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Abstract
In this paper, we introduce the notion of a quasi-contraction restricted with a linear
bounded mapping in cone metric spaces, and prove a unique fixed point theorem for
this quasi-contraction without the normality of the cone. It is worth mentioning that
the main result in this paper could not be derived from Ćirić’s result by the
scalarization method, and hence indeed improves many recent results in cone metric
spaces.
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1 Introduction
Let (X,d) be a complete metric space. Recall that a mapping T : X → X is called a quasi-
contraction, if there exists λ ∈ (, ) such that

d(Tx,Ty) ≤ λmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
, ∀x, y ∈ X.

Ćirić [] introduced and studied Ćirić’s quasi-contractions as one of the most general
classes of contractive-type mappings. He proved the well-known theorem that every
Ćirić’s quasi-contraction T has a unique fixed point. Recently, Ilić and Rakočević [] gen-
eralized this notion to conemetric spaces and extended Ćirić’s result to the setting of cone
metric spaces, which was then improved by [, ]. Afterward, Arandelović and Kečkić []
considered nonlinear quasi-contractions in cone metric spaces, and proved a fixed point
result by the nonlinear scalarization method of Du []. It should be pointed out that The-
orem . of [], Theorem . of [], and Theorem . of [] could be derived from Ćirić’s
result by the nonlinear scalarization method of Du []; see (ii) of Remark .
In this paper, we introduce the notion of a quasi-contractions restricted with a linear

bounded mapping in cone metric spaces. Without using the normality of the cone, we
prove the unique existence of fixed point for this quasi-contraction at the expense of

un
w→ θ ⇒ Aun

w→ θ , ∀{un} ⊂ P. (H)

It is worth mentioning that the main result in this paper could not be derived from Ćirić’s
result by the scalarizationmethod, andhence it indeed improves the corresponding results
of [–].
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2 Preliminaries
Let E be a topological vector space. A cone of E is a nonempty closed subset P of E such
that ax + by ∈ P for each x, y ∈ P and each a,b≥ , and P ∩ (–P) = {θ}, where θ is the zero
element of E. A cone P of E determines a partial order 
 on E by x 
 y ⇔ y – x ∈ P for
each x, y ∈ X. In this case E is called an ordered topological vector space.
A cone P of a topological vector space E is solid if intP �= ∅, where intP is the interior of P.

For each x, y ∈ E with y – x ∈ intP, we write x � y. Let P be a solid cone of a topological
vector space E. A sequence {un} of E weakly converges [] to u ∈ E (denote un

w→ u) if for
each ε ∈ intP, there exists a positive integer n such that u– ε � un � u+ ε for all n≥ n.
A subset D of a topological vector space E is order-convex if [x, y] ⊂ D for each x, y ∈ D

with x 
 y, where [x, y] = {z ∈ E : x 
 z 
 y}. An ordered topological vector space E is
order-convex if it has a base of neighborhoods of θ consisting of order-convex subsets.
In this case the cone P is said to be normal. In the case of a normed vector space, this
condition means that the unit ball is order-convex, which is equivalent to the condition
that there is some positive number N such that x, y ∈ E and θ 
 x 
 y implies that ‖x‖ ≤
N‖y‖, and the minimal N is called a normal constant of P. Another equivalent condition
is that

inf
{‖x + y‖ : x, y ∈ P and ‖x‖ = ‖y‖ = 

}
> .

Then it is not hard to conclude that P is a non-normal cone of a normed vector space
(E,‖ · ‖) if and only if there exist sequences {un}, {vn} ⊂ P such that

un + vn
‖·‖→ θ � un

‖·‖→ θ ,

which implies that the Sandwich theorem does not hold. However, in the sense of weak
convergence, the Sandwich theorem still holds even if P is non-normal, and we have the
following lemma.

Lemma  Let P be a solid cone of a topological vector space E and {un}, {vn}, {zn} ⊂ E. If

un 
 zn 
 vn, ∀n,

and there exists some z ∈ E such that un
w→ z and vn

w→ z, then zn
w→ z.

Proof By un
w→ w and vn

w→ w, for each ε ∈ intP, there exists some positive integer n such
that for all n≥ n,

z – ε � un and vn � z + ε.

Thus we have z – ε � un 
 zn 
 vn 
 vn � z + ε for all n ≥ n, i.e., zn
w→ z. The proof is

complete. �

The following lemma needed in the further arguments, directly follows from Lemma 
and Remark  of [].

Lemma  Let P be a solid cone of a normed vector space (E,‖ · ‖). Then for each sequence
{un} ⊂ E, un

‖·‖→ u implies un
w→ u.Moreover, if P is normal, then un

w→ u implies un
‖·‖→ u.
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Let X be a nonempty set and P be a cone of a topological vector space E. A cone metric
on X is a mapping d : X ×X → P such that for each x, y, z ∈ X,
(d) d(x, y) = θ ⇔ x = y;
(d) d(x, y) = d(y,x);
(d) d(x, y)
 d(x, z) + d(z, y).

The pair (X,d) is called a conemetric space over P. A conemetric d on X over a solid cone
P generates a topology τd on X which has a base of the family of open d-balls {Bd(x, ε) :
x ∈ X, θ � ε}, where Bd(x, ε) = {y ∈ X : d(x, y)� ε} for each x ∈ X and each ε ∈ intP.
Let (X,d) be a conemetric space over a solid cone P of a topological vector space E. A se-

quence {xn} of X converges [, ] to x ∈ X (denote by xn
τd→ x) if d(xn,x)

w→ θ . A sequence
{xn} of X is Cauchy [, ], if d(xn,xm)

w→ θ . The cone metric space (X,d) is complete [, ],
if each Cauchy sequence {xn} of X converges to a point x ∈ X.

3 Main results
Let P be a solid cone of a normed vector space (E,‖ · ‖). A mapping T : X → X is
called a quasi-contraction restricted with a linear bounded mapping, if there exists u ∈
{d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)} and a linear bounded mapping A : E → E with
A(P) ⊂ P such that

d(Tx,Ty) ≤ Au, ∀x, y ∈ X. ()

Moreover, if A is a contractive mapping (i.e., A : E → E is a one-to-one mapping such that
A(P) ⊂ P, I – A is one-to-one and (I – A)(P) ⊂ P), then T is reduced to the one consid-
ered by Arandelović and Kečkić []. In particular when A = λI with λ ∈ (, ), T is an Ilić-
Rakočević’s quasi-contraction [], and also an Arandelović-Kečkić’s quasi-contraction.

Remark  (i) If A : E → E is a mapping such that A(P) ⊂ P and (I – A)(P) ⊂ P, then it
satisfies (H), and so every contractive mapping A satisfies (H). In fact, let {un} ⊂ P with
un

w→ θ . By the definition of weak convergence, for each ε ∈ intP, there exists a positive
integer n such that θ 
 Aun 
 un � ε, i.e., Aun

w→ θ .
(ii) If P is normal then every linear bounded mapping A : P → P satisfies (H). In fact, let

{un} ⊂ P with un
w→ θ . By Lemma  and the normality of P, un

‖·‖→ θ . And so Aun
‖·‖→ θ for

each linear bounded mapping A : P → P. Moreover, by Lemma , Aun
w→ θ .

The following example shows that there does exist some linear bounded mapping A :
P → P satisfying (H) as P is non-normal.

Example  Let E = C
R
[, ] with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞ and P = {u ∈ E : u(t) ≥

, t ∈ [, ]} which is a non-normal solid cone []. Let (Au)(t) =
∫ t
 u(s)ds for each u ∈ P

and each t ∈ [, ].
For each ε > , there exists some ε ∈ intP such that ‖ε‖ < ε. For each {un} ⊂ P with un

w→
θ , there exists a positive integer n such that for all n ≥ n, un � ε, and hence un(t)≤ ε(t)
for each t ∈ [, ]. Thus we have ‖un‖∞ ≤ ‖ε‖∞ ≤ ‖ε‖ < ε for all n ≥ n, i.e., un

‖·‖∞→ θ . By
the definition of A, we get ‖Aun‖ = ‖Aun‖∞ + ‖(Aun)′‖∞ = ‖Aun‖∞ + ‖un‖∞ ≤ ‖un‖∞,
which together with un

‖·‖∞→ θ implies that Aun
‖·‖→ θ . Thus by Lemma , we have Aun

w→ θ .
This shows that A satisfies (H).
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In the following, without using the normality of P, we show the unique existence of fixed
point of quasi-contractions restricted with linear bounded mappings at the expense that
(H) is satisfied.

Theorem  Let (X,d) be a complete cone metric space over a solid cone P of a normed
vector space (E,‖ · ‖) and T : X → X a quasi-contraction restricted with a linear bounded
mapping. If the spectral radius r(A) <  and (H) is satisfied, then T has a unique fixed point
x∗ ∈ X such that for each x ∈ X, xn

τd→ x∗, where xn = Tnx for all n.

Proof By r(L) < , the inverse of I–A exists, denote it by (I–A)–.Moreover, byNeumann’s
formula,

(I –A)– =
∞∑
i=

Ai, ()

which together with A(P) ⊂ P implies that (I – A)–(P) ⊂ P. It follows from r(A) <  and
Gelfand’s formula that there exist  < β <  and some positive integer n such that

∥∥An∥∥ ≤ βn, ∀n≥ n. ()

We claim that for all n≥ ,

d(xi,xj) 
 A(I –A)–d(x,x), ∀≤ i, j ≤ n. ()

In the following we shall show this claim by induction.
If n = , then i = j = , and so the claim is trivial.
Assume that () is true for n. To prove that () holds for n + , it suffices to show that

d(xi ,xn+)
 A(I –A)–d(x,x), ∀≤ i ≤ n. ()

By (),

d(xi ,xn+)
 Au, ()

where

u ∈ {
d(xi–,xn),d(xi–,xi ),d(xn,xn+),d(xi–,xn+),d(xn,xi )

}
.

Consider the case that i = .
If u = d(x,xn), then by (), (), (), and A(P) ⊂ P,

d(xi ,xn+)
 Ad(x,xn) 
 A
[
d(x,x) + d(x,xn)

]

 A

[
d(x,x) +A(I –A)–d(x,x)

]
= A

(
I +A(I –A)–

)
d(x,x)

= A

(
I +

∞∑
i=

Ai

)
d(x,x) = A(I –A)–d(x,x),

i.e., () holds.

http://www.fixedpointtheoryandapplications.com/content/2014/1/87
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If u = d(x,x), then by () and A(P) ⊂ P,

d(xi ,xn+)
 Ad(x,x) 

∞∑
i=

Aid(x,x) = A(I –A)–d(x,x),

i.e., () holds.
If u = d(x,xn+), then by () and A(P) ⊂ P,

d(xi ,xn+)
 Ad(x,xn+) 
 A
[
d(x,x) + d(xi ,xn+)

]
,

which implies that

(I –A)d(xi ,xn+) 
 Ad(x,x).

Act on the above inequality with (I –A)–, then by (I –A)–(P) ⊂ P,

d(xi ,xn+)
 A(I –A)–d(x,x),

i.e., () holds.
If u = d(xn,xi ), then by (), (), (), and A(P) ⊂ P,

d(xi ,xn+)
 Ad(xi ,xn) 
 A(I –A)–d(x,x)

=
∞∑
i=

Aid(x,x) 

∞∑
i=

Aid(x,x)

= A(I –A)–d(x,x),

i.e., () holds.
If u = d(xn,xn+), then set i = n – , and so

d(xi ,xn+)
 Ad(xi ,xn+). ()

Consider the case that  ≤ i ≤ n.
If u = d(xi–,xn), or u = d(xi–,xi ), or d(xn,xi ), then by (), (), (), and A(P) ⊂ P,

d(xi ,xn+)
 Au 
 A(I –A)–d(x,x)

=
∞∑
i=

Aid(x,x) 

∞∑
i=

Aid(x,x)

= A(I –A)–d(x,x),

i.e., () holds.
If u = d(xn,xn+), or u = d(xi–,xn+), then set i = n, or i = i –  ≥ , respectively, and

so () follows.
From the above discussions of both cases, we have the result that either () holds, and

so the proof of our claim is complete, or there exists i ∈ {, , . . . ,n} such that () holds.

http://www.fixedpointtheoryandapplications.com/content/2014/1/87
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For the latter situation, continue in a similar way, and we will have the result that either

d(xi ,xn+) 
 A(I –A)–d(x,x),

which together with () forces that

d(xi ,xn+)
 A(I –A)–d(x,x)
 A(I –A)–d(x,x),

i.e., () holds, and so the proof of our claim is complete, or there exists i ∈ {, , . . . ,n}
such that

d(xi ,xn+) 
 Ad(xi ,xn+).

If the above procedure ends by the kth stepwith k ≤ n–, that is, there exist k+ integers
i, i, . . . , ik ∈ {, , . . . ,n} such that

d(xi ,xn+)
 Ad(xi ,xn+),

d(xi ,xn+) 
 Ad(xi ,xn+),

. . . ,

d(xik– ,xn+) 
 Ad(xik ,xn+),

d(xik ,xn+) 
 A(I –A)–d(x,x),

then by () and A(P) ⊂ P,

d(xi ,xn+)
 Ak+(I –A)–d(x,x) =
∞∑

i=k+

Aid(x,x)



∞∑
i=

Aid(x,x) = A(I –A)–d(x,x),

i.e., () holds, and so the proof of our claim is complete.
If the above procedure continues more than n steps, then there exist n +  integers

i, i, in ∈ {, , . . . ,n} such that

d(xi ,xn+) 
 Ad(xi ,xn+),

d(xi ,xn+)
 Ad(xi ,xn+),

. . . ,

d(xin– ,xn+) 
 Ad(xin ,xn+).

()

It is clear that i, i, in ∈ {, , . . . ,n} implies that there exist two integers k, l ∈ {, , , . . . ,n}
with k < l such that ik = il , then by (),

d(xik ,xn+) 
 Al–kd(xil ,xn+) = Al–kd(xik ,xn+),

http://www.fixedpointtheoryandapplications.com/content/2014/1/87
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and so

(
I –Al–k)d(xik ,xn+) 
 θ . ()

Note that r(Al–k)≤ r(A)l–k < , then byNeumann’s formula andA(P) ⊂ P, I–Al–k is invert-
ible (denote its inverse by (I –Al–k)–), and (I –Al–k)–(P) ⊂ P. Acting () with (I –Al–k)–,
we get d(xik ,xn+) = θ , and hence () holds by (). The proof of our claim is complete.
For all  <m < n and each x ∈ X, set

C(x,m,n) =
{
d
(
Tix,Tjx

)
:m ≤ i, j ≤ n

}
.

From (), it follows that, for each u ∈ C(x,m,n), there exists some v ∈ C(x,m– ,n) such
that u
 Av. Consequently for all  <m < n, there exists ui ∈ C(x,m– i,n) (i = , , . . . ,m–
) such that

d(xm,xn)
 Au 
 Au 
 · · · 
 Am–um–. ()

Note that um– ∈ C(x, ,n), which together with () implies that

um– 
 A(I –A)–d(x,x).

Thus by (),

d(xm,xn)
 Am(I –A)–d(x,x), ∀ <m < n. ()

It follows from () that ‖Am‖ →  (m → ∞), and hence Am(I – A)–d(x,x)
‖·‖→ θ (m →

∞), which together with Lemma  implies that Am(I –A)–d(x,x)
w→ θ (m→ ∞). More-

over by () and Lemma , we get

d(xm,xn)
w→ θ (n >m→ ∞), ()

i.e., {xn} is a Cauchy sequence of X. Therefore by the completeness of X, there exists some
x∗ ∈ X such that xn

τd→ x∗ (n→ ∞), i.e.,

d
(
xn,x∗) w→ θ (n→ ∞). ()

By (),

d
(
Tx∗,x∗) 
 d

(
xn+,Tx∗) + d

(
xn+,x∗) 
 Au + d

(
xn+,x∗), ∀n, ()

where u ∈ {d(xn,x∗),d(xn,xn+),d(x∗,Tx∗),d(xn,Tx∗),d(x∗,xn+)}.
If u = d(xn,x∗), or u = d(xn,xn+), or u = d(x∗,xn+), then by (), (), (), (H), and

Lemma , we get d(Tx∗,x∗) = θ and hence x∗ = Tx∗.
If u = d(x∗,Tx∗), then by (),

(I –A)d
(
x∗,Tx∗) 
 d

(
xn+,x∗), ∀n,

http://www.fixedpointtheoryandapplications.com/content/2014/1/87
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and hence by (), for each ε ∈ intP,

(I –A)d
(
x∗,Tx∗) � ε, ()

which implies that

(I –A)d
(
x∗,Tx∗) 
 θ . ()

Acting () with (I –A)–, by (I –A)–(P) ⊂ P we get d(Tx∗,x∗) = θ and hence x∗ = Tx∗.
If u = d(xn,Tx∗), then by (), we have

d
(
Tx∗,x∗) 
 d

(
xn+,x∗) +Ad

(
xn,Tx∗) 
 d

(
xn+,x∗) +A

[
d
(
xn,x∗) + d

(
x∗,Tx∗)], ∀n,

and so

(I –A)d
(
x∗,Tx∗) 
 d

(
xn+,x∗) +Ad

(
xn,x∗), ∀n.

Thus it follows from () and (H) that () holds for each ε ∈ intP. Consequently, we obtain
(). Acting () with (I –A)–, by (I –A)–(P) ⊂ P we get d(Tx∗,x∗) = θ and hence x∗ = Tx∗.
This shows that x∗ is a fixed point of T .
If x is another fixed point of T , then by (),

d
(
x,x∗) = d

(
Tx,Tx∗) 
 Au,

where u ∈ {d(x,x∗),d(x,Tx),d(x∗,Tx∗),d(x,Tx∗),d(x∗,Tx)}. If u = d(x,Tx),or u = d(x∗,Tx∗),
then u = θ , and hence d(x,x∗) = θ . If u = d(x,x∗), or u = d(x,Tx∗) or u = d(x∗,Tx), then
we must have u = d(x,x∗), and hence (I – A)d(x,x∗) 
 θ . Acting on it with (I – A)–, by
(I – A)–(P) ⊂ P we have d(x,x∗) = θ . This shows x∗ is the unique fixed point of T . The
proof is complete. �

Following (i) of Remark  and the proof of Theorem , we have the following result.

Corollary  (see [, Theorem .]) Let (X,d) be a complete cone metric space over a solid
cone P of a topological vector space E and T : X → X an Ilić-Rakočević’s quasi-contraction.
Then T has a unique fixed point x∗ ∈ X such that for each x ∈ X, xn

τd→ x∗,where xn = Tnx
for all n.

Remark  (i) Theorem . of [], Theorem . of [], and Theorem . of [] are special
cases of Theorem  with A = λI for λ ∈ (, ).
(ii) Let dξ = ξe ◦ d, where ξe is defined by

ξe(u) = inf{r ∈R : u ∈ re – P}, ∀u ∈ E,

for some e ∈ intP. Then dξ is a metric on X by Theorem . of []. If T is a quasi-
contraction with λ ∈ (, ), then applying Lemma . of [], we have

dξ (Tx,Ty) ≤ λmax
{
dξ (x, y),dξ (x,Tx),dξ (y,Ty),dξ (x,Ty),dξ (y,Tx)

}
, ∀x, y ∈ X, ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/87
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and hence Theorem . of [], Theorem . of [], and Theorem . of [] directly follow
from Ćirić’s result by Theorem . of [].
(iii) If T is a quasi-contraction restricted with a linear bounded mapping, one may not

be sure that there exists some λ ∈ (, ) such that () is satisfied, and so Theorem  cannot
be derived from Ćirić’s result. Therefore Theorem  indeed improves the corresponding
result of [–].
(iv) Compared with Corollary  of [], the mapping A is no longer necessarily assumed

to be contractive in Theorem .

Remark  It is not hard to see from the proof of Theorem  that Theorem  remains valid
in the setting of partial cone metric spaces.

Remark  If A is a linear unbounded mapping, then I – A may not be invertible and ()
is not satisfied, and hence the method used in Theorem  becomes invalid.

The following example shows the usability of Theorem .

Example  Let E and P be the same ones as those in Example  and X = P. Define a
mapping d : X ×X → P by

{
d(x, y) = θ , x = y,
x + y, x �= y.

Then (X,d) is a complete conemetric space. Let (Tx)(t) = (Ax)(t) =
∫ t
 x(s)ds for each x ∈ X

and each t ∈ [, ]. Then from Example  we find that A satisfies (H). It is clear that

{
d(Tx,Ty) = θ = Ad(x, y), x = y,∫ t
 [x(s) + y(s)]ds = Ad(x, y), x �= y,

i.e., () is satisfied. Since (Anx)(t) ≤ tn
n! ‖x‖∞ for each t ∈ [, ], then ‖Anx‖∞ ≤ 

n!‖x‖∞.
Moreover, from (Anx)′(t) = (An–x)(t) we have

∥∥Anx
∥∥ =

∥∥Anx
∥∥∞ +

∥∥(
Anx

)′∥∥∞ ≤
(

n!

+


(n – )!

)
‖x‖∞ ≤

(

n!

+


(n – )!

)
‖x‖,

which implies that ‖An‖ ≤ 
n! +


(n–)! . ByGelfand’s formula, r(A) = limn→∞ n√‖An‖ =  since

limn→∞ 
n√n! = . Thus all the assumptions of Theorem  are satisfied, and hence T has a

unique fixed point. In fact, θ is the unique fixed point of T .
Note that if T is not an Ilić-Rakočević’s quasi-contraction and A is not a contractive

linear boundedmapping (let x(t) = cos t for each t ∈ [, ], then (Ax)(t) = sin t ≥ cos t = x(t)
for each t ∈ [π

 , ], and so Ax� x, which implies that (I – A)(P) �⊂ P), then the fixed point
results of [–] are not applicable in this case.
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