prove that {x,} and {u} converges strongly to g = Pxf(q), for
everyi=1,2,...,N.
By Lemma 2.1(ii), we have

2
%041 — 41l
2

N
oy, (f(x,,) - q) + B Zaﬁl (uj, - q) +8,(Kyx, — q)

i=1

2

+ 20,,(f (%) — G, %1 — 4)

N

By Z ai, (u’n — q) +8,(Kyxy, — q)

i=1

=<
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N
- (ﬂn Sl (- )
i=1

+ 2an<f(xn) —f(@), %p1 - ¢I> + 2Oln(f(Q) —4¥Xn+1 — q)

2
+ 8n||1<nxn - q”)

N 2
< <,3n D ahlln —qll + 8yl — qll) + 20 |f () = F (@] 141 — gl

i=1
+20,(f (q) = G %ni1 — q)
< (@ = ) l%n = qll)* + 20,58 1%, — g1l %01 —
+204(f (q) — 4, %ne1 — q)
< (1= 00?12 — gl + 0 (10 — 117 + %01 — q1?)

+ Zan(f(q) —q, Xps1 — Q>’

which implies that
s — q11®
Aol r s lo‘j);;“"é lloen = q11” + %(f @) = %01 - q)
S R g+ bl
20,
+ l—an$<f(q) — 4 %n+1 _4)
e [ _“zng I — g
+ 130;’;5 f@ - g%m1 - q)
e e e L [
+ i(f(q) — G, %ns1 —4))'

Applying the condition (i), (3.30), and Lemma 2.6, we have the sequence {x,} converges
strongly to ¢ = Pxf(g). From (3.17), we also obtain {u!} converges strongly to g = Pxf(q),
for everyi=1,2,...,N. This completes the proof. O

The following corollaries are consequences which are applied by Theorem 3.1. There-
fore, we omit the proof.

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H. For
everyi=1,2,...,N, S;: C - CB(H) be H-Lipschitz continuous with coefficients ;, P; :
H x C x C — R be equilibrium-like function satisfying (H1)-(H3). Let ¢ : C — R be a lower
semicontinuous and convex function and A : C — C be an a-inverse strongly monotone
mapping. Let T : C — C be «-strictly pseudo-contractive mapping with k <y, and F :=
F(T)N ﬂZI(MGEP)S(CD,-, ©,A) #0. For every n € N, let {\,,} be a sequence of real numbers
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where 0 < A, < Yo and y; +y5 < 1. Foreveryi=1,2,...,N, let {x,} be the sequence generated
by x1 € C and w\ € Si(I — riA)xy, there exist sequences (W'} € H and {x,},{u’} C C such

that
Iwh, = wh ol < (L4 DYHSU - 1l A)x, S =1l A)xia),
w e Si(I-rlAx,
(Wl 1, 3) + 90) = @t}) + {1ty = 0,y = 1) + (A, y = ) (3.31)
>0, Vye(C,
X1 = Of () + Bu(E 0 @ltsd) + 8,00n T + (U= A Dty ¥ =1,

where f : C — C be a contraction mapping with a constant & and {ay},{Bu}, {84} < (0,1)
with a, + B, + 8, =1, Yn > 1. Suppose the following conditions hold:
(i) limy—ooay =0andy o) o, = 00;
(i) 0<t<Bnd, <v<l
(i) 0<n<al,<o<lforalli=12,....N-1land 0 <n <a) <o <1with
Z]y:/:l a,=1;
(iv) O<e<r, <w<2a,forallneNandi=1,2,...,N;
V) 2omis I = @l < 00, 302 Buer = Bul < 00, Y52 (81 — 8l < 00,
Yot I =1l <00, 3007 |y = | < 00, 328 At = Al < 00, for all
i=12,...,N;
(vi) foreachi=1,2,...,N, there exists p; > 0 such that

@i(wi, T (1), Ty (x2)) + i(wy, T,y (%2), T (1))

2
’

<-pi || T’i (1) — Tré (x2) (3.32)
forall (rl,r}) € ®; x O, (x1,%7) € C x C and w; € Si(xy), for j = 1,2, where
@i:{rL:nzl}.

Then {x,} and {u'} converges strongly to q = Pxf(q), for everyi=1,2,...,N.

Corollary 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H. For
everyi=1,2,...,N, S;: C - CB(H) be H-Lipschitz continuous with coefficients ;, ®; :
H x C x C — R be equilibrium-like function satisfying (H1)-(H3). Let ¢ : C — R be a
lower semicontinuous and convex function. Let { T;}Y | be a finite family of k;-strictly pseudo-
contractive mappings and k; < y, with F := ﬂf\ilF(Ti) N ﬂﬁl(GEP)S(QDi,go) # (). For every
n €N, let K, be the K-mapping generated by T\, Ts,..., Tn and A{,A3,..., 5 where 0 <
Q<A <V <wm<lforalli=12,...,N and y, + y» <1. For every i =1,2,...,N, let {x,}
be the sequence generated by x, € C and w\ € S;(xy), there exist sequences {w'} € H and
(.}, {ul} € C such that

Wiq € Si(xn)! ”th - Wf’l+1 ” = (1 + %)H(Si(xn)jsi(xnﬂ)):

O, (Wi, ul,y) + o) —pul) + é(u’” —xpy—u) >0, VyeC, (3.33)
Xntl = Olrgf(xn) + ﬁn(Zi\:[l a;uiq) + 6, K%y, VYn>1,

where f : C — C is a contraction mapping with a constant & and {«,},{B.},{8,} € (0,1)
with oy, + By + 6, = 1, Yn > 1. Suppose the following conditions hold:
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(i) limy—ooay =0andy o) a, = 00;

(i) 0<t<Bnd, <v<l;

(i) 0<n<a,<o<lforalli=12,....,.N-1land 0 <n <a) <o <1with
S dh=1;

(iv) 0<e §rn <w<lforallneNandi=1,2,...,N;

V) D0y lotes — et < 00, 32021 Bt — Bul <00, Y5y 1841 — 8ul < 00,
S Iy =l < 00, S5, Ly — ] < 00, S50, [ = A7 < oo, for all
i=12,...,N;

(vi) foreachi=1,2,...,N, there exists p; > 0 such that

CD,-(wi, Tr{ (1), Tré (xz)) + CDi(Wé, T,é (%2), T’i (xl))

—pi| Ti(x) - (3.34)
Sorall (ri,r5) € ©; x O, (x1,%2) € C x C and wj € Si(x;), for j =1,2, where
@iz{rzznzl}.

Then {x,} and {u’} converges strongly to q = Pxf(q), for every i=1,2,...,N.

Remark 3.4 From Corollary 3.3, put N =1, then the iterative scheme (3.33) reduces to

w, € Si(x),  Iw, — WLHII < (L+ ) H(S1(x), $1(%ni1))s

O (wh,ul,y) +oy) - +1(u1 Xpy—ul) >0, VyeC,

X1 = f () + Butdl, + 5n(>»¥ T+ (1 -AN)Dx,, Yr=>1,

which is a modification of iterative scheme (1.4) in the results of Ceng et al. [16]. By as-
suming the initial condition x; € C, W% € S1(x1) and the following conditions hold:
(i) limy—ooay =0and > o) oy = 00;
(i) 0<t<Bnd, <v<l
(i) 0<e<r: <w<l, forallneN;
(iv) Zn 1 |1 — | < 00, an |Bns1 — Bnl < 00, chil [81141 — 8l < 00,
S omen I = 1l <00, 30081 A = A < 003

(v) there exists p; > 0 such that

@1 (wy, T (1), T3 (%2)) + 1w, Ty (x2), Tt (1))

<-p| Talxa) - Ty (xz)HZ,

for all (r],73) € ®1 x Oy, (%1,%2) € C x C and w} € S (x)), for j = 1,2, where
={rl:n>1}.
Then {x,} and {u}} converge strongly to g = Pxf(q).
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