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Abstract
Recently, Khamsi and Hussain (Nonlinear Anal. 73:3123-3129, 2010) discussed a
natural topology defined on any metric type space and noted that this topology
enjoys most of the metric topology like properties. In this paper, we define
topologically complete type metrizable space and prove that being of metrizability
type is preserved under a countable Cartesian product and establish the fact that any
Gδ set in a complete metric type space is a topologically metrizable type space. Next,
we introduce the concept of wt-distance on a metric type space and prove some
fixed point theorems in a partially ordered metric type space with some weak
contractions induced by the wt-distance.
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1 Preliminaries
The concept of metric type or b-metric space was introduced and studied by Bakhtin []
and Czerwik []. Since then several papers have dealt with fixed point theory for single-
valued and multivalued operators in b-metric and cone b-metric spaces (see [–] and
references therein). Khmasi and Hussain [] and Hussain and Shah [] discussed KKM
mappings and related results in metric and cone metric type spaces.

Definition . Let X be a set. Let D : X ×X → [,∞) be a function which satisfies
() D(x, y) =  if and only if x = y;
() D(x, y) =D(y,x), for any x, y ∈ X ;
() D(x, y)≤ K (D(x, z) +D(z, y)), for any points x, y, z ∈ X , for some constant K ≥ .

The pair (X,D) is called a metric type space.

Definition . Let (X,D) be a metric type space.
() The sequence {xn} converges to x ∈ X if and only if limn→∞ D(xn,x) = .
() The sequence {xn} is Cauchy if and only if limn,m→∞ D(xn,xm) = .

(X,D) is complete if and only if any Cauchy sequence in X is convergent.

Example . Let X be the set of Lebesgue measurable functions on [, ] such that

∫ 



∣∣f (x)∣∣ dx < ∞.
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Define D : X ×X → [,∞) by

D(f , g) =
∫ 



∣∣f (x) – g(x)
∣∣ dx.

Then D satisfies the following properties:
() D(f , g) =  if and only if f = g ;
() D(f , g) =D(g, f ), for any f , g ∈ X ;
() D(f , g) ≤ (D(f ,h) +D(h, g)), for any functions f , g,h ∈ X .

Example . Let (R, | · |) be metric space. Define
() D(x, y) = |x – y| for any x, y ∈ X ;
() D(x, y) = |x – y| + | x – 

y |, for any x, y ∈ X .
Then (R,Di), i = ,  are metric type spaces with K = .

Definition . Let (X,D) be a metric type space. A subset A⊂ X is said to be open if and
only if for any a ∈ A, there exists ε >  such that the open ball Bo(a, ε) ⊂ A. The family of
all open subsets of X will be denoted by τ .

Theorem . ([]) τ defines a topology on (X,D).

Theorem . ([]) Let (X,D) be a metric type space and τ be the topology defined above.
Then for any nonempty subset A ⊂ X we have
() A is closed if and only if for any sequence {xn} in A which converges to x, we have

x ∈ A;
() if we define A to be the intersection of all closed subsets of X which contains A, then

for any x ∈ A and for any ε > , we have

Bo(a, ε)∩A 	= ∅.

Theorem . ([]) Let (X,D) be a metric type space and τ be the topology defined above.
Let ∅ 	= A⊂ X. The following properties are equivalent:
() A is compact;
() For any sequence {xn} in A, there exists a subsequence {xnk } of {xn} which converges,

and limnk→∞ xnk ∈ A.

Definition . The subset A is called sequentially compact if and only if for any sequence
{xn} in A, there exists a subsequence {xnk } of {xn} which converges, and limnk→∞ xnk ∈ A.
Also A is called totally bounded if for any ε >  there exits x,x, . . . ,xn ∈ A such that

A⊂ Bo(x, ε)∪ · · · ∪ Bo(xn, ε).

Theorem . ([]) Let (X,D) be ametric type space and τ be the topology defined above.
Let ∅ 	= A⊂ X. The following properties are equivalent:
() A is compact if and only if A is sequentially compact.
() If A is compact, then A is totally bounded.

Corollary . Every closed subset of a complete metric type space is complete.
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Theorem . ([]) Let (X,D) be a metric type space and suppose that {xn} and {yn}
converge to x, y ∈ X, respectively. Then we have
()


KD(x, y)≤ lim inf

n
D(xn, yn) ≤ lim sup

n
D(xn, yn) ≤ KD(x, y).

In particular, if x = y, then limn D(xn, yn) = .
() Moreover, for each z ∈ X , we have


K
D(x, z)≤ lim inf

n
D(xn, z) ≤ lim sup

n
D(xn, z) ≤ KD(x, y).

2 Topologically complete metrizable type spaces
Lemma . Let (X,D) be a metric type space and let λ ∈ (, ) then there exists a metric
type E on X such that E(x, y) ≤ λ, for each x, y ∈ X, and E and D induce the same topology
on X.

Proof We define E(x, y) =min{λ,D(x, y)}. We claim that E is metric type on X. The prop-
erties () and () are immediate from the definition. For the triangle inequality, suppose
that x, y, z ∈ X. Then E(x, z) ≤ λ and so E(x, z) ≤ E(x, y) + E(y, z) when either E(x, y) = λ or
E(y, z) = λ. The only remaining case is when E(x, y) = D(x, y) < λ and E(y, z) = D(y, z) < λ.
But D(x, z) ≤ K (D(x, y) + D(y, z)) and E(x, z) ≤ D(x, z) and so E(x, z) ≤ K (E(x, y) + E(y, z)).
Thus E is a metric type on X. It only remains to show that the topology induced by E is the
same as that induced by D. But we have E(xn,x) −→  if and only if min{λ,D(xn,x)} −→ 
if and only if D(xn,x)−→ , and we are done. �

The metric type E in the above lemma is said to be bounded by λ.

Definition . Let (X,D) be a metric type space, x ∈ X and ∅ 	= A ⊆ X. We define

�(x,A) = inf
{
D(x, y) : y ∈ A

}
.

Definition . A topological space is called a (topologically complete) metrizable type
space if there exists a (topologically complete) metric type D inducing the given topology
on it.

Example . Let X = (, ]. The metric type space (X,D) is not complete because the
Cauchy sequence {/n} in this space is not convergent. Now, if we consider (X,D). It is
straightforward to show that (X,D) is complete. Since xn tend to x with respect to the
metric type D if and only if |xn – x| −→  if and only if xn tend to x with respect to the
metric type D, then D and D are equivalent. Hence the metric type space (X,D) is
topologically complete metrizable type.

Lemma . Metrizability type is preserved under countable Cartesian product.

Proof Without loss of generality we may assume that the index set is N. Let {(Xn,Dn) : n ∈
N} be a collection ofmetrizable type spaces. Let τn be the topology induced byDn onXn for

http://www.fixedpointtheoryandapplications.com/content/2014/1/88
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n ∈ N and let (X, τ ) be the Cartesian product of {(Xn, τn) : n ∈ N} with product topology.
We have to prove that there is a metric type D on X which induces the topology τ . By
the above lemma, we may suppose that Dn is bounded by –n for all n ∈ N, otherwise we
replaceDn by anothermetric type which induces the same topology andwhich is bounded
by –n. Points of X =

∏
n∈N Xn are denoted as sequences x = {xn} with xn ∈ Xn for n ∈ N.

Define D(x, y) =
∑∞

n=Dn(xn, yn), for each x, y ∈ X. First note that D is well defined since∑i
n= –n is convergent. Also D is a metric type on X because each Dn is of a metric type.

Let U be the topology induced by the metric type D. We claim that U coincides with τ . If
G ∈ U and x = {xn} ∈ G, then there exists r >  such that B(x, r) ⊂ G. Now choose N ∈ N

such that
∑i

n= –n <
r
 . For each n = , , . . . ,N, let Vn = B(xn, r

N ), where the ball is with
respect to the metric type Dn. Let Vn = Xn for n > N. Put V =

∏
n∈N Vn, then x ∈ V and

V is an open set in the product topology τ on X. Furthermore V ⊂ B(x, r), since for each
y ∈ V

D(x, y) =
∞∑
n=

Dn(xn, yn)

=
N∑
n=

Dn(xn, yn) +
∞∑

n=N+

Dn(xn, yn)

≤ N
(

r
N

)
+

∞∑
n=N+

–n

<
r

+
r

= r.

Hence V ⊂ B(x, r)⊂G. Therefore G is open in the product topology. Conversely suppose
G is open in the product topology and let x = {xn} ∈ G. Choose a standard basic open
set V such that x ∈ V and V ⊂ G. Let V =

∏
n∈N Vn, where each Vn is open in Xn and

Vn = Xn for all n >N. For n = , , . . . ,N, let rn =�n(xn,Xn –Vn), if Xn 	= Vn, and rn = –n,
otherwise, let r = min{r, r, . . . , rN}. We claim that B(x, r) ⊂ V . If y = {yn} ∈ B(x, r), then
D(x, y) =

∑∞
n=Dn(xn, yn) < r and so Dn(xn, yn) < r ≤ rn for each n = , , . . . ,N. Then yn ∈

Vn, for n = , , . . . ,N. Also for n >N, yn ∈ Vn = Xn. Hence y ∈ V and so B(x, r, t)⊂ V ⊂G.
Therefore G is open with respect to the metric type topology and τ ⊂ U . Hence τ and U
coincide. �

Theorem . An open subspace of a complete metrizable type space is a complete metriz-
able type space.

Proof Let (X,D) be a complete metric type space and G an open subspace of X. If the
restriction of D to G is not complete we can replace D on G by another metric type as
follows. Define f : G −→ R+ by f (x) = 

�(x,X–G) (f is undefined if X – G is empty, but then
there is nothing to prove). For x, y ∈G define

E(x, y) =D(x, y) +
∣∣f (x) – f (y)

∣∣.
It is clear that D is of metric type on G.
We show that E and D are of the type of equivalent metrics on G. We do this by

showing that for arbitrary sequence {xn} converges to x ∈ X, D(xn,xm) −→  if and

http://www.fixedpointtheoryandapplications.com/content/2014/1/88
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only if E(xn,xm) −→ . Since E(x, y) ≥ D(x, y) for all x, y ∈ G, D(xn,xm) −→  whenever
E(xn,xm) −→ . To prove the converse, let D(xn,xm) −→ , and using Theorem ., we
have

lim sup
n

�(xn,X –G) = lim sup
n

(
inf

{
D(xn, y) : y ∈ X –G

})

≤ lim sup
n

D(xn, y)

= KD(x, y).

Therefore

lim sup
n

�(xn,X –G) ≤ K�(x,X –G). ()

On the other hand, there exists a y ∈ X –G, the positive sequence {an} converges to zero,
and n ∈ N such that for every n≥ n we have


K

(
�(xn,X –G) + an

) ≥D(xn, y).

Then

lim inf
n


K �(xn,X –G) ≥ lim inf

n
D(xn, y)

≥ 
K
D(x, y)

≥ 
K

�(x,X –G),

and

lim inf
n

�(xn,X –G) ≥ K�(x,X –G). ()

By () and (), we have

lim
n

�(xn,X –G) = K�(x,X –G).

This implies |f (xn)– f (xm)| −→ .HenceE(xn,xm) −→ . ThereforeE andD are equivalent.
Next we show that E is a complete metric type. Suppose that {xn} is a Cauchy sequence in
G with respect to E. Since for each m,n ∈ N, E(xm,xn) ≥ D(xm,xn), therefore {xn} is also
a Cauchy sequence with respect to D. By completeness of (X,D), {xn} converges to point
p in X. We claim that p ∈ G. Assume otherwise, then for each n ∈ N, if p ∈ X – G and
D(xn,p) ≥ �(xn,X –G). Therefore


�(xn,X –G)

≥ 
D(xn,p)

.

That is

f (xn) ≥ 
D(xn,p)

.
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Therefore as n −→ ∞, we get f (xn) −→ ∞. On the other hand, |f (xn) – f (xm)| ≤ E(xm,xn),
for every m,n ∈ N, that is, {f (xn)} is a bounded sequence. This contradiction shows that
p ∈ G. Hence {xn} converges to p with respect to E and (G,E) is a complete metrizable
type space. �

Theorem . (Alexandroff) A Gδ set in a complete metric type space is a topologically
complete metrizable type space.

Proof Let (X,D) be a complete metric type space and G be a Gδ set in X, that is, G =⋂∞
n=Gn, where eachGn is open inX. By the above theorem, there exists a completemetric

type Dn on Gn and we may assume that Dn is bounded by –n. Let H be the Cartesian
product

∏∞
n=Gn with the product topology. ThenH is a complete metrizable type space.

Now, for each n ∈ N let fn :G −→Gn be the inclusionmap. So the evaluationmap e :G −→
H is an embedding. Image of e is the diagonal DG which is a closed subset of H and by
Corollary .,DG is complete. ThusDG is a complete metrizable type space and so is G
which is homeomorphic to it. �

3 wt-Distance
Kada et al. [] introduced in , the concept ofw-distance on ametric space and proved
some fixed point theorems. In this section, we introduce the definition of a wt-distance
and we state a lemma which we will use in the main sections of this work.

Definition . Let (X,D) be a metric type space with constant K ≥ . Then a function
P : X ×X −→ [,∞) is called a wt-distance on X if the following are satisfied:
(a) P(x, z) ≤ K (P(x, y) + P(y, z)) for any x, y, z ∈ X ;
(b) for any x ∈ X , P(x, ·) : X −→ [,∞) is K-lower semi-continuous;
(c) for any ε > , there exists δ >  such that P(z,x) ≤ δ and P(z, y) ≤ δ imply D(x, y)≤ ε.

Let us recall that a real-valued function f defined on a metric type space X is said to
be lower K-semi-continuous at a point x in X if either lim infxn→x f (xn) = ∞ or f (x) ≤
lim infxn→x Kf (xn), whenever xn ∈ X for each n ∈N and xn → x [].
Let us give some examples of wt-distance.

Example . Let (X,D) be a metric type space. Then the metric D is a wt-distance on X.

Proof (a) and (b) are obvious. To show (c), for any ε > , put δ = ε
K . Then we see that

P(x, z) ≤ δ and P(z, y) ≤ δ imply D(x, y)≤ ε. �

Example . Let X = R and D(x, y) = (x – y). Then the function P : X × X −→ [,∞)
defined by P(x, y) = |x| + |y| for every x, y ∈ X is a wt-distance on X.

Proof (a) and (b) are obvious. To show (c), for any ε > , put δ = ε
 . Then we have

D(x, y) = (x – y) ≤ |x| + |y| ≤ P(z,x) + P(z, y) ≤ δ + δ = ε. �

Example . Let X = R and D(x, y) = (x – y). Then the function P : X × X −→ [,∞)
defined by P(x, y) = |y| for every x, y ∈ X is a wt-distance on X.

http://www.fixedpointtheoryandapplications.com/content/2014/1/88
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Proof (a) and (b) are obvious. To show (c), for any ε > , put δ = ε
 . Then we have

D(x, y) = (x – y) ≤ |x| + |y| = P(z,x) + P(z, y) ≤ δ + δ = ε. �

Lemma . Let (X,D) be a metric type space with constant K ≥  and P be a wt-distance
on X.Let {xn} and {yn} be sequences in X, let {αn} and {βn} be sequences in [,∞) converging
to zero, and let x, y, z ∈ X. Then the following hold:
() If P(xn, y) ≤ αn and P(xn, z) ≤ βn for any n ∈N, then y = z. In particular, if P(x, y) = 

and P(x, z) = , then y = z;
() if P(xn, yn) ≤ αn and P(xn, z) ≤ βn for any n ∈N, then D(yn, z) → ;
() if P(xn,xm) ≤ αn for any n,m ∈ N with m > n, then {xn} is a Cauchy sequence;
() if P(y,xn) ≤ αn for any n ∈N, then {xn} is a Cauchy sequence.

Proof The proof is similar to []. �

4 Fixed point theorems
We introduce first the following concept.

Definition . Suppose (X,≤) is a partially ordered set and f : X → X be a self mapping
on X. We say f is inverse increasing if for x, y ∈ X,

f (x)≤ f (y) implies x ≤ y. ()

Our first main result is a fixed point theorem for graphic contractions on a partially
ordered metric space endowed with a wt-distance.

Theorem . Let (X,≤) be a partially ordered set and let D : X ×X → [,∞) be a metric
type on X such that (X,D) is a complete metric type space with constant K ≥ . Suppose
that P is a wt-distance in (X,D). Let A : X → X be a non-decreasing mapping and there
exists r ∈ [, ) such that

P
(
Ax,Ax

) ≤ rP(x,Ax), for all x ≤ Ax, ()

and Kr < . Suppose also that:
(i) for every x ∈ X with x≤ Ax

inf
{
P(x, y) + P(x,Ax)

}
> , for every y ∈ X with y 	= Ay; ()

(ii) there exists x ∈ X such that x ≤ Ax.
Then A has a fixed point in X .

Proof If Ax = x, then the proof is finished. Suppose that

Ax 	= x.

Since x ≤ Ax and A is non-decreasing, we obtain

x ≤ Ax ≤ Ax ≤ · · · ≤ An+x ≤ · · · .

http://www.fixedpointtheoryandapplications.com/content/2014/1/88


Hussain et al. Fixed Point Theory and Applications 2014, 2014:88 Page 8 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/88

Hence, for each n ∈N we have

P
(
Anx,An+x

) ≤ rnP(x,Ax). ()

Then, for n ∈ N with m > n, we successively have

P
(
Anx,Amx

) ≤ KP
(
Anx,An+x

)
+KP

(
An+x,An+x

)
+ · · ·

+Km–n–[P(
Am–x,Am–x

)
+ P

(
Am–x,Amx

)]
≤ rnKP(x,Ax) + · · · + rm–Km–n–P(x,Ax)

≤ Krn
(
 +Kr +Kr + · · · )P(x,Ax)

≤ Krn

 –Kr
P(x,Ax).

By Lemma .(), we conclude that {Anx} is Cauchy sequence in (X,D). Since (X,D) is a
complete metric type space, there exists z ∈ X such that

lim
n→∞Anx = z.

Let n ∈ N be an arbitrary but fixed. Then since {Anx} converges to z in (X,D) and
P(Anx, ·) is K-lower semi-continuous, we have

P
(
Anx, z

) ≤ lim inf
m→∞ KP

(
Anx,Amx

) ≤ Krn

 –Kr
P(x,Ax).

Assume that z 	= Az. Since Anx ≤ An+x, by (), we have

 < inf
{
P
(
Anx, z

)
+ P

(
Anx,An+x

)}

≤ inf

{
Krn

 –Kr
P(x,Ax) + rnP(x,Ax)

}

= .

This is a contradiction. Therefore, we have z = Az. �

Another result of this type is the following.

Theorem . Let (X,≤) be a partially ordered set, let D : X × X → [,∞) be of a metric
type on X such that (X,D) is a complete metric type space with constant K ≥ . Suppose
that P is a wt-distance in (X,D). Let A : X → X be a non-decreasing mapping and there
exists r ∈ [, ) such that

P
(
Ax,Ax

) ≤ rP(x,Ax), for all x ≤ Ax ()

and Kr < . Assume that one of the following assertions holds:
(i) for every x ∈ X with x≤ Ax

inf
{
P(x, y) + P(x,Ax)

}
> , for every y ∈ X with y 	= Ay; ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/88
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(ii) if both {xn} and {Axn} converge to y, then y = Ay;
(iii) A is continuous.

If there exists x ∈ X with x ≤ Ax, then A has a fixed point in X .

Proof The case (i), was proved in Theorem ..
Let us prove first that (ii) ⇒ (i). Assume that there exists y ∈ X with y 	= Ay such that

inf
{
P(x, y) + P(x,Ax) : x≤ Ax

}
= .

Then there exists {zn} ∈ X such that zn ≤ Azn and

lim
n→∞

{
P(zn, y) + P(zn,Azn)

}
= .

Then P(zn, y) −→  and P(zn,Azn) −→ . By Lemma ., we have that Azn −→ y. We also
have

P
(
zn,Azn

) ≤ P(zn,Azn) + P
(
Azn,Azn

)
≤ ( + r)P(zn,Azn) −→ .

Again by Lemma ., we get Azn −→ y. Put xn = Azn. Then both {xn} and {Axn} converges
to y. Thus, by (ii) we have y = Ay. Thus (ii) ⇒ (i) holds.
Now, we show that (iii)⇒ (ii). Let A be continuous. Further assume that {xn} and {Axn}

converges to y. Then we have

Ay = A
(
lim
n→∞xn

)
= lim

n→∞xn = y. �

5 Common fixed point theorem for commutingmappings
The following theorem was given by Jungck [] and it represents a generalization of the
Banach contraction principle in complete metric spaces.

Theorem . Let f be a continuous self mapping on a complete metric space (X,d) and let
g : X −→ X be another mapping, such that the following conditions are satisfied:
(a) g(X) ⊆ f (X);
(b) g commutes with f ;
(c) d(g(x), g(y))≤ kd(f (x), f (y)), for all x, y ∈ X and for some  ≤ k < .

Then f and g have a unique common fixed point.

The next example shows that if the mapping f : X → X is continuous with respect to a
metric type D on X and g : X → X satisfies the condition

P
(
g(x), g(y)

) ≤ rP
(
f (x), f (y)

)
, for all x, y ∈ X and some r ∈ [, ),

then, in general, g may be not continuous in (X,D).

Example . Let X := (R, | · |) be a normed linear space. Consider Example . with wt-
distance defined by

P(x, y) = |y| for every x, y ∈R.

http://www.fixedpointtheoryandapplications.com/content/2014/1/88
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Consider the functions f and g defined by f (x) =  and

g(x) =

⎧⎨
⎩
, if x ∈Q,

, if x ∈R \Q.

Then

P
(
g(x), g(y)

)
=

∣∣g(y)∣∣ ≤ ≤
(



)
P
(
f (x), f (y)

)
=

|f (y)|


=


.

Definition . Let (X,≤) be a partially ordered set and g,h : X → X. By definition, we say
that g is h-non-decreasing if for x, y ∈ X,

h(x)≤ h(y) implies g(x)≤ g(y). ()

Our next result is a generalization of the above mentioned result of Jungck [], for the
case of a weak contraction with respect to a wt-distance.

Theorem . Let (X,≤) be a partially ordered set, let D : X×X → [,∞) be a metric type
on X such that (X,D) is a complete metric type space with constant K ≥ . Suppose that P
is a wt-distance on X . Let f , g : X −→ X be mappings that satisfy the following conditions:
(a) g(X) ⊆ f (X);
(b) g is f -non-decreasing and f is inverse increasing;
(c) g commutes with f and f , g are continuous in (X,D);
(d) P(g(x), g(y)) ≤ rP(f (x), f (y)) for all x, y ∈ X with x≤ y and some  < r <  such that

rK < .
(e) there exists x ∈ X such that:

(i) f (x)≤ g(x) and
(ii) f (x)≤ f (g(x)).

Then f and g have a common fixed point u ∈ X.Moreover, if g(v) = g(v) for all v ∈ X, then
P(u,u) = .

Proof We claim that for every f (x)≤ g(x)

inf
{
P
(
f (x), g(x)

)
+ P

(
f (x), z

)
+ P

(
g(x), z

)
+ P

(
g(x), g

(
g(x)

))}
> 

for every z ∈ X with g(z) 	= g(g(z)). For the moment suppose the claim is true. Let x ∈ X
with f (x) ≤ g(x). By (a) we can find x ∈ X such that f (x) = g(x). By induction, we can
define a sequence {xn}n ∈ X such that

f (xn) = g(xn–). ()

Since f (x) ≤ g(x) and f (x) = g(x), we have

f (x) ≤ f (x). ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/88
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Then from (b),

g(x)≤ g(x),

that means, by (), that f (x) ≤ f (x). Again by (b) we get

g(x) ≤ g(x),

that is, f (x)≤ f (x). By this procedure, we obtain

g(x)≤ g(x)≤ g(x) ≤ g(x) ≤ · · · ≤ g(xn)≤ g(xn+) ≤ · · · . ()

Hence from () and () we have f (xn–) ≤ f (xn) and by () we have xn– ≤ xn. By induction
we get

P
(
f (xn), f (xn+)

)
= P

(
g(xn–), g(xn)

)
≤ rP

(
f (xn–), f (xn)

)
≤ · · · ≤ rnP

(
f (x), f (x)

)

for n = , , . . . . This implies that, for m,n ∈N with m > n,

P
(
f (xn), f (xm)

)
≤ Km–n–[P(f (xm–, f (xm)

)
+ p

(
f (xm–), f (xm–)

)]
+ · · · +KP

(
f (xn), f (xn+)

)
< Krn

(
 +Kr +Kr + · · · )P(

f (x), f (x)
)

≤ Krn

 –Kr
P
(
f (x), f (x)

)
.

Thus, by Lemma ., we find that {f (xn)} is a Cauchy sequence in (X,D). Since (X,D) is
complete, there exists y ∈ X such that limn→∞ f (xn) = y. As a result the sequence g(xn–) =
f (xn) tends to y as n→ +∞ and hence {g(f (xn))}n converges to g(y) as n→ +∞. However,
g(f (xn)) = f (g(xn)), by the commutativity of f and g , implies that f (g(xn)) converges to f (y)
as n → +∞. Because limit is unique, we get f (y) = g(y) and, thus, f (f (y)) = f (g(y)). On the
other hand, by K-lower semi-continuity of P(x, ·) we have, for each n ∈N,

P
(
f (xn), y

) ≤ lim inf
m→∞ P

(
f (xn), f (xm)

) ≤ Krn

 –Kr
P
(
f (x), f (x)

)
,

P
(
g(xn), y

) ≤ lim inf
m→∞ P

(
f (xn+), f (xm)

) ≤ Krn

 –Kr
P
(
f (x), f (x)

)
.

Notice that, by (), (), and (), we obtain f (x) ≤ f (f (x)) and thus, by (), we get g(x) ≤
g(f (x)). Then

f (x) ≤ g
(
f (x)

)
= f

(
g(x)

)
= f

(
f (x)

)
.

By () we get g(x) ≤ g(f (x)) and thus f (x) ≤ f (g(x)). Continuing this process we get

f (xn) ≤ f
(
g(xn)

)
, n = , , , , . . . ,

http://www.fixedpointtheoryandapplications.com/content/2014/1/88
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and by () we get

xn ≤ g(xn), n = , , , , . . . .

Using now the condition (d), we have

P
(
g(xn), g

(
g(xn)

)) ≤ rP
(
f (xn), f

(
g(xn)

))
= rP

(
g(xn–), g

(
g(xn–)

))
≤ rP

(
f (xn–), f

(
g(xn–)

))
= rP

(
g(xn–), g

(
g(xn–)

))
≤ · · · ≤ rnP

(
f (x), g

(
f (x)

))
.

We will show that g(y) = g(g(y)). Suppose, by contradiction, that g(y) 	= g(g(y)). Then we
have

 < inf
{
P
(
f (x), g(x)

)
+ P

(
f (x), y

)
+ P

(
g(x), y

)
+ P

(
g(x), g

(
g(x)

))
: x ∈ X

}
≤ inf

{
P
(
f (xn), g(xn)

)
+ P

(
f (xn), y

)
+ P

(
g(xn), y

)
+ P

(
g(xn), g

(
g(xn)

))
: n ∈N

}
= inf

{
P
(
f (xn), f (xn+)

)
+ P

(
f (xn), y

)
+ P

(
g(xn), y

)
+ P

(
g(xn), g

(
g(xn)

))
: n ∈N

}

≤ inf
n

{
rnP

(
f (x), f (x)

)
+

Krn

 –Kr
P
(
f (x), f (x)

)
+
Krn+

 –Kr
P
(
f (x), f (x)

)

+ rnP
(
f (x), g

(
f (x)

))
: n ∈N

}
= .

This is a contradiction. Therefore g(y) = g(g(y)). Thus, g(y) = g(g(y)) = f (g(y)). Hence u :=
g(y) is a common fixed point of f and g .
Furthermore, since g(v) = g(g(v)) for all v ∈ X, we have

P
(
g(y), g(y)

)
= P

(
g
(
g(y)

)
, g

(
g(y)

))
≤ rP

(
f
(
g(y)

)
, f

(
g(y)

))
= rP

(
g(y), g(y)

)
,

which implies that P(g(y), g(y)) = .
Now it remains to prove the initial claim. Assume that there exists y ∈ X with g(y) 	=

g(g(y)) and

inf
{
P
(
f (x), g(x)

)
+ P

(
f (x), y

)
+ p

(
g(x), y

)
+ Pp

(
g(x), g

(
g(x)

))
: x ∈ X

}
= .

Then there exists {xn} such that

lim
n→∞

{
P
(
f (xn), g(xn)

)
+ P

(
f (xn), y

)
+ P

(
g(xn), y

)
+ P

(
g(xn), g

(
g(xn)

))}
= .

Since P(f (xn), g(xn)) −→  and P(f (xn), y) −→ , by Lemma ., we have

lim
n→∞ g(xn) = y. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/88
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Also, since P(g(xn), y) −→  and P(g(xn), g(g(xn))) −→ , by Lemma ., we have

lim
n→∞ g

(
g(xn)

)
= y. ()

By (), (), and the continuity of g we have

g(y) = g
(
lim
n
g(xn)

)
= lim

n
g
(
g(xn)

)
= y.

Therefore, g(y) = g(g(y)), which is a contradiction. Hence, if g(y) 	= g(g(y)), then

inf
{
P
(
f (x), g(x)

)
+ P

(
f (x), y

)
+ P

(
g(x), y

)
+ P

(
g(x), g

(
g(x)

))
: x ∈ X

}
> . �

Example . Let X := (R, | · |) be a normed linear space. Consider Example . with wt-
distance defined by

P(x, y) = |y| for every x, y ∈R.

Consider the functions f and g defined by f (x) = x and g(x) =
√
x. Then

P
(
g(x), g(y)

)
=

∣∣g(y)∣∣ = y ≤
(



)
P
(
f (x), f (y)

)
=

|f (y)|


=
y


.

Put K = . Then all conditions of Theorem . hold and u =  is the common fixed point
of f and g and P(, ) = || = .
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