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Abstract
The purpose of this paper is to modify the generalized equilibrium problem
introduced by Ceng et al. (J. Glob. Optim. 43:487-502, 2012) and to introduce the
K-mapping generated by a finite family of strictly pseudo-contractive mappings and
finite real numbers modifying the results of Kangtunyakarn and Suantai (Nonlinear
Anal. 71:4448-4460, 2009). Then we prove the strong convergence theorem for
finding a common element of the set of fixed points of a finite family of strictly
pseudo-contractive mappings and a finite family of the set of solutions of the
modified generalized equilibrium problem. Moreover, using our main result, we
obtain the additional results related to the generalized equilibrium problem.
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1 Introduction
LetC be a nonempty closed convex subset of a real Hilbert spaceH with the inner product
〈·, ·〉 and the norm ‖ · ‖. A mapping f : C → C is contractive if there exists a constant
α ∈ (, ) such that

∥∥f (x) – f (y)
∥∥ ≤ α‖x – y‖, ∀x, y ∈ C.

We now recall some well-known concepts and results as follows.

Definition . Let B : C → C be a mapping. Then B is called
(i) monotone if

〈Bx – By,x – y〉 ≥ , ∀x, y ∈ C,

(ii) υ-strongly monotone if there exists a positive real number υ such that

〈Bx – By,x – y〉 ≥ υ‖x – y‖, ∀x, y ∈ C,

(iii) ξ -inverse strongly monotone if there exists a positive real number ξ such that

〈x – y,Bx – By〉 ≥ ξ‖Bx – By‖, ∀x, y ∈ C,
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(iv) μ-Lipschitz continuous if there exists a nonnegative real number μ ≥  such that

‖Bx – By‖ ≤ μ‖x – y‖, ∀x, y ∈ C.

Definition . Let T : C → C be a mapping. Then:
(i) An element x ∈ C is said to be a fixed point of T if Tx = x and

F(T) = {x ∈ C : Tx = x} denotes the set of fixed points of T .
(ii) Mapping T is called nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

(iii) T is said to be κ-strictly pseudo-contractive if there exists a constant κ ∈ [, ) such
that

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C. (.)

Note that the class of κ-strictly pseudo-contractions strictly includes the class of nonex-
pansive mappings, that is, nonexpansive mapping is a -strictly pseudo-contraction map-
ping. In a real Hilbert space H (.) is equivalent to

〈Tx – Ty,x – y〉 ≤ ‖x – y‖ –  – κ


∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

Remark . T : C → C is a κ-strictly pseudo-contraction if and only if I –T is –κ
 -inverse

strongly monotone.

In the last decades, many researcher have studied fixed point theorems associated with
various types of nonlinear mapping; see, for instance, [–]. Fixed point problems arise in
many fields such as the vibration of masses attached to strings or nets [] and a network
bandwidth allocation problem [] which is one of the central issues in modern commu-
nication networks. For applications to neural networks, fixed point theorems can be used
to design dynamic neural network in order to solve steady state solutions []. For general
information on neural networks, see for instance, [, ].
Let F : C × C → R be bifunction. The equilibrium problem for F is to determine its

equilibrium point, i.e., the set

EP(F) =
{
x ∈ C : F(x, y) ≥ ,∀y ∈ C

}
. (.)

Equilibrium problems were introduced by [] in  where such problems have had
a significant impact and influence in the development of several branches of pure and
applied sciences. Various problems in physics, optimization, and economics are related
to seeking some elements of EP(F); see [, ]. Many authors have been investigating
iterative algorithms for the equilibrium problems; see, for example, [–].
Let CB(H) be the family of all nonempty closed bounded subsets of H andH(·, ·) be the

Hausdorff metric on CB(H) defined as

H(U ,V ) =max
{
sup
u∈U

d(u,V ), sup
v∈V

d(U , v)
}
, ∀U ,V ∈ CB(H),

where d(u,V ) = infv∈V d(u, v), d(U , v) = infu∈U d(u, v) and d(u, v) = ‖u – v‖.
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Let C be a nonempty closed convex subset of H . Let ϕ : C → R be a real-valued func-
tion, T : C → CB(H) a multivalued mapping and � :H ×C ×C →R an equilibrium-like
function, that is, �(w,u, v) +�(w, v,u) =  for all (w,u, v) ∈ H ×C ×C which satisfies the
following conditions with respect to the multivalued mapping T : C → CB(H).
(H) For each fixed v ∈ C, (w,u) 
→ �(w,u, v) is an upper semicontinuous function from

H ×C →R, that is, for (w,u) ∈ H ×C, whenever wn → w and un → u as n→ ∞,

lim sup
n→∞

�(wn,un, v)≤ �(w,u, v).

(H) For each fixed (w, v) ∈H ×C, u 
→ �(w,u, v) is a concave function.
(H) For each fixed (w,u) ∈H ×C, v 
→ �(w,u, v) is a convex function.
In , Ceng et al. [] introduced the generalized equilibrium problem (GEP) as fol-

lows:

(GEP)

⎧⎨
⎩Find u ∈ C and w ∈ T(u) such that

�(w,u, v) + ϕ(v) – ϕ(u) ≥ , ∀v ∈ C.
(.)

The set of such solutions u ∈ C of (GEP) is denoted by (GEP)s(�,ϕ). In the case of ϕ = 
and �(w,u, v) ≡G(u, v), then (GEP)s(�,ϕ) is denoted by EP(G).
By using Nadler’s theorem [], they introduced the following algorithm:
Let x ∈ C and w ∈ T(x), there exist sequences {wn} ⊆H and {xn}, {un} ⊆ C such that

⎧⎪⎪⎨
⎪⎪⎩
wn ∈ T(xn), ‖wn –wn+‖ ≤ ( + 

n )H(T(xn),T(xn+)),

�(wn,un, v) + ϕ(v) – ϕ(un) + 
rn 〈un – xn, v – un〉 ≥ , ∀v ∈ C,

xn+ = αnf (xn) + ( – αn)Sun, n = , , . . . .

(.)

They proved the strong convergence theorem of the sequence {xn} generated by (.) as
follows.

Theorem . ([]) Let C be a nonempty, bounded, closed and convex subset of a real
Hilbert space H and let ϕ : C → R be a lower semicontinuous and convex functional. Let
T : C → CB(H) be H-Lipschitz continuous with constant μ, � : H × C × C → R be an
equilibrium-like function satisfying (H)-(H) and S be a nonexpansive mapping of C into
itself such that F(S) ∩ (GEP)s(�,ϕ) �= ∅. Let f be a contraction of C into itself and let {xn},
{wn}, and {un} be sequences generated by (.), where {αn} ⊆ [, ] and {rn} ⊂ (,∞) sat-
isfy

lim
n→∞αn = ,

∞∑
n=

αn =∞,
∞∑
n=

|αn+ – αn| <∞,

lim inf
n→∞ rn >  and

∞∑
n=

|rn+ – rn| < ∞.

If there exists a constant λ >  such that

�
(
w,Tr (x),Tr (x)

)
+�

(
w,Tr (x),Tr (x)

) ≤ –λ
∥∥Tr (x) – Tr (x)

∥∥,
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for all (r, r) ∈ 	 × 	, (x,x) ∈ C × C and wi ∈ T(xi), i = , , where 	 = {rn : n ≥ },
then for x̂ = PF(S)∩(GEP)s(�,ϕ)f (x̂), there exists ŵ ∈ T(x̂) such that (x̂, ŵ) is a solution of (GEP)
and

xn → x̂, wn → ŵ and un → x̂ as n→ ∞.

In , Kangtunyakarn [] introduced the iterative algorithm as follows.

Algorithm . ([]) Let Ti : i = , , . . . ,N , be κi-pseudo-contraction mappings of C
into itself and κ = max{κi : i = , , . . . ,N} and let Sn be the S-mappings generated by
T,T, . . . ,TN and α

(n)
 ,α(n)

 , . . . ,α(n)
N , where α

(n)
j = (αn,j

 ,αn,j
 ,αn,j

 ) ∈ I × I × I , I = [, ],
α
n,j
 + α

n,j
 + α

n,j
 =  and κ < a ≤ α

n,j
 ,αn,j

 ≤ b <  for all j = , , . . . ,N – , κ ≤ α
n,N
 ≤ ,

κ ≤ α
n,N
 ≤ d < , κ ≤ α

n,N
 ≤ e <  for all j = , , . . . ,N . Let x ∈ C = C and w

 ∈ T(x),
w
 ∈ D(x), there exist sequences {w

n}, {w
n} ∈H , and {xn}, {un}, {vn} ⊆ C such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w
n ∈ T(xn),‖w

n –w
n+‖ ≤ ( + 

n )H(T(xn),T(xn+)),

w
n ∈D(xn),‖w

n –w
n+‖ ≤ ( + 

n )H(D(xn),D(xn+)),

�(w
n,un,u) + ϕ(u) – ϕ(un) + 

rn 〈un – xn,u – un〉 ≥ , ∀u ∈ C,

�(w
n, vn, v) + ϕ(v) – ϕ(vn) + 

sn 〈vn – xn, v – vn〉 ≥ , ∀v ∈ C,

zn = δnPC(I – λA)un + ( – δn)PC(I – ηB)vn,

yn = αnzn + ( – αn)Snzn,

Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ = PCn+x, ∀n≥ ,

(.)

where D,T : C → CB(H) are H-Lipschitz continuous with constants μ, μ, respectively,
�,� :H ×C×C →R are equilibrium-like functions satisfying (H)-(H), A : C →H is
an α-inverse stronglymonotonemapping andB : C →H is a β-inverse stronglymonotone
mapping.

He proved under some control conditions on {δn}, {αn}, {sn}, and {rn} that the sequence
{xn} generated by (.) converges strongly to PFx, whereF =

⋂N
i= F(Ti)∩(GEP)s(�,ϕ)∩

(GEP)s(�,ϕ) ∩ F(G) ∩ F(G), G,G : C → C are defined by G(x) = PC(x – λAx),
G(x) = PC(x – ηBx), ∀x ∈ C and PFx is a solution of the following system of variational
inequalities:

⎧⎨
⎩〈Ax∗,x – x∗〉 ≥ ,

〈Bx∗,x – x∗〉 ≥ .

By modifying the generalized equilibrium problem (.), we introduced the modified
generalized equilibrium problem (MGEP) as follows:

(MGEP)

⎧⎨
⎩Find u ∈ C and w ∈ T(I – λA)u, ∀λ > ,

�(w,u, v) + ϕ(v) – ϕ(u) + 〈v – u,Au〉 ≥ , ∀v ∈ C,
(.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/86
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where A : C → C is a mapping. The set of such solutions of (MGEP) is denoted by
(MGEP)s(�,ϕ,A). If A = , (.) reduces to (.).
In this paper, motivated by Theorem ., Algorithm . and (.), we modify the gener-

alized equilibrium problem introduced by Ceng et al. [] and introduce the K-mapping
generated by a finite family of strictly pseudo-contractive mappings and finite real num-
bers modifying the results of Kangtunyakarn and Suantai []. Then we prove the strong
convergence theorem for finding a common element of the set of fixed points of a finite
family of strictly pseudo-contractive mappings and a finite family of the set of solutions
of the modified generalized equilibrium problem. Moreover, using our main result, we
obtain the additional results related to the generalized equilibrium problem.

2 Preliminaries
Let H be a real Hilbert space and C be a nonempty closed convex subset of H . We denote
weak convergence and strong convergence by the notations ‘⇀’ and ‘→’, respectively.
Recall that the (nearest point) projection PC from H onto C assigns to each x ∈ H the

unique point PCx ∈ C satisfying the property

‖x – PCx‖ =min
y∈C ‖x – y‖.

The following lemmas are needed to prove the main theorem.

Lemma . ([]) Let H be a real Hilbert space. Then the following identities hold:
(i) ‖x± y‖ = ‖x‖ ± 〈x, y〉 + ‖y‖, ∀x, y ∈H ;
(ii) ‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H .

Lemma . ([]) Let H be a real Hilbert space. Then for all xi ∈ H and αi ∈ [, ] for
i = , , , . . . ,n such that

∑n
i= αi =  the following equality holds:

∥∥∥∥∥
n∑
i=

αixi

∥∥∥∥∥


=
n∑
i=

αi‖xi‖ –
∑

≤i,j≤n

αiαj‖xi – xj‖.

Lemma . ([]) For a given z ∈H and u ∈ C,

u = PCz ⇔ 〈u – z, v – u〉 ≥ , ∀v ∈ C.

Furthermore, PC is a firmly nonexpansive mapping of H onto C and satisfies

‖PCx – PCy‖ ≤ 〈PCx – PCy,x – y〉, ∀x, y ∈H .

Lemma . (Demiclosedness principle []) Assume that T is a nonexpansive self-
mapping of closed convex subset C of a Hilbert space H . If T has a fixed point, then I –T is
demiclosed. That is, whenever {xn} is a sequence in C weakly converging to some x ∈ C and
the sequence {(I – T)xn} strongly converges to some y it follows that (I – T)x = y. Here, I is
the identity mapping of H .

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H and
S : C → C be a self-mapping of C. If S is a κ-strict pseudo-contractive mapping, then S

http://www.fixedpointtheoryandapplications.com/content/2014/1/86
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satisfies the Lipschitz condition

‖Sx – Sy‖ ≤  + κ

 – κ
‖x – y‖, ∀x, y ∈ C.

Lemma . ([]) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+ ≤ ( – αn)sn + δn, ∀n≥ ,

where αn is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= αn =∞;

() lim supn→∞
δn
αn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ sn = .

Definition . A multivalued mapping T : C → CB(H) is said to be H-Lipschitz contin-
uous if there exists a constant μ >  such that

H
(
T(u),T(v)

) ≤ μ‖u – v‖, ∀u, v ∈ C,

whereH(·, ·) is the Hausdorff metric on CB(H).

Lemma. (Nadler’s theorem []) Let (X,‖ ·‖) be a normed vector space andH(·, ·) is the
Hausdorff metric on CB(H). If U ,V ∈ CB(H), then for every ε >  and u ∈ U , there exists
v ∈ V such that

‖u – v‖ ≤ ( + ε)H(U ,V ).

Theorem . ([]) Let C be a nonempty, bounded, closed, and convex subset of a real
Hilbert space H , and let ϕ : C → R be a lower semicontinuous and convex functional. Let
T : C → CB(H) be H-Lipschitz continuous with constant μ, and � : H × C × C → R be
an equilibrium-like function satisfying (H)-(H). Let r >  be a constant. For each x ∈ C,
take wx ∈ T(x) arbitrarily and define a mapping Tr : C → C as follows:

Tr(x) =
{
u ∈ C :�(wx,u, v) + ϕ(v) – ϕ(u) +


r
〈u – x, v – u〉 ≥ ,∀v ∈ C

}
.

Then we have the following:
(a) Tr is single-valued;
(b) Tr is firmly nonexpansive (that is, for any u, v ∈ C, ‖Tru–Trv‖ ≤ 〈Tru–Trv,u– v〉)

if

�
(
w,Tr(x),Tr(x)

)
+�

(
w,Tr(x),Tr(x)

) ≤ ,

for all (x,x) ∈ C ×C and all wi ∈ T(xi), i = , ;
(c) F(Tr) = (GEP)s(�,ϕ);
(d) (GEP)s(�,ϕ) is closed and convex.

Definition . ([]) Let C be a nonempty closed convex subset of a real Banach space.
Let {Ti}Ni= be a finite family of κi-strictly pseudo-contractive mapping of C into itself and

http://www.fixedpointtheoryandapplications.com/content/2014/1/86
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let λ,λ, . . . ,λN be real numbers with ≤ λi ≤  for every i = , , . . . ,N . Define a mapping
K : C → C as follows:

U = λT + ( – λ)I,

U = λTU + ( – λ)U,

U = λTU + ( – λ)U,

...

UN– = λN–TN–UN– + ( – λN–)UN–,

K =UN = λNTNUN– + ( – λN )UN–. (.)

Such a mapping K is called the K-mapping generated by T,T, . . . ,TN and λ,λ, . . . ,λN .

The following lemmas are needed to prove our main result.

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space H . Let {Ti}Ni=
be a finite family of κi-strictly pseudo-contractive mapping of C into itself with κi ≤ γ, for
all i = , , . . . ,N , and

⋂N
i= F(Ti) �= ∅. Let λ,λ, . . . ,λN be real numbers with  < λi < γ, for

all i = , , . . . ,N and γ + γ < . Let K be the K-mapping generated by T,T, . . . ,TN and
λ,λ, . . . ,λN . Then the following properties hold:

(i) F(K ) =
⋂N

i= F(Ti);
(ii) K is a nonexpansive mapping.

Proof To prove (i), it is easy to see that
⋂N

i= F(Ti) ⊆ F(K ).
Next, we claim that F(K ) ⊆ ⋂N

i= F(Ti). To show this, let x ∈ F(K ) and y ∈ ⋂N
i= F(Ti).

By the definition of K-mapping, we get

‖x – y‖
= ‖Kx – y‖

=
∥∥λNTNUN–x + ( – λN )UN–x – y

∥∥

=
∥∥λN (TNUN–x – y) + ( – λN )(UN–x – y)

∥∥

= λ
N‖TNUN–x – y‖ + ( – λN )‖UN–x – y‖

+ λN ( – λN )〈TNUN–x – y,UN–x – y〉
= λ

N
(‖UN–x – y‖ + κN‖TNUN–x –UN–x‖

)
+ ( – λN )‖UN–x – y‖

+ λN ( – λN )
(

‖UN–x – y‖ –  – κN


‖TNUN–x –UN–x‖

)

=
(
λ
N + ( – λN ) + λN ( – λN )

)‖UN–x – y‖

+
(
λ
NκN – λN ( – λN )( – κN )

)‖TNUN–x –UN–x‖

= (λN +  – λN )‖UN–x – y‖

+ λN
(
λNκN – ( – λN )( – κN )

)‖TNUN–x –UN–x‖

= ‖UN–x – y‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/86


Suwannaut and Kangtunyakarn Fixed Point Theory and Applications 2014, 2014:86 Page 8 of 31
http://www.fixedpointtheoryandapplications.com/content/2014/1/86

+ λN
(
λNκN – ( – κN ) + λN ( – κN )

)‖TNUN–x –UN–x‖

= ‖UN–x – y‖ + λN (κN + λN – )‖TNUN–x –UN–x‖

≤ ‖UN–x – y‖ + λN (γ + γ – )‖TNUN–x –UN–x‖

≤ ‖UN–x – y‖
...

= ‖Ux – y‖

=
∥∥λ(TUx – y) + ( – λ)(Ux – y)

∥∥

= λ
‖TUx – y‖ + ( – λ)‖Ux – y‖

+ λ( – λ)〈TUx – y,Ux – y〉
= λ


(‖Ux – y‖ + κ‖TUx –Ux‖

)
+ ( – λ)‖Ux – y‖

+ λ( – λ)
(

‖Ux – y‖ –  – κ


‖TUx –Ux‖

)

=
(
λ
 + ( – λ) + λ( – λ)

)‖Ux – y‖

+
(
λ
κ – λ( – λ)( – κ)

)‖TUx –Ux‖

= (λ +  – λ)‖Ux – y‖

+ λ
(
λκ – ( – λ)( – κ)

)‖TUx –Ux‖

= ‖Ux – y‖ + λ(κ + λ – )‖TUx –Ux‖

≤ ‖Ux – y‖ + λ
(
(γ + γ) – 

)‖TUx –Ux‖

≤ ‖Ux – y‖

=
∥∥λ(Tx – y) + ( – λ)(x – y)

∥∥

= λ
‖Tx – y‖ + ( – λ)‖x – y‖

+ λ( – λ)〈Tx – y,x – y〉
= λ


(‖x – y‖ + κ‖Tx – x‖) + ( – λ)‖x – y‖

+ λ( – λ)
(

‖x – y‖ –  – κ


‖Tx – x‖

)

=
(
λ
 + ( – λ) + λ( – λ)

)‖x – y‖

+
(
λ
κ – λ( – λ)( – κ)

)‖Tx – x‖

= (λ +  – λ)‖x – y‖

+ λ
(
λκ – ( – λ)( – κ)

)‖Tx – x‖

= ‖x – y‖ + λ(κ + λ – )‖Tx – x‖

≤ ‖x – y‖ + λ
(
(γ + γ) – 

)‖Tx – x‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/86
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From (.), it yields

λ
(
 – (γ + γ)

)‖Tx – x‖ ≤ .

This implies that

‖Tx – x‖ = .

Therefore x = Tx, that is,

x ∈ F(T). (.)

By the definition of U and (.), we have

Ux = λTx + ( – λ)x = x,

that is,

x ∈ F(U). (.)

Again by (.) and (.), we obtain

‖x – y‖ ≤ ‖Ux – y‖ + λ
(
(γ + γ) – 

)‖TUx –Ux‖

= ‖x – y‖ + λ
(
(γ + γ) – 

)‖Tx – x‖,

which implies that x = Tx, that is,

x ∈ F(T). (.)

By the definition of U, (.), and (.), we get

Ux = λTUx + ( – λ)Ux = x,

from which it follows that

x ∈ F(U).

Using the same argument, we can conclude that

x ∈ F(Ti) and x ∈ F(Ui), ∀i = , , . . . ,N – .

Next, we show that x ∈ F(TN ). Since

 = Kx – x

= λNTNUN–x + ( – λN )UN–x – x

= λN (TNx – x)

http://www.fixedpointtheoryandapplications.com/content/2014/1/86
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and λN ∈ (, ], we obtain

x ∈ F(TN ),

from which it follows that

x ∈
N⋂
i=

F(Ti). (.)

Therefore

F(K ) ⊆
N⋂
i=

F(Ti). (.)

Hence

F(K ) =
N⋂
i=

F(Ti). (.)

To prove (ii), we claim that K is a nonexpansive mapping.
Let x, y ∈ C. Then we obtain

‖Kx –Ky‖

=
∥∥(

λNTNUN–x + ( – λN )UN–x
)
–

(
λNTNUN–y + ( – λN )UN–y

)∥∥

=
∥∥(
UN–x – λN (UN–x – TNUN–x)

)
–

(
UN–y – λN (UN–y – TNUN–y)

)∥∥

=
∥∥(UN–x –UN–y) – λN

(
(I – TN )UN–x – (I – TN )UN–y

)∥∥

= ‖UN–x –UN–y‖ + λ
N
∥∥(I – TN )UN–x – (I – TN )UN–y

∥∥

– λN
〈
UN–x –UN–y, (I – TN )UN–x – (I – TN )UN–y

〉
≤ ‖UN–x –UN–y‖ + λ

N
∥∥(I – TN )UN–x – (I – TN )UN–y

∥∥

– λN

(
 – κN



)∥∥(I – TN )UN–x – (I – TN )UN–y
∥∥

= ‖UN–x –UN–y‖

+ λN
(
λN – ( – κN )

)∥∥(I – TN )UN–x – (I – TN )UN–y
∥∥

≤ ‖UN–x –UN–y‖

+ λN (γ + γ – )
∥∥(I – TN )UN–x – (I – TN )UN–y

∥∥

= ‖UN–x –UN–y‖

– λN
(
 – (γ + γ)

)∥∥(I – TN )UN–x – (I – TN )UN–y
∥∥

=
∥∥(

λN–TN–UN–x + ( – λN–)UN–x
)
–

(
λN–TN–UN–y + ( – λN–)UN–y

)∥∥

– λN
(
 – (γ + γ)

)∥∥(I – TN )UN–x – (I – TN )UN–y
∥∥

=
∥∥(
UN–x – λN–(I – TN–)UN–x

)
–

(
UN–y – λN–(I – TN–)UN–y

)∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/86
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– λN
(
 – (γ + γ)

)∥∥(I – TN )UN–x – (I – TN )UN–y
∥∥

=
∥∥(UN–x –UN–y) – λN–

(
(I – TN–)UN–x – (I – TN–)UN–y

)∥∥

– λN
(
 – (γ + γ)

)∥∥(I – TN )UN–x – (I – TN )UN–y
∥∥

= ‖UN–x –UN–y‖ + λ
N–

∥∥(I – TN–)UN–x – (I – TN–)UN–y
∥∥

– λN–
〈
UN–x –UN–y, (I – TN–)UN–x – (I – TN–)UN–y

〉
– λN

(
 – (γ + γ)

)∥∥(I – TN )UN–x – (I – TN )UN–y
∥∥

≤ ‖UN–x –UN–y‖ + λ
N–

∥∥(I – TN–)UN–x – (I – TN–)UN–y
∥∥

– λN–

(
 – κN–



)∥∥(I – TN–)UN–x – (I – TN–)UN–y
∥∥

– λN
(
 – (γ + γ)

)∥∥(I – TN )UN–x – (I – TN )UN–y
∥∥

= ‖UN–x –UN–y‖

+ λN–
(
λN– – ( – κN–)

)∥∥(I – TN–)UN–x – (I – TN–)UN–y
∥∥

– λN
(
 – (γ + γ)

)∥∥(I – TN )UN–x – (I – TN )UN–y
∥∥

≤ ‖UN–x –UN–y‖

+ λN–(γ + γ – )
∥∥(I – TN–)UN–x – (I – TN–)UN–y

∥∥

– λN
(
 – (γ + γ)

)∥∥(I – TN )UN–x – (I – TN )UN–y
∥∥

= ‖UN–x –UN–y‖

– λN–
(
 – (γ + γ)

)∥∥(I – TN–)UN–x – (I – TN–)UN–y
∥∥

– λN
(
 – (γ + γ)

)∥∥(I – TN )UN–x – (I – TN )UN–y
∥∥

= ‖UN–x –UN–y‖

–
(
 – (γ + γ)

) N∑
i=N–

λi
∥∥(I – Ti)Ui–x – (I – Ti)Ui–y

∥∥

...

≤ ‖x – y‖ – (
 – (γ + γ)

) N∑
i=

λi
∥∥(I – Ti)Ui–x – (I – Ti)Ui–y

∥∥,

which implies that

‖Kx –Ky‖ ≤ ‖x – y‖ – (
 – (γ + γ)

) N∑
i=

λi
∥∥(I – Ti)Ui–x – (I – Ti)Ui–y

∥∥. (.)

From (.) and γ + γ < , we obtain

‖Kx –Ky‖ ≤ ‖x – y‖, ∀x, y ∈ C,

that is, K is a nonexpansive mapping. �
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Lemma. Let C be a nonempty closed convex subset of a real Hilbert space H . Let {Ti}∞i=
be a finite family of κi-strictly pseudo-contractive mappings of C into itself with κi ≤ γ and⋂N

i= F(Ti) �= ∅. For every i = , , . . . ,N and n ∈N, let λ,λ, . . . ,λN and λn
 ,λn

, . . . ,λn
N be real

numbers with  < λi,λn
i < γ and γ + γ <  such that λn

i → λi as n → ∞ and
∑∞

n= |λn+
i –

λn
i | < ∞. For every n ∈ N, let K and Kn be the K-mappings generated by T,T, . . . ,TN and

λ,λ, . . . ,λN and T,T, . . . ,TN and λn
 ,λn

, . . . ,λn
N , respectively. Then, for every bounded

sequence {xn} in C, the following properties hold:
(i) limn→∞ ‖Knxn –Kxn‖ = ;
(ii)

∑∞
n= ‖Knxn– –Kn–xn–‖ < ∞.

Proof Let {xn} be a bounded sequence in C and let Uk and Un,k be generated by
T,T, . . . ,TN and λ,λ, . . . ,λN and T,T, . . . ,TN and λn

 ,λn
, . . . ,λn

N , respectively.
First, we shall prove that (i) holds. For each n ∈N, we obtain

‖Un,xn –Uxn‖ =
∥∥λn

Txn +
(
 – λn


)
xn –

(
λTxn + ( – λ)xn

)∥∥
=

∥∥λn
Txn – λn

xn – λTxn + λxn
∥∥

=
∥∥(

λn
 – λ

)
Txn –

(
λn
 – λ

)
xn

∥∥
=

∣∣λn
 – λ

∣∣‖Txn – xn‖. (.)

For k ∈ {, , . . . ,N}, we have

‖Un,kxn –Ukxn‖
=

∥∥λn
kTkUn,k–xn +

(
 – λn

k
)
Un,k–xn –

(
λkTkUk–xn + ( – λk)Uk–xn

)∥∥
=

∥∥λn
kTkUn,k–xn – λkTkUk–xn +

(
 – λn

k
)
Un,k–xn – ( – λk)Uk–xn

∥∥
=

∥∥λn
kTkUn,k–xn – λn

kTkUk–xn + λn
kTkUk–xn – λkTkUk–xn

+
(
 – λn

k
)
Un,k–xn –

(
 – λn

k
)
Uk–xn +

(
 – λn

k
)
Uk–xn

– ( – λk)Uk–xn
∥∥

=
∥∥λn

k (TkUn,k–xn – TkUk–xn) +
(
λn
k – λk

)
TkUk–xn

+
(
 – λn

k
)
(Un,k–xn –Uk–xn) +

(
 – λn

k – ( – λk)
)
Uk–xn

∥∥
≤ λn

k‖TkUn,k–xn – TkUk–xn‖ +
∣∣λn

k – λk
∣∣‖TkUk–xn‖

+
(
 – λn

k
)‖Un,k–xn –Uk–xn‖ +

∣∣λk – λn
k
∣∣‖Uk–xn‖

≤ λn
k
 + κk

 – κk
‖Un,k–xn –Uk–xn‖ +

∣∣λn
k – λk

∣∣‖TkUk–xn‖

+
(
 – λn

k
)‖Un,k–xn –Uk–xn‖ +

∣∣λk – λn
k
∣∣‖Uk–xn‖

≤  + κk

 – κk
‖Un,k–xn –Uk–xn‖ +  – κk

 – κk
‖Un,k–xn –Uk–xn‖

+
∣∣λn

k – λk
∣∣(‖TkUk–xn‖ + ‖Uk–xn‖

)
=


 – κk

‖Un,k–xn –Uk–xn‖

+
∣∣λn

k – λk
∣∣(‖TkUk–xn‖ + ‖Uk–xn‖

)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/86
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By (.) and (.), we get

‖Knxn –Kxn‖
= ‖Un,Nxn –UNxn‖

≤ 
 – κN

‖Un,N–xn –UN–xn‖

+
∣∣λn

N – λN
∣∣(‖TNUN–xn‖ + ‖UN–xn‖

)
≤ 

 – κN

(


 – κN–
‖Un,N–xn –UN–xn‖

+
∣∣λn

N– – λN–
∣∣(‖TN–UN–xn‖ + ‖UN–xn‖

))

+
∣∣λn

N – λN
∣∣(‖TNUN–xn‖ + ‖UN–xn‖

)
=

(


 – κN

)(


 – κN–

)
‖Un,N–xn –UN–xn‖

+


 – κN

∣∣λn
N– – λN–

∣∣(‖TN–UN–xn‖ + ‖UN–xn‖
)

+
∣∣λn

N – λN
∣∣(‖TNUN–xn‖ + ‖UN–xn‖

)

=
N∏

j=N–

(


 – κj

)
‖Un,N–xn –UN–xn‖

+
N∑

j=N–

(


 – κj+

)N–j∣∣λn
j – λj

∣∣(‖TjUj–xn‖ + ‖Uj–xn‖
)

...

≤
N∏
j=

(


 – κj

)
‖Un,xn –Uxn‖

+
N∑
j=

(


 – κj+

)N–j∣∣λn
j – λj

∣∣(‖TjUj–xn‖ + ‖Uj–xn‖
)

=
N∏
j=

(


 – κj

)∣∣λn
 – λ

∣∣‖Txn – xn‖

+
N∑
j=

(


 – κj+

)N–j∣∣λn
j – λj

∣∣(‖TjUj–xn‖ + ‖Uj–xn‖
)
. (.)

By (.) and the fact that λn
i → λi as n → ∞ for all i = , , . . . ,N , we deduce that

limn→∞ ‖Knxn –Kxn‖ = .
Next, we will claim that (ii) holds. For each n ∈N, we obtain

‖Un,xn– –Un–,xn–‖
=

∥∥λn
Txn– +

(
 – λn


)
xn– –

(
λn–
 Txn– +

(
 – λn–


)
xn–

)∥∥
=

∥∥λn
Txn– – λn

xn– – λn–
 Txn– + λn–

 xn–
∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/86
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=
∥∥(

λn
 – λn–


)
Txn– –

(
λn
 – λn–


)
xn–

∥∥
=

∣∣λn
 – λn–


∣∣‖Txn– – xn–‖. (.)

For k ∈ {, , . . . ,N}, we have

‖Un,kxn– –Un–,kxn–‖
=

∥∥λn
kTkUn,k–xn– +

(
 – λn

k
)
Un,k–xn– –

(
λn–
k TkUn–,k–xn–

+
(
 – λn–

k
)
Un–,k–xn–

)∥∥
=

∥∥λn
kTkUn,k–xn– – λn–

k TkUn–,k–xn– +
(
 – λn

k
)
Un,k–xn–

–
(
 – λn–

k
)
Un–,k–xn–

∥∥
=

∥∥λn
kTkUn,k–xn– – λn

kTkUn–,k–xn– + λn
kTkUn–,k–xn–

– λn–
k TkUn–,k–xn– +

(
 – λn

k
)
Un,k–xn– –

(
 – λn

k
)
Un–,k–xn–

+
(
 – λn

k
)
Un–,k–xn– –

(
 – λn–

k
)
Un–,k–xn–

∥∥
=

∥∥λn
k (TkUn,k–xn– – TkUn–,k–xn–) +

(
λn
k – λn–

k
)
TkUn–,k–xn–

+
(
 – λn

k
)
(Un,k–xn– –Un–,k–xn–)

+
(
 – λn

k –
(
 – λn–

k
))
Un–,k–xn–

∥∥
≤ λn

k‖TkUn,k–xn– – TkUn–,k–xn–‖ +
∣∣λn

k – λn–
k

∣∣‖TkUn–,k–xn–‖
+

(
 – λn

k
)‖Un,k–xn– –Un–,k–xn–‖ +

∣∣λn
k – λn–

k
∣∣‖Un–,k–xn–‖

≤ λn
k
 + κk

 – κk
‖Un,k–xn– –Un–,k–xn–‖ +

∣∣λn
k – λn–

k
∣∣‖TkUn–,k–xn–‖

+
(
 – λn

k
)‖Un,k–xn– –Un–,k–xn–‖ +

∣∣λn
k – λn–

k
∣∣‖Un–,k–xn–‖

≤  + κk

 – κk
‖Un,k–xn– –Un–,k–xn–‖

+
 – κk

 – κk
‖Un,k–xn– –Un–,k–xn–‖

+
∣∣λn

k – λn–
k

∣∣(‖TkUn–,k–xn–‖ + ‖Un–,k–xn–‖
)

=


 – κk
‖Un,k–xn– –Un–,k–xn–‖

+
∣∣λn

k – λn–
k

∣∣(‖TkUn–,k–xn–‖ + ‖Un–,k–xn–‖
)
. (.)

From (.) and (.), we obtain

‖Knxn– –Kn–xn–‖
= ‖Un,Nxn– –Un–,Nxn–‖

≤ 
 – κN

‖Un,N–xn– –Un–,N–xn–‖

+
∣∣λn

N – λn–
N

∣∣(‖TNUn–,N–xn–‖ + ‖Un–,N–xn–‖
)

≤ 
 – κN

(


 – κN–
‖Un,N–xn– –Un–,N–xn–‖
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+
∣∣λn

N– – λn–
N–

∣∣(‖TN–Un–,N–xn–‖ + ‖Un–,N–xn–‖
))

+
∣∣λn

N – λn–
N

∣∣(‖TNUn–,N–xn–‖ + ‖Un–,N–xn–‖
)

=
(


 – κN

)(


 – κN–

)
‖Un,N–xn– –Un–,N–xn–‖

+


 – κN

∣∣λn
N– – λn–

N–
∣∣(‖TN–Un–,N–xn–‖ + ‖Un–,N–xn–‖

)
+

∣∣λn
N – λn–

N
∣∣(‖TNUn–,N–xn–‖ + ‖Un–,N–xn–‖

)

=
N∏

j=N–

(


 – κj

)
‖Un,N–xn– –Un–,N–xn–‖

+
N∑

j=N–

(


 – κj+

)N–j∣∣λn
j – λn–

j
∣∣(‖TjUn–,j–xn–‖ + ‖Un–,j–xn–‖

)
...

≤
N∏
j=

(


 – κj

)
‖Un,xn– –Un–,xn–‖

+
N∑
j=

(


 – κj+

)N–j∣∣λn
j – λn–

j
∣∣(‖TjUn–,j–xn–‖ + ‖Un–,j–xn–‖

)

=
N∏
j=

(


 – κj

)∣∣λn
 – λn–


∣∣‖Txn– – xn–‖

+
N∑
j=

(


 – κj+

)N–j∣∣λn
j – λn–

j
∣∣(‖TjUn–,j–xn–‖ + ‖Un–,j–xn–‖

)

≤
N∏
j=

(


 – κj

)∣∣λn
 – λn–


∣∣M + 

N∑
j=

(


 – κj+

)N–j∣∣λn
j – λn–

j
∣∣M, (.)

where M = maxn∈N{‖Txn– – xn–‖,‖TjUn–,j–xn–‖,‖Un–,j–xn–‖}, for all j = , , . . . ,N .
Hence, by (.) and

∑∞
n= |λn+

i – λn
i | < ∞ for all i = , , . . . ,N , we have

∑∞
n= ‖Knxn– –

Kn–xn–‖ < ∞. �

In , Kangtunyakarn and Suantai [] introduced the S-mapping generated by the
finite family of κi-strictly pseudo-contractions in Hilbert space as in the following defini-
tion.

Definition . ([]) Let C be a nonempty closed convex subset of real Hilbert space.
Let {Ti}Ni= be a finite family of κi-strictly pseudo-contractions of C into itself. For each
j = , , . . . ,N , let αj = (αj

,α
j
,α

j
) ∈ I × I × I where I ∈ [, ] and α

j
 +α

j
 +α

j
 = . Define the

mappings S : C → C as follows:

U = I,

U = α
TU + α

U + α
I,

U = α
TU + α

U + α
I,

http://www.fixedpointtheoryandapplications.com/content/2014/1/86


Suwannaut and Kangtunyakarn Fixed Point Theory and Applications 2014, 2014:86 Page 16 of 31
http://www.fixedpointtheoryandapplications.com/content/2014/1/86

U = α
TU + α

U + α
I,

...

UN– = αN–
 TN–UN– + αN–

 UN– + αN–
 I,

S =UN = αN
 TNUN– + αN

 UN– + αN
 I.

This mapping is called S-mapping generated by T,T, . . . ,TN and α,α, . . . ,αN .

Furthermore, they obtained the following important lemma.

Lemma . ([]) Let C be a nonempty closed convex subset of real Hilbert space. Let
{Ti}Ni= be a finite family of κi-strictly pseudo-contractions of C into itself with

⋂N
i= F(Ti) �= ∅

and κ = max{κi : i = , , . . . ,N} and let αj = (αj
,α

j
,α

j
) ∈ I × I × I , j = , , . . . ,N , where

I = [, ], α
j
 + α

j
 + α

j
 = , α

j
,α

j
 ∈ (κ , ) for all j = , , . . . ,N –  and αN

 ∈ (κ , ], αN
 ∈

[κ , ), αj
 ∈ [κ , ) for all j = , , . . . ,N . Let S be the mapping generated by T,T, . . . ,TN and

α,α, . . . ,αN . Then F(S) =
⋂N

i= F(Ti) and S is a nonexpansive mapping.

By putting α
j
 = λj and α

j
 = , for all j = , , . . . ,N , we see that the S-mapping reduces

to the K-mapping as defined in Definition .. Moreover, from Lemma ., we have the
following result.

Lemma . Let C be a nonempty closed convex subset of real Hilbert space. Let {Ti}Ni=
be a finite family of κi-strictly pseudo-contractions of C into itself with

⋂N
i= F(Ti) �= ∅ and

κ =max{κi : i = , , . . . ,N} and let λj ∈ (κ , )⊂ [, ], for all j = , , . . . ,N – and λN ∈ (κ , ].
Let K be themapping generated by T,T, . . . ,TN and λ,λ, . . . ,λN .Then F(K ) =

⋂N
i= F(Ti)

and K is a nonexpansive mapping.

Remark . For the result of Lemma . in our work, we obtain some improvement as
follows:

(i) We relax the conditions of κi and λi in Lemma . in sense that κi is not depended
on λi, for all i = , , . . . ,N .

(ii) We do not assume the condition κ =max{κi : i = , , . . . ,N}.

Example . Let R be the set of real numbers and let Ti :R →R be defined by

Tix = –(i + )x, for all x ∈R,

and λi = i+
i+ , for all i = , , . . . , . Let K be the K-mapping generated by T,T, . . . ,T and

λ,λ, . . . ,λ. Then F(K ) =
⋂

i= F(Ti) = {}.
Solution. It is easy to see that Ti is κi-strictly pseudo-contractive mapping with κi = i

i+ .
We obtain κ =max{κi : i = , , . . . , } = 

 and λi ∈ (  , ], for all i = , , . . . , . By the defini-
tion of a K-mapping, we have

Ux =
(



)
(–x) +

(
 –




)
x,

Ux =
(



)
(–Ux) +

(
 –




)
Ux,
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Ux =
(



)
(–Ux) +

(
 –




)
Ux,

Ux =
(




)
(–Ux) +

(
 –




)
Ux,

Kx =Ux =
(



)
(–Ux) +

(
 –




)
Ux. (.)

Observe that
⋂

i= F(Ti) = {}. Then, by Lemma ., we obtain

F(K ) =
⋂
i=

F(Ti) = {}.

Next, we give an example for Lemma ..

Example . Let R be the set of real numbers and let Ti :R→ R be defined by

Tix = –(i + )x, for all x ∈R,

and λi = i
i+ , for all i = , , . . . , . Let K be the K-mapping generated by T,T, . . . ,T and

λ,λ, . . . ,λ. Choose γ = 
 and γ = 

 , from which it follows that γ + γ = 
 + 

 =

 =


 < . Then, by Lemma ., we obtain F(K ) =

⋂
i= F(Ti) = {}.

3 Strong convergence theorem
Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . For
every i = , , . . . ,N , Si : C → CB(H) be H-Lipschitz continuous with coefficients μi, �i :
H × C × C → R be equilibrium-like function satisfying (H)-(H). Let ϕ : C → R be a
lower semicontinuous and convex function and A : C → C be an α-inverse strongly mono-
tone mapping. Let {Ti}Ni= be a finite family of κi-strictly pseudo-contractive mappings and
κi ≤ γ with F :=

⋂N
i= F(Ti) ∩ ⋂N

i=(MGEP)s(�i,ϕ,A) �= ∅. For every n ∈ N, let Kn be the
K-mapping generated by T,T, . . . ,TN and λn

 ,λn
, . . . ,λn

N where  < φ ≤ λn
i ≤ ψ < γ, for

all i = , , . . . ,N and γ + γ < . For every i = , , . . . ,N , let {xn} be the sequence generated
by x ∈ C and wi

 ∈ Si(I – riA)x, there exist sequences {wi
n} ∈ H and {xn}, {uin} ⊆ C such

that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖wi
n –wi

n+‖ ≤ ( + 
n )H(Si(I – rinA)xn,Si(I – rin+A)xn+),

wi
n ∈ Si(I – rinA)xn

�i(wi
n,uin, y) + ϕ(y) – ϕ(uin) +


rin

〈uin – xn, y – uin〉 + 〈Axn, y – uin〉
≥ , ∀y ∈ C,

xn+ = αnf (xn) + βn(
∑N

i= ainuin) + δnKnxn, ∀n≥ ,

(.)

where f : C → C be a contraction mapping with a constant ξ and {αn}, {βn}, {δn} ⊆ (, )
with αn + βn + δn = , ∀n≥ . Suppose the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn =∞;
(ii)  < τ ≤ βn, δn ≤ υ < ;
(iii) ≤ η ≤ ain ≤ σ < , for all i = , , . . . ,N –  and  < η ≤ aNn ≤ σ ≤  with∑N

n= ain = ;
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(iv)  < ε ≤ rin ≤ ω < α, for all n ∈N and i = , , . . . ,N ;
(v)

∑∞
n= |αn+ – αn| < ∞,

∑∞
n= |βn+ – βn| < ∞,

∑∞
n= |δn+ – δn| <∞,∑∞

n= |rin+ – rin| < ∞,
∑∞

n= |ain+ – ain| < ∞,
∑∞

n= |λn+
i – λn

i | < ∞, for all
i = , , . . . ,N ;

(vi) for each i = , , . . . ,N , there exists ρi >  such that

�i
(
wi
,Tri

(x),Tri
(x)

)
+�i

(
wi
,Tri

(x),Tri
(x)

)
≤ –ρi

∥∥Tri
(x) – Tri

(x)
∥∥, (.)

for all (ri, ri) ∈ �i × �i, (x,x) ∈ C ×C and wi
j ∈ Si(xj), for j = , , where

�i = {rin : n≥ }.
Then {xn} and {uin} converges strongly to q = PF f (q), for every i = , , . . . ,N .

Proof The proof shall be divided into seven steps.
Step . We will prove that I – rinA is nonexpansive, for all i = , , . . . ,N .
From (.), we have

�i
(
wi
n,u

i
n, y

)
+ ϕ(y) – ϕ

(
uin

)
+


rin

〈
uin –

(
I – rinA

)
xn, y – uin

〉 ≥ , (.)

for every y ∈ C. From (.) and Theorem ., we obtain

uin = Trin

(
I – rinA

)
xn, ∀i = , , . . . ,N .

Put ri ∈ �i for all i = , , . . . ,N . From (.), we have

�i
(
wi
,Tri (x),Tri (x)

)
+�i

(
wi
,Tri (x),Tri (x)

)
≤ –ρi

∥∥Tri (x) – Tri (x)
∥∥ ≤ , (.)

for all (x,x) ∈ C ×C and wi
j ∈ Si(xj), j = , .

From (.), we find the implication that Theorem . holds.
It obvious to see that I – rinA is a nonexpansive mapping, for every i = , , . . . ,N .
Indeed, A is α-inverse strongly monotone with rin ∈ (, α), we get

∥∥(
I – rinA

)
x –

(
I – rinA

)
y
∥∥

=
∥∥x – y – rin(Ax –Ay)

∥∥

= ‖x – y‖ – rin〈x – y,Ax –Ay〉 + (
rin

)‖Ax –Ay‖

≤ ‖x – y‖ – αrin‖Ax –Ay‖ + (
rin

)‖Ax –Ay‖

= ‖x – y‖ + rin
(
rin – α

)‖Ax –Ay‖

≤ ‖x – y‖.

Thus I – rinA is a nonexpansive mapping, for all i = , , . . . ,N .
Step . We will show that {xn} is bounded.
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Let z ∈F . By nonexpansiveness of Kn, we have

‖xn+ – z‖

≤ αn
∥∥f (xn) – z

∥∥ + βn

∥∥∥∥∥
N∑
i=

ain
(
uin – z

)∥∥∥∥∥ + δn‖Knxn – z‖

≤ αn
∥∥f (xn) – f (z) + f (z) – z

∥∥ + βn

N∑
i=

ain
∥∥uin – z

∥∥ + δn‖xn – z‖

≤ αn
(∥∥f (xn) – f (z)

∥∥ +
∥∥f (z) – z

∥∥)
+ βn

N∑
i=

ain
∥∥Trin

(
I – rinA

)
xn – z

∥∥
+ δn‖xn – z‖

≤ αn
(
ξ‖xn – z‖ + ∥∥f (z) – z

∥∥)
+ βn

N∑
i=

ain‖xn – z‖ + δn‖xn – z‖

=
(
 – αn( – ξ )

)‖xn – z‖ + αn
∥∥f (z) – z

∥∥
≤max

{
‖x – z‖, ‖f (z) – z‖

 – ξ

}
.

By induction, we have ‖xn – z‖ ≤ max{‖x – z‖, ‖f (z)–z‖
–ξ

}, ∀n ∈ N. It follows that {xn} is
bounded and so is {uin}, ∀i = , , . . . ,N .
Step . We will show that limn→∞ ‖xn+ – xn‖ = .
By the definition of xn, we obtain

‖xn+ – xn‖

=

∥∥∥∥∥αnf (xn) + βn

( N∑
i=

ainu
i
n

)
+ δnKnxn

–

(
αn–f (xn–) + βn–

( N∑
i=

ain–u
i
n–

)
+ δn–Kn–xn–

)∥∥∥∥∥
≤ αn

∥∥f (xn) – f (xn–)
∥∥ + |αn – αn–|

∥∥f (xn–)∥∥
+ βn

∥∥∥∥∥
N∑
i=

ainu
i
n –

N∑
i=

ain–u
i
n–

∥∥∥∥∥ + |βn – βn–|
∥∥∥∥∥

N∑
i=

ain–u
i
n–

∥∥∥∥∥
+ δn‖Knxn –Knxn–‖ + δn‖Knxn– –Kn–xn–‖
+ |δn – δn–|‖Kn–xn–‖

≤ αnξ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–)∥∥

+ βn

∥∥∥∥∥
N∑
i=

ainu
i
n –

N∑
i=

ainu
i
n– +

N∑
i=

ainu
i
n– –

N∑
i=

ain–u
i
n–

∥∥∥∥∥
+ |βn – βn–|

N∑
i=

ain–
∥∥uin–∥∥ + δn‖xn – xn–‖

+ δn‖Knxn– –Kn–xn–‖ + |δn – δn–|‖Kn–xn–‖
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≤ αnξ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–)∥∥ + βn

∥∥∥∥∥
N∑
i=

ain
(
uin – uin–

)∥∥∥∥∥
+ βn

∥∥∥∥∥
N∑
i=

(
ain – ain–

)
uin–

∥∥∥∥∥ + |βn – βn–|
N∑
i=

ain–
∥∥uin–∥∥

+ δn‖xn – xn–‖ + δn‖Knxn– –Kn–xn–‖ + |δn – δn–|‖Kn–xn–‖

≤ αnξ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–)∥∥ + βn

N∑
i=

ain
∥∥uin – uin–

∥∥

+ βn

N∑
i=

∣∣ain – ain–
∣∣∥∥uin–∥∥ + |βn – βn–|

N∑
i=

ain–
∥∥uin–∥∥

+ δn‖xn – xn–‖ + δn‖Knxn– –Kn–xn–‖ + |δn – δn–|‖Kn–xn–‖. (.)

From uin = Trin (I – rinA)xn, for all i = , , . . . ,N , we have

�i
(
wi
n,u

i
n, y

)
+ ϕ(y) – ϕ

(
uin

)
+


rin

〈
uin –

(
I – rinA

)
xn, y – uin

〉 ≥ , ∀y ∈ C

and

�i
(
wi
n+,u

i
n+, y

)
+ ϕ(y) – ϕ

(
uin+

)
+


rin+

〈
uin+ –

(
I – rin+A

)
xn+, y – uin+

〉 ≥ , ∀y ∈ C.

In particular, we obtain

�i
(
wi
n,u

i
n,u

i
n+

)
+ ϕ

(
uin+

)
– ϕ

(
uin

)
+


rin

〈
uin –

(
I – rinA

)
xn,uin+ – uin

〉 ≥  (.)

and

�i
(
wi
n+,u

i
n+,u

i
n
)
+ ϕ

(
uin

)
– ϕ

(
uin+

)
+


rin+

〈
uin+ –

(
I – rin+A

)
xn+,uin – uin+

〉 ≥ . (.)

Summing up (.) with (.) and applying (.), we get


rin

〈
uin –

(
I – rinA

)
xn,uin+ – uin

〉

+


rin+

〈
uin+ –

(
I – rin+A

)
xn+,uin – uin+

〉 ≥ ,

which implies that

〈
uin+ – uin,

uin – (I – rinA)xn
rin

–
uin+ – (I – rin+A)xn+

rin+

〉
≥ .
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It follows that

〈
uin+ – uin,u

i
n – uin+ + uin+ –

(
I – rinA

)
xn –

rin
rin+

(
uin+ –

(
I – rin+A

)
xn+

)〉 ≥ . (.)

From (.), we obtain

∥∥uin+ – uin
∥∥

≤
〈
uin+ – uin,u

i
n+ –

(
I – rinA

)
xn –

rin
rin+

(
uin+ –

(
I – rin+A

)
xn+

)〉

=
〈
uin+ – uin,

(
I – rin+A

)
xn+ –

(
I – rinA

)
xn

+
(
 –

rin
rin+

)(
uin+ –

(
I – rin+A

)
xn+

)〉

≤ ∥∥uin+ – uin
∥∥∥∥∥∥(

I – rin+A
)
xn+ –

(
I – rinA

)
xn

+
(
 –

rin
rin+

)(
uin+ –

(
I – rin+A

)
xn+

)∥∥∥∥
≤ ∥∥uin+ – uin

∥∥[∥∥(
I – rin+A

)
xn+ –

(
I – rin+A

)
xn +

(
I – rin+A

)
xn

–
(
I – rinA

)
xn

∥∥ +
∣∣∣∣ – rin

rin+

∣∣∣∣∥∥uin+ – (
I – rin+A

)
xn+

∥∥]

≤ ∥∥uin+ – uin
∥∥[∥∥(

I – rin+A
)
xn+ –

(
I – rin+A

)
xn

∥∥
+

∥∥(
I – rin+A

)
xn –

(
I – rinA

)
xn

∥∥
+


rin+

∣∣rin+ – rin
∣∣∥∥uin+ – (

I – rin+A
)
xn+

∥∥]

≤ ∥∥uin+ – uin
∥∥[

‖xn+ – xn‖ +
∣∣rin+ – rin

∣∣‖Axn‖
+

ε

∣∣rin+ – rin
∣∣∥∥uin+ – (

I – rin+A
)
xn+

∥∥]
,

from which it follows that

∥∥uin+ – uin
∥∥ ≤ ‖xn+ – xn‖ +

∣∣rin+ – rin
∣∣‖Axn‖

+

ε

∣∣rin+ – rin
∣∣∥∥uin+ – (

I – rin+A
)
xn+

∥∥. (.)

From (.), we have

∥∥uin – uin–
∥∥ ≤ ‖xn – xn–‖ +

∣∣rin – rin–
∣∣‖Axn–‖

+

ε

∣∣rin – rin–
∣∣∥∥uin – (

I – rinA
)
xn

∥∥. (.)
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From (.) and (.), we obtain

‖xn+ – xn‖

≤ αnξ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–)∥∥ + βn

N∑
i=

ain

[
‖xn – xn–‖

+
∣∣rin – rin–

∣∣‖Axn–‖ + 
ε

∣∣rin – rin–
∣∣∥∥uin – (

I – rinA
)
xn

∥∥]

+ βn

N∑
i=

∣∣ain – ain–
∣∣∥∥uin–∥∥ + |βn – βn–|

N∑
i=

ain–
∥∥uin–∥∥ + δn‖xn – xn–‖

+ δn‖Knxn– –Kn–xn–‖ + |δn – δn–|‖Kn–xn–‖

= αnξ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–)∥∥ + βn

N∑
i=

ain‖xn – xn–‖

+ βn

N∑
i=

ain
∣∣rin – rin–

∣∣‖Axn–‖ + βn

ε

N∑
i=

ain
∣∣rin – rin–

∣∣∥∥uin – (
I – rinA

)
xn

∥∥

+ βn

N∑
i=

∣∣ain – ain–
∣∣∥∥uin–∥∥ + |βn – βn–|

N∑
i=

ain–
∥∥uin–∥∥ + δn‖xn – xn–‖

+ δn‖Knxn– –Kn–xn–‖ + |δn – δn–|‖Kn–xn–‖
≤ (

 – αn( – ξ )
)‖xn – xn–‖ + |αn – αn–|

∥∥f (xn–)∥∥
+

N∑
i=

∣∣rin – rin–
∣∣‖Axn–‖ + 

ε

N∑
i=

∣∣rin – rin–
∣∣∥∥uin – (

I – rinA
)
xn

∥∥

+
N∑
i=

∣∣ain – ain–
∣∣∥∥uin–∥∥ + |βn – βn–|

N∑
i=

ain–
∥∥uin–∥∥

+ ‖Knxn– –Kn–xn–‖ + |δn – δn–|‖Kn–xn–‖.

Applying the conditions (i), (v), Lemma ., and Lemma .(ii), we obtain

lim
n→∞‖xn+ – xn‖ = . (.)

Step . We will show that limn→∞ ‖uin – xn‖ = limn→∞ ‖Knxn – xn‖ = , ∀i = , , . . . ,N .
Since Trin is a firmly nonexpansive mapping, for every i = , , . . . ,N , we obtain

∥∥Trin

(
I – rinA

)
xn – z

∥∥

=
∥∥Trin

(
I – rinA

)
xn – Trin

(
I – rinA

)
z
∥∥

≤ 〈(
I – rinA

)
xn –

(
I – rinA

)
z,uin – z

〉
=


(∥∥(

I – rinA
)
xn –

(
I – rinA

)
z
∥∥ +

∥∥uin – z
∥∥

–
∥∥(
I – rinA

)
xn –

(
I – rinA

)
z –

(
uin – z

)∥∥)
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≤ 

(‖xn – z‖ + ∥∥uin – z

∥∥ –
∥∥(
xn – uin

)
– rin(Axn –Az)

∥∥)
=


(‖xn – z‖ + ∥∥uin – z

∥∥ –
∥∥xn – uin

∥∥ –
(
rin

)‖Axn –Az‖

+ rin
〈
xn – uin,Axn –Az

〉)
≤ 


(‖xn – z‖ + ∥∥uin – z

∥∥ –
∥∥xn – uin

∥∥ + rin
∥∥xn – uin

∥∥‖Axn –Az‖),
which implies that

∥∥uin – z
∥∥ ≤ ‖xn – z‖ – ∥∥xn – uin

∥∥ + rin
∥∥xn – uin

∥∥‖Axn –Az‖. (.)

From the nonexpansiveness of Trin and u
i
n = Trin (I – r

i
nA)xn, for every i = , , . . . ,N , we have

∥∥uin – z
∥∥ =

∥∥Trin

(
I – rinA

)
xn – Trin

(
I – rinA

)
z
∥∥

≤ ∥∥(xn – z) – rin(Axn –Az)
∥∥

= ‖xn – z‖ – rin〈xn – z,Axn –Az〉 + (
rin

)‖Axn –Az‖

≤ ‖xn – z‖ – αrin‖Axn –Az‖ + (
rin

)‖Axn –Az‖

= ‖xn – z‖ – rin
(
α – rin

)‖Axn –Az‖. (.)

From the definition of xn and (.), we get

‖xn+ – z‖

≤ αn
∥∥f (xn) – z

∥∥ + βn

N∑
i=

ain
∥∥uin – z

∥∥ + δn‖xn – z‖

≤ αn
∥∥f (xn) – z

∥∥ + βn

N∑
i=

ain
(‖xn – z‖ – rin

(
α – rin

)‖Axn –Az‖) + δn‖xn – z‖

= αn
∥∥f (xn) – z

∥∥ + βn

N∑
i=

ain‖xn – z‖ – βn

N∑
i=

ainr
i
n
(
α – rin

)‖Axn –Az‖

+ δn‖xn – z‖

≤ ‖xn – z‖ + αn
∥∥f (xn) – z

∥∥ – βn

N∑
i=

ainr
i
n
(
α – rin

)‖Axn –Az‖,

from which it follows that

βn

N∑
i=

ainr
i
n
(
α – rin

)‖Axn –Az‖

≤ ‖xn – z‖ – ‖xn+ – z‖ + αn
∥∥f (xn) – z

∥∥

≤ (‖xn – z‖ + ‖xn+ – z‖)‖xn+ – xn‖ + αn
∥∥f (xn) – z

∥∥. (.)

From (.), (.), and the conditions (i), (ii), (iii), and (iv), we obtain

lim
n→∞‖Axn –Az‖ = . (.)
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From the definition of xn and (.), we have

‖xn+ – z‖

≤ αn
∥∥f (xn) – z

∥∥ + βn

N∑
i=

ain
∥∥uin – z

∥∥ + δn‖xn – z‖

≤ αn
∥∥f (xn) – z

∥∥ + βn

N∑
i=

ain
(‖xn – z‖ – ∥∥xn – uin

∥∥

+ rin
∥∥xn – uin

∥∥‖Axn –Az‖) + δn‖xn – z‖

≤ αn
∥∥f (xn) – z

∥∥ + βn

N∑
i=

ain‖xn – z‖ – βn

N∑
i=

ain
∥∥xn – uin

∥∥

+ βn

N∑
i=

ainr
i
n
∥∥xn – uin

∥∥‖Axn –Az‖ + δn‖xn – z‖

≤ ‖xn – z‖ + αn
∥∥f (xn) – z

∥∥ – βn

N∑
i=

ain
∥∥xn – uin

∥∥

+ βn

N∑
i=

ainr
i
n
∥∥xn – uin

∥∥‖Axn –Az‖,

which implies that

βn

N∑
i=

ain
∥∥xn – uin

∥∥

≤ ‖xn – z‖ – ‖xn+ – z‖ + αn
∥∥f (xn) – z

∥∥

+ βn

N∑
i=

ainr
i
n
∥∥xn – uin

∥∥‖Axn –Az‖

≤ (‖xn – z‖ + ‖xn+ – z‖)‖xn+ – xn‖ + αn
∥∥f (xn) – z

∥∥

+ βn

N∑
i=

ainr
i
n
∥∥xn – uin

∥∥‖Axn –Az‖. (.)

From (.), (.), (.), and the conditions (i), (ii), (iii), we get

lim
n→∞

∥∥xn – uin
∥∥ = , for all i = , , . . . ,N . (.)

By the definition of xn, we obtain

xn+ – xn = αnf (xn) + βn

( N∑
i=

ainu
i
n

)
+ δnKnxn – xn

= αn
(
f (xn) – xn

)
+ βn

N∑
i=

ain
(
uin – xn

)
+ δn(Knxn – xn).
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From (.), (.), and the conditions (i) and (ii), we get

lim
n→∞‖Knxn – xn‖ = . (.)

Step . We show that {xn}, {wi
n} and {rin} are Cauchy sequences, for every i = , , . . . ,N .

Let a ∈ (, ), by (.), there exists N ∈N such that

‖xn+ – xn‖ < an, ∀n≥N . (.)

Thus, for any n≥N ∈ N and p ∈N, we have

‖xn+p – xn‖ ≤
n+p–∑
k=n

‖xk+ – xk‖ ≤
n+p–∑
k=n

ak <
∞∑
k=n

ak =
an

 – a
. (.)

Since a ∈ (, ), we get limn→∞ an = . From (.), taking n → ∞, we obtain {xn} is a
Cauchy sequence in a Hilbert space H . Let limn→∞ xn = x∗. Since Si : C → CB(H) be H-
Lipschitz continuous on H with coefficients μi, for every i = , , . . . ,N , and (.), we have

∥∥wi
n –wi

n+
∥∥

≤
(
 +


n

)
H

(
Si

(
I – rinA

)
xn,Si

(
I – rin+A

)
xn+

)

≤
(
 +


n

)
μi

∥∥(
I – rinA

)
xn –

(
I – rin+A

)
xn+

∥∥
≤

(
 +


n

)
μi

(∥∥(
I – rinA

)
xn –

(
I – rinA

)
xn+

∥∥
+

∥∥(
I – rinA

)
xn+ –

(
I – rin+A

)
xn+

∥∥)
≤

(
 +


n

)
μi

(‖xn – xn+‖ +
∣∣rin+ – rin

∣∣‖Axn+‖)

≤
(
 +


n

)
μi

(‖xn – xn+‖ +
∣∣rin+ – rin

∣∣M)
, (.)

whereM =maxn∈N{‖Axn‖}. From (.), (.), and the condition (v), we obtain

lim
n→∞

∥∥wi
n –wi

n+
∥∥ = , for every i = , , . . . ,N .

By continuing the same argument as (.) and (.), we have {wi
n} is a Cauchy sequence

in a Hilbert space H , for all i = , , . . . ,N . Let limn→∞ wi
n = w∗

i , for every i = , , . . . ,N . Us-
ing the samemethod as above and the condition (v), we see that {rin} is a Cauchy sequence,
for all i = , , . . . ,N . Put limn→∞ rin = r∗i , for every i = , , . . . ,N .
Next, we will prove that w∗

i ∈ Si(I – r∗i A)x∗, for all i = , , . . . ,N .
Since wi

n ∈ Si(I – rinA)xn, we obtain

d
(
wi
n,Si

(
I – r∗i A

)
x∗)

≤max
{
d
(
wi
n,Si

(
I – r∗i A

)
x∗), sup

w̃i∈Si(I–r∗i A)x∗
d
(
Si

(
I – rinA

)
xn, w̃i

)}
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≤max
{

sup
ŵi∈Si(I–rinA)xn

d
(
ŵi,Si

(
I – r∗i A

)
x∗), sup

w̃i∈Si(I–r∗i A)x∗
d
(
Si

(
I – rinA

)
xn, w̃i

)}

=H
(
Si

(
I – rinA

)
xn,Si

(
I – r∗i A

)
x∗), for every i = , , . . . ,N . (.)

Since

d
(
w∗
i ,Si

(
I – r∗i A

)
x∗) ≤ ∥∥w∗

i –wi
n
∥∥ + d

(
wi
n,Si

(
I – r∗i A

)
x∗)

≤ ∥∥w∗
i –wi

n
∥∥ +H

(
Si

(
I – rinA

)
xn,Si

(
I – r∗i A

)
x∗)

≤ ∥∥w∗
i –wi

n
∥∥ +μi

∥∥(
I – rinA

)
xn –

(
I – r∗i A

)
x∗∥∥

=
∥∥w∗

i –wi
n
∥∥ +μi

∥∥(
xn – x∗) – (

rinAxn – r∗i Ax
∗)∥∥,

taking n → ∞, we have

d
(
w∗
i ,Si

(
I – r∗i A

)
x∗) = ,

which implies that

w∗
i ∈ Si

(
I – r∗i A

)
x∗, for all i = , , . . . ,N . (.)

Step . We will show that lim supn→∞〈f (q) – q,xn – q〉 ≤ , where q = PF f (q).
To show this, choose a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
f (q) – q,xn – q

〉
= lim

k→∞
〈
f (q) – q,xnk – q

〉
.

Without loss of generality, we can assume that xnk ⇀ x̃ as k → ∞.
For every i = , , . . . ,N ,  < φ ≤ λn

i ≤ ψ < γ < , for all i = , , . . . ,N , without loss of
generality, we may assume that

λ
nk
i → λi ∈ (, ) as k → ∞, for every i = , , . . . ,N .

Let K be the K-mapping generated by T,T, . . . ,TN and λ,λ, . . . ,λN . By Lemma ., we
see that K is nonexpansive and F(K ) =

⋂N
i= F(Ti).

From Lemma .(i), we obtain

lim
k→∞

‖Knkxnk –Kxnk‖ = . (.)

Since

‖xnk –Kxnk‖ ≤ ‖xnk –Knkxnk‖ + ‖Knkxnk –Kxnk‖,

by (.) and (.), we have

lim
k→∞

‖xnk –Kxnk‖ = . (.)
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Since xnk ⇀ x̃ as n→ ∞, by (.) and Lemma ., we have

x̃ ∈ F(K ) =
N⋂
i=

F(Ti). (.)

Next, we show that x∗ ∈ ⋂N
i=(GEP)s(�i,ϕ,A).

Since xnk → x∗ as k → ∞ and (.), we have

uink → x∗ as k → ∞, for all i = , , . . . ,N . (.)

From (.), we obtain

�i
(
wi
nk ,u

i
nk , y

)
+ ϕ(y) – ϕ

(
uink

)
+


rink

〈
uink – xnk , y – uink

〉
+

〈
Axnk , y – uink

〉 ≥ ,

for every y ∈ C and i = , , . . . ,N . From (.), (.), the condition (H), and the lower
semicontinuity of ϕ, we get

�i
(
w∗
i ,x

∗, y
)
+ ϕ(y) – ϕ

(
x∗) + 〈

Ax∗, y – x∗〉 ≥ ,

for every y ∈ C and i = , , . . . ,N , from which it follows by (.) that

x∗ ∈ (GEP)s(�i,ϕ,A), for every i = , , . . . ,N .

It implies that

x∗ ∈
N⋂
i=

(GEP)s(�i,ϕ,A). (.)

Since xnk ⇀ x̃ and xnk → x∗ as n→ ∞, then x̃ = x∗. From (.) and (.), we have

x∗ ∈F . (.)

Indeed, since xnk → x∗ as k → ∞, by (.) and Lemma ., we obtain

lim sup
n→∞

〈
f (q) – q,xn – q

〉
= lim

k→∞
〈
f (q) – q,xnk – q

〉
=

〈
f (q) – q,x∗ – q

〉 ≤ . (.)

Step . Finally, we will prove that {xn} and {uin} converges strongly to q = PF f (q), for
every i = , , . . . ,N .
By Lemma .(ii), we have

‖xn+ – q‖

=

∥∥∥∥∥αn
(
f (xn) – q

)
+ βn

N∑
i=

ain
(
uin – q

)
+ δn(Knxn – q)

∥∥∥∥∥


≤
∥∥∥∥∥βn

N∑
i=

ain
(
uin – q

)
+ δn(Knxn – q)

∥∥∥∥∥


+ αn
〈
f (xn) – q,xn+ – q

〉
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≤
(

βn

∥∥∥∥∥
N∑
i=

ain
(
uin – q

)∥∥∥∥∥ + δn‖Knxn – q‖
)

+ αn
〈
f (xn) – f (q),xn+ – q

〉
+ αn

〈
f (q) – q,xn+ – q

〉

≤
(

βn

N∑
i=

ain‖xn – q‖ + δn‖xn – q‖
)

+ αn
∥∥f (xn) – f (q)

∥∥‖xn+ – q‖

+ αn
〈
f (q) – q,xn+ – q

〉
≤ (

( – αn)‖xn – q‖) + αnξ‖xn – q‖‖xn+ – q‖
+ αn

〈
f (q) – q,xn+ – q

〉
≤ ( – αn)‖xn – q‖ + αnξ

(‖xn – q‖ + ‖xn+ – q‖)
+ αn

〈
f (q) – q,xn+ – q

〉
,

which implies that

‖xn+ – q‖

≤ ( – αn) + αnξ

 – αnξ
‖xn – q‖ + αn

 – αnξ

〈
f (q) – q,xn+ – q

〉

=
 – αnξ – αn( – ξ )

 – αnξ
‖xn – q‖ + α

n
 – αnξ

‖xn – q‖

+
αn

 – αnξ

〈
f (q) – q,xn+ – q

〉

=
(
 –

αn( – ξ )
 – αnξ

)
‖xn – q‖ + α

n
 – αnξ

‖xn – q‖

+
αn

 – αnξ

〈
f (q) – q,xn+ – q

〉

=
(
 –

αn( – ξ )
 – αnξ

)
‖xn – q‖ + αn( – ξ )

 – αnξ

(
αn

( – ξ )
‖xn – q‖

+


 – ξ

〈
f (q) – q,xn+ – q

〉)
.

Applying the condition (i), (.), and Lemma ., we have the sequence {xn} converges
strongly to q = PF f (q). From (.), we also obtain {uin} converges strongly to q = PF f (q),
for every i = , , . . . ,N . This completes the proof. �

The following corollaries are consequences which are applied by Theorem .. There-
fore, we omit the proof.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . For
every i = , , . . . ,N , Si : C → CB(H) be H-Lipschitz continuous with coefficients μi, �i :
H×C×C →R be equilibrium-like function satisfying (H)-(H). Let ϕ : C → R be a lower
semicontinuous and convex function and A : C → C be an α-inverse strongly monotone
mapping. Let T : C → C be κ-strictly pseudo-contractive mapping with κ ≤ γ and F :=
F(T)∩ ⋂N

i=(MGEP)s(�i,ϕ,A) �= ∅. For every n ∈ N, let {λn} be a sequence of real numbers
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where  < λn < γ and γ + γ < . For every i = , , . . . ,N , let {xn} be the sequence generated
by x ∈ C and wi

 ∈ Si(I – riA)x, there exist sequences {wi
n} ∈ H and {xn}, {uin} ⊆ C such

that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖wi
n –wi

n+‖ ≤ ( + 
n )H(Si(I – rinA)xn,Si(I – rin+A)xn+),

wi
n ∈ Si(I – rinA)xn

�i(wi
n,uin, y) + ϕ(y) – ϕ(uin) +


rin

〈uin – xn, y – uin〉 + 〈Axn, y – uin〉
≥ , ∀y ∈ C,

xn+ = αnf (xn) + βn(
∑N

i= ainuin) + δn(λnT + ( – λn)I)xn, ∀n≥ ,

(.)

where f : C → C be a contraction mapping with a constant ξ and {αn}, {βn}, {δn} ⊆ (, )
with αn + βn + δn = , ∀n≥ . Suppose the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn =∞;
(ii)  < τ ≤ βn, δn ≤ υ < ;
(iii) ≤ η ≤ ain ≤ σ < , for all i = , , . . . ,N –  and  < η ≤ aNn ≤ σ ≤  with∑N

n= ain = ;
(iv)  < ε ≤ rin ≤ ω < α, for all n ∈N and i = , , . . . ,N ;
(v)

∑∞
n= |αn+ – αn| < ∞,

∑∞
n= |βn+ – βn| < ∞,

∑∞
n= |δn+ – δn| <∞,∑∞

n= |rin+ – rin| < ∞,
∑∞

n= |ain+ – ain| < ∞,
∑∞

n= |λn+ – λn| < ∞, for all
i = , , . . . ,N ;

(vi) for each i = , , . . . ,N , there exists ρi >  such that

�i
(
wi
,Tri

(x),Tri
(x)

)
+�i

(
wi
,Tri

(x),Tri
(x)

)
≤ –ρi

∥∥Tri
(x) – Tri

(x)
∥∥, (.)

for all (ri, ri) ∈ �i × �i, (x,x) ∈ C ×C and wi
j ∈ Si(xj), for j = , , where

�i = {rin : n≥ }.
Then {xn} and {uin} converges strongly to q = PF f (q), for every i = , , . . . ,N .

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . For
every i = , , . . . ,N , Si : C → CB(H) be H-Lipschitz continuous with coefficients μi, �i :
H × C × C → R be equilibrium-like function satisfying (H)-(H). Let ϕ : C → R be a
lower semicontinuous and convex function.Let {Ti}Ni= be a finite family of κi-strictly pseudo-
contractive mappings and κi ≤ γ with F :=

⋂N
i= F(Ti) ∩ ⋂N

i=(GEP)s(�i,ϕ) �= ∅. For every
n ∈ N, let Kn be the K-mapping generated by T,T, . . . ,TN and λn

 ,λn
, . . . ,λn

N where  <
φ ≤ λn

i ≤ ψ < γ < , for all i = , , . . . ,N and γ + γ < . For every i = , , . . . ,N , let {xn}
be the sequence generated by x ∈ C and wi

 ∈ Si(x), there exist sequences {wi
n} ∈ H and

{xn}, {uin} ⊆ C such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
wi
n ∈ Si(xn), ‖wi

n –wi
n+‖ ≤ ( + 

n )H(Si(xn),Si(xn+)),

�i(wi
n,uin, y) + ϕ(y) – ϕ(uin) +


rin

〈uin – xn, y – uin〉 ≥ , ∀y ∈ C,

xn+ = αnf (xn) + βn(
∑N

i= ainuin) + δnKnxn, ∀n≥ ,

(.)

where f : C → C is a contraction mapping with a constant ξ and {αn}, {βn}, {δn} ⊆ (, )
with αn + βn + δn = , ∀n≥ . Suppose the following conditions hold:
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(i) limn→∞ αn =  and
∑∞

n= αn =∞;
(ii)  < τ ≤ βn, δn ≤ υ < ;
(iii) ≤ η ≤ ain ≤ σ < , for all i = , , . . . ,N –  and  < η ≤ aNn ≤ σ ≤  with∑N

n= ain = ;
(iv)  < ε ≤ rin ≤ ω < , for all n ∈N and i = , , . . . ,N ;
(v)

∑∞
n= |αn+ – αn| < ∞,

∑∞
n= |βn+ – βn| < ∞,

∑∞
n= |δn+ – δn| <∞,∑∞

n= |rin+ – rin| < ∞,
∑∞

n= |ain+ – ain| < ∞,
∑∞

n= |λn+
i – λn

i | < ∞, for all
i = , , . . . ,N ;

(vi) for each i = , , . . . ,N , there exists ρi >  such that

�i
(
wi
,Tri

(x),Tri
(x)

)
+�i

(
wi
,Tri

(x),Tri
(x)

)
≤ –ρi

∥∥Tri
(x) – Tri

(x)
∥∥, (.)

for all (ri, ri) ∈ �i × �i, (x,x) ∈ C ×C and wi
j ∈ Si(xj), for j = , , where

�i = {rin : n≥ }.
Then {xn} and {uin} converges strongly to q = PF f (q), for every i = , , . . . ,N .

Remark . From Corollary ., put N = , then the iterative scheme (.) reduces to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
w
n ∈ S(xn), ‖w

n –w
n+‖ ≤ ( + 

n )H(S(xn),S(xn+)),

�(w
n,un, y) + ϕ(y) – ϕ(un) +


rn

〈un – xn, y – un〉 ≥ , ∀y ∈ C,

xn+ = αnf (xn) + βnun + δn(λn
T + ( – λn

 )I)xn, ∀n≥ ,

which is a modification of iterative scheme (.) in the results of Ceng et al. []. By as-
suming the initial condition x ∈ C, w

 ∈ S(x) and the following conditions hold:
(i) limn→∞ αn =  and

∑∞
n= αn =∞;

(ii)  < τ ≤ βn, δn ≤ υ < ;
(iii)  < ε ≤ rn ≤ ω < , for all n ∈N;
(iv)

∑∞
n= |αn+ – αn| < ∞,

∑∞
n= |βn+ – βn| < ∞,

∑∞
n= |δn+ – δn| < ∞,∑∞

n= |rn+ – rn| <∞,
∑∞

n= |λn+
 – λn

 | < ∞;
(v) there exists ρ >  such that

�
(
w
,Tr

(x),Tr
(x)

)
+�

(
w
,Tr

(x),Tr
(x)

)
≤ –ρ

∥∥Tr
(x) – Tr

(x)
∥∥,

for all (r , r) ∈ � × �, (x,x) ∈ C ×C and w
j ∈ S(xj), for j = , , where

� = {rn : n ≥ }.
Then {xn} and {un} converge strongly to q = PF f (q).
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