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Abstract
In this paper, we study the existence of the random fixed points under mild
continuity assumptions. The main theorems consider the almost lower
semicontinuous operators defined on Banach spaces and also operators having
properties weaker than lower semicontinuity. Our results either extend or improve
corresponding ones present in literature.
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1 Introduction
Fixed point theorems are a very powerful tool of the current mathematical applications.
These have been extended and generalized to study a wide class of problems arising in
mechanics, physics, economics and equilibrium theory, engineering sciences, etc. New
results concerning the deterministic or random casewere obtained, for instance, in [–].
Themain aim of this work is to establish randomfixed point theorems undermild conti-

nuity assumptions. Results in this direction have also been obtained, for example, in [–]
or []. Our research enables us to improve some theorems obtained recently. We prove
the existence of the random fixed points for the lower semicontinuous operators and for
operators having properties weaker than lower semicontinuity. By using the approxima-
tion method which is due to Ionescu Tulcea (see []), we provide a new proof for the
random version of Ky Fan’s fixed point theorem. Since the majority of our results are ob-
tained for operators defined on Fréchet spaces, we refer the reader to the new literature
concerning this topic. For instance, the authors worked also on Fréchet spaces in [–].
The rest of the paper is organized as follows. In the following section, some notational

and terminological conventions are given. We also present, for the reader’s convenience,
some results on continuity and measurability of the operators. The random fixed point
theorems for operators with properties weaker than lower semicontinuity are stated in
Section . Section  contains random fixed point results concerning the case of lower
semicontinuous operators. Section  is dedicated to the provision of a new proof for the
random version of Ky Fan’s fixed point theorem. Section  presents the conclusions of our
research.

2 Notation and definition
Throughout this paper, we shall use the following notation:
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D denotes the set of all non-empty subsets of the set D. If D ⊂ Y , where Y is a topolog-
ical space, clD denotes the closure of D. We also denote C(Y ) the family of all non-empty
and closed subsets of Y . A paracompact space is a Hausdorff topological space in which
every open cover admits an open locally finite refinement. Metrizable and compact topo-
logical spaces are paracompact.
For the reader’s convenience, we review a few basic definitions and results from conti-

nuity and measurability of correspondences.
Let X, Y be topological spaces and T : X → Y be a correspondence. The graph of

T : X → Y is the set Gr(T) := {(x, y) ∈ X × Y : y ∈ T(x)}. T is said to be upper semicon-
tinuous if, for each x ∈ X and each open set V in Y with T(x) ⊂ V , there exists an open
neighborhoodU of x inX such that T(y) ⊂ V for each y ∈U .T is said to be lower semicon-
tinuous if, for each x ∈ X and each open set V in Y with T(x)∩V �= ∅, there exists an open
neighborhood U of x in X such that T(y) ∩ V �= ∅ for each y ∈ U . T : X → Y has open
lower sections if T–(y) := {x ∈ X : y ∈ T(x)} is open in X for each y ∈ Y . A correspondence
with open lower sections is lower semicontinuous.
Let (X,d) be a metric space, C be a non-empty subset of X and T : C → X be a corre-

spondence.
We will use the following notations. We denote by B(x, r) = {y ∈ C : d(y,x) < r}. If B

is a subset of X, then we will denote B(B, r) = {y ∈ C : d(y,B) < r}, where d(y,B) =
infx∈B d(y,x).
We say that T is hemicompact if each sequence {xn} in C has a convergent subsequence,

whenever d(xn,T(xn))→  as n→ ∞.
Let now (�,F ,μ) be a complete, finite measure space, and Y be a topological space.

The correspondence T : � → Y is said to have ameasurable graph if Gr(T) ∈ F ⊗ α(Y ),
where α(Y ) denotes the Borel σ -algebra on Y and ⊗ denotes the product σ -algebra. The
correspondenceT :� → Y is said to be lowermeasurable if, for every open subsetV of Y ,
the set T–(V ) = {ω ∈ � : T(ω)∩V �= ∅} is an element ofF . This notion of measurability is
also called in the literature weak measurability or justmeasurability, in comparison with
strong measurability: the correspondence T : � → Y is said to be strong measurable if,
for every closed subset V of Y , the set {ω ∈ � : T(ω) ∩ V �= ∅} is an element of F . In the
case when Y is separable, the strongmeasurability coincides with the lower measurability.
Recall (see Debreu [], p.) that if T : � → Y has a measurable graph, then T is

lower measurable. Furthermore, if T(·) is closed valued and lower measurable, then T :
� → Y has a measurable graph.
A mapping T : � × X → Y is called a random operator if, for each x ∈ X, the mapping

T(·,x) :� → Y is measurable. Similarly, a correspondence T :� ×X → Y is also called a
random operator if, for each x ∈ X, T(·,x) :� → Y is measurable. Ameasurable mapping
ξ : � → Y is called a measurable selection of the operator T : � → Y if ξ (ω) ∈ T(ω) for
eachω ∈ �. Ameasurablemapping ξ :� → Y is called a randomfixed point of the random
operator T : � × X → Y (or T : � × X → Y ) if for every ω ∈ �, ξ (ω) = T(ω, ξ (ω)) (or
ξ (ω) ∈ T(ω, ξ (ω))).
We will need the following measurable selection theorem in order to prove our results.

Proposition . (Kuratowski-Ryll-Nardzewski selection theorem []) Aweaklymeasur-
able correspondence with non-empty closed values from a measurable space into a Polish
space admits a measurable selector.
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3 Random fixed point theorems for operators with properties weaker than
lower semicontinuity

This section is mainly dedicated to establishing the random fixed point theorems con-
cerning the almost lower semicontinuous operators and other types of operators having
properties weaker than lower semicontinuity. Our results are new in literature. They can
be compared with the ones stated in [].
Firstly we recall the following statement, which will be useful to prove the main result

of this section.

Lemma . (Theorem . in []) Let C be a closed separable subset of a complete metric
space X, and let T : � ×C → C(X) be a continuous hemicompact random operator. If, for
each ω ∈ �, the set F(ω) := {x ∈ C : x ∈ T(ω,x)} �= ∅, then T has a random fixed point.

Now, we are presenting the almost lower semicontinuous correspondences.
Let X be a topological space and Y be a normed linear space. The correspondence T :

X → Y is said to be almost lower semicontinuous (a.l.s.c.) at x ∈ X (see []), if, for any
ε > , there exists a neighborhood U(x) of x such that

⋂
z∈U(x) B(T(z); ε) �= ∅.

T is almost lower semicontinuous if it is a.l.s.c. at each x ∈ X.
If � is a non-empty set, we say that the operator T : � × X → Y is almost lower semi-

continuous if, for each ω ∈ �, T(ω, ·) is almost lower semicontinuous.
In , Deutsch and Kenderov [] presented a remarkable characterization of a.l.s.c.

correspondences as follows.

Lemma . (see []) Let X be a paracompact topological space, Y be a normed vector
space and T : X → Y be a correspondence having convex values. Then T is a.l.s.c. if and
only if, for each ε > , T admits a continuous ε-approximate selection f ; that is, f : X → Y
is a continuous single valued function such that f (x) ∈ B(T(x); ε) for each x ∈ X.

The next theorem is the main result of this section. It states the existence of the random
fixed points for the almost lower semicontinuous operators defined on Banach spaces.

Theorem . Let (�,F ) be a measurable space, C be a compact convex separable subset
of a Banach space X and let T :� ×C → C be a random operator. Suppose that, for each
ω ∈ �, T(ω, ·) is almost lower semicontinuous with non-empty convex closed values and
(T(ω, ·))– : C → C is closed valued.
Then T has a random fixed point.

Proof Firstly, let us define Tn : � × C → C by Tn(ω,x) = B(T(ω,x); /n) for each (ω,x) ∈
� × C. Since for each ω ∈ �, T(ω, ·) is almost lower semicontinuous, according to
Lemma ., for each n ∈ N , there exists a continuous function fn(ω, ·) : C → C such that
fn(ω,x) ∈ Tn(ω,x) for each x ∈ C. Brouwer-Schauder fixed point theorem assures that, for
each n ∈N , there exists xn ∈ C such that xn = fn(ω,xn) and then xn ∈ Tn(ω,xn).
C is compact, then fn is hemicompact for each n ∈ N. According to Lemma ., for each

n ∈ N, fn has a random fixed point and then Tn has a random fixed point ξn, that is ξn :
� → C is measurable and ξn(ω) ∈ Tn(ω, ξn(ω)) for n ∈N .
Letω ∈ � be fixed. Then d(ξn(ω),T(ω, ξn(ω)))→ when n→ ∞ and sinceC is compact,

{ξn(ω)} has a convergent subsequence {ξnk (ω)}. Let ξ(ω) = limnk→∞ ξnk (ω). It follows that
ξ :� → C is measurable and for each ω ∈ �, d(ξ(ω),T(ω, ξnk (ω))) →  when nk → ∞.
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Let us assume that there exists ω ∈ � such that ξ(ω) /∈ T(ω, ξ(ω)). Since {ξ(ω)} ∩
(T(ω, ·))–(ξ(ω)) = ∅ and X is a regular space, there exists r >  such that B(ξ(ω), r) ∩
(T(ω, ·))–(ξ(ω)) = ∅. Consequently, for each z ∈ B(ξ(ω), r), we have z /∈ (T(ω, ·))– ×
(ξ(ω)), which is equivalent with ξ(ω) /∈ T(ω, z) or {ξ(ω)}∩T(ω, z) = ∅. The closedness of
each T(ω, z) and the regularity of X imply the existence of a real number r >  such that
B(ξ(ω), r) ∩ T(ω, z) = ∅ for each z ∈ B(ξ(ω), r), which implies ξ(ω) /∈ B(T(ω, z); r) for
each z ∈ B(ξ(ω), r). Let r =min{r, r}. Hence, ξ(ω) /∈ B(T(ω, z); r) for each z ∈ B(ξ(ω), r),
and then there exists N∗ ∈ N such that for each nk > N∗, ξ(ω) /∈ B(T(ω, ξnk (ω)); r) which
contradicts d(ξ(ω),T(ω, ξnk (ω)))→  as n→ ∞. It follows that our assumption is false.
Hence, for each ω ∈ �, ξ(ω) ∈ T(ω, ξ(ω)), where ξ : � → C is measurable. We con-

clude that T has a random fixed point. �

Related to the almost lower semicontinuous correspondences, there are the correspon-
dences with the local intersection property and the sub-lower semicontinuous correspon-
dences, which differ very slightly from the first ones. We will obtain some results related
to Theorem . in these cases and will introduce the reader in the topic we brought into
discussion by presenting firstly the definitions.
A new theorem can be proved for the operatorswhich satisfy the local intersection prop-

erty, which is defined below.
Let X, Y be topological spaces. The correspondence T : X → Y has the local intersec-

tion property (see []) if x ∈ X with T(x) �= ∅ implies the existence of an open neighbor-
hood V (x) of x such that

⋂
z∈V (x)T(z) �= ∅.

If � is a non-empty set, we say that the operator T : � × X → Y has local intersection
property if, for each ω ∈ �, T(ω, ·) has the local intersection property.
We establish Theorem ., which concerns operators having the local intersection prop-

erty. Its proof relies on the following lemma.

Lemma . (Wu and Shen []) Let X be a non-empty paracompact subset of a Hausdorff
topological space E and Y be a non-empty subset of a Hausdorff topological vector space.
Let S,T : X → Y be correspondences which verify:
() for each x ∈ X , S(x) �= ∅ and coS(x)⊂ T(x);
() S has local intersection property.
Then T has a continuous selection.

The corresponding random fixed point theorem in case of local intersection property is
stated below.

Theorem . Let (�,F ) be a measurable space, C be a compact convex separable subset
of a Fréchet space X and let T :� ×C → C be a random operator. Suppose that, for each
ω ∈ �, T(ω, ·) has the local intersection property and is convex valued.
Then T has a random fixed point.

Proof Since for each ω ∈ �, T(ω, ·) has the local intersection property, according to
Lemma ., there exists a continuous function f (ω, ·) : C → C such that for each x ∈ C,
f (ω,x) ∈ T(ω,x).
According to Tihonov’s fixed point theorem, there exists x ∈ C such that x = f (ω,x) and

then x ∈ T(ω,x).
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C is compact, then f is hemicompact. According to Lemma ., f has a random fixed
point and then T has a random fixed point ξ , that is ξ : � → C is measurable and ξ (ω) ∈
T(ω, ξ (ω)). �

The sub-lower semicontinuous correspondences were defined by Zheng in [].
Let X be a topological space and Y be a topological vector space. A correspondence

T : X → Y is called sub-lower semicontinuous [] if, for each x ∈ X and for each neigh-
borhood V of  in Y , there exist z ∈ T(x) and a neighborhoodU(x) of x in X such that, for
each y ∈U(x), z ∈ T(y) +V .
If � is a non-empty set, we say that the operator T :� ×X → Y is sub-lower semicon-

tinuous if, for each ω ∈ �, T(ω, ·) is sub-lower semicontinuous.
Zheng proved in [] a continuous selection result for the sub-lower semicontinuous

correspondences, which can be used in order to obtain Theorem .. Here is his result.

Lemma . [] Let X be a paracompact topological space, Y be a locally convex topo-
logical vector space and let T : X → Y be a correspondence with convex values. Then T is
sub-lower semicontinuous if and only if, for each neighborhood V of  in Y , there exists a
continuous function f : X → Y such that, for each x ∈ X, f (x) ∈ T(x) +V .

The random fixed point existence for the sub-lower semicontinuous random operators
is stated below.

Theorem . Let (�,F) be a measurable space, C be a compact convex separable subset
of a Fréchet space X, and let T : � × C → C be a random operator. Suppose that, for
each ω ∈ �, T(ω, ·) is sub-lower semicontinuous with non-empty convex closed values and
(T(ω, ·))– : C → C is closed valued.
Then T has a random fixed point.

The proof of Theorem. is similar to the one ofTheorem., but it relies onLemma..
In [], Ansari andYao proved a fixed point theorem for transfer open valued correspon-

dences. Their proof is based on a continuous selection theorem which they construct. We
present below their result.
Let X and Y be two topological spaces. The correspondence T : X → Y is said to be

transfer open valued (see []) if, for any x ∈ X and y ∈ T(x), there exists an z ∈ X such
that y ∈ intY T(z).
If � is a non-empty set, we say that the operator T :�×X → Y is transfer open valued

if, for each ω ∈ �, T(ω, ·) is transfer open valued.
The proof of the next lemma is included in the proof of Theorem  in [], in the par-

ticular case when I = {}, S = T and K is compact.

Lemma . Let K be a non-empty compact convex subset of a Hausdorff topological vector
space E and let T : K → K be a correspondence with non-empty convex values. If K =⋃{intK T–(y) : y ∈ K} (or T– is transfer open valued), then T has a continuous selection.

We obtain Theorem ., by using Lemma . and the same argument as in the proof of
Theorem ..

http://www.fixedpointtheoryandapplications.com/content/2014/1/89
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Theorem . Let (�,F ) be a measurable space, C be a compact convex separable subset
of a Fréchet space X and let T : � × C → C be a random operator with non-empty con-
vex values. Suppose that K =

⋃{intK (T(ω, ·))–(y) : y ∈ K} or for each ω ∈ �, (T(ω, ·))– is
transfer open valued.
Then T has a random fixed point.

We also present the following result.

Theorem . Let (�,F ) be a measurable space, C be a compact convex separable subset
of a Fréchet space X and let T :� ×C → C be a random operator with non-empty closed
convex values, such that for each ω ∈ �, (T(ω, ·))– : C → C is closed valued. Suppose
that, for each open neighborhood V of the origin and for each ω ∈ �, the correspondence
(SV ,ω)– : C → C is transfer open valued, where SV ,ω(x) = (T(ω,x) +V )∩C for each x ∈ C.
Then T has a random fixed point.

Proof By using Lemma ., we prove that for each n ∈ N and for each ω ∈ �, there exists a
continuous function fn(ω, ·) : C → C such that fn(ω,x) ∈ B(T(ω,x); /n)∩C for each x ∈ C.
The proof is similar to the proof of Theorem .. �

4 Random fixed point theorems for lower semicontinuous operators
This section is designed to extending the results established in [] by considering lower
semicontinuous operators defined on Fréchet spaces. Condition (P), essential in the proof
of the existence of the random fixed points in the quoted paper, is reformulated and new
assumptions which induce it are found.
Firstly, we recall that condition (P), firstly introduced by Petryshyn [] in order to prove

the existence of fixed points for single valued operators, was extended to multivalued op-
erators. We provide here the definition for the last case.
Let (X,d) be a metric space, C be a non-empty closed subset of X and T : C → X be a

correspondence. T is said to satisfy condition (P) (see []) if, for every closed ball B of C
with radius r ≥  and any sequence {xn} in C for which d(xn,B) →  and d(xn,T(xn)) → 
as n→ ∞, there exists x ∈ B such that x ∈ T(x). If � is any non-empty set, we say that
the operator T :�×C → X satisfies condition (P) if, for eachω ∈ �, the correspondence
T(ω, ·) : C → X satisfies condition (P).
We also present themain result in [], concerning operators which satisfy condition (P).

We will extend further this theorem.

Lemma . (Theorem . in []) Let C be a closed separable subset of a complete metric
space and let T : � × C → X be a lower semicontinuous random operator, which enjoys
condition (P). Suppose that, for each ω ∈ �, the set F(ω) := {x ∈ C : x ∈ T(ω,x)} �= ∅.
Then T has a random fixed point.

The following lemmata are useful in order to prove Theorem ..

Lemma . Let (X,d) be a complete metric space, C be a non-empty closed separable sub-
set of X and T : C → X be a correspondence.
(a) Suppose that T satisfies condition (P). If x /∈ T(x), then there exists a real r > 

such that x /∈ B(T(x); r)∩ B(x, r) for each x ∈ B(x, r).

http://www.fixedpointtheoryandapplications.com/content/2014/1/89
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(b) Suppose that C is locally compact and x /∈ T(x) implies the existence of a real r > 
such that x /∈ B(T(x); r)∩B(x, r) for each x ∈ B(x, r). Then T satisfies condition (P).

Proof (a) Let us consider a correspondence T which verifies condition (P). We will prove
that T satisfies the conclusion stated at (a). For this purpose, let x ∈ C be a point such that
x /∈ T(x). Let us assume, by contradiction, that for each r > , there exists xr ∈ B(x, r)
such that x ∈ B(T(xr); r)∩ B(xr, r). Therefore, for each natural number n > , there exists
xn ∈ B(x, /n) such that x ∈ B(T(xn); /n)∩B(xn, /n). Consequently, we found a sequence
{xn} in C with the property that d(xn,x) →  and d(xn,T(xn)) →  when n → ∞. Since
T satisfies condition (P) for B = {x}, it follows that x ∈ T(x), which contradicts x /∈
T(x). This means that our assumption is false, and then there exists a real r >  such that
x /∈ B(T(x); r)∩ B(x, r) for each x ∈ B(x, r).
(b) Let us consider a closed ball B of C with radius R ≥  and a sequence {xn} in C, for

which d(xn,B) →  and d(xn,T(xn)) →  as n → ∞. We use the sequentially compact-
ness of the set G we will define further. Let us firstly denote, for each n ∈N , rn = d(xn,B).
According to the hypotheses, the sequence {rn} is convergent and limn→∞ rn = . Let us
consider ε > , and then there exists N(ε) ∈ N such that rn < ε for each n > N(ε). Since X
is locally compact, the small closed balls are compact and consequently, the set G, defined
as G = cl(B(B; ε) ∩ C), is compact. Therefore, the sequence {xn} ⊂ G has a convergent
subsequence {xnk } and, without loss of generality, we can assume that the sequence {xn}
is convergent. It remains to show the following assertion:
If T : C → X satisfies the assumption from (b), and if there exist a closed ball B and a

convergent sequence {xn} → x such that d(xn,B) →  and d(xn,T(xn)) →  as n → ∞
then x ∈ T(x) and x ∈ B.
In order to prove this, we note that the closedness of B implies x ∈ B. Let us as-

sume, by contradiction, that x /∈ T(x). Then, according to the hypotheses, there ex-
ists r >  such that x /∈ B(T(x); r) ∩ B(x, r) for each x ∈ B(x, r). The convergence of
{xn} to x implies the existence of a natural number N(r) ∈ N such that xn ∈ B(x, r) for
each n > N(r). Consequently, x /∈ B(T(xn); r) ∩ B(xn, r) for each n > N(r). Since for each
n > N(r), x ∈ B(xn, r), it follows that if n > N(r), x /∈ B(T(xn); r), that is d(x,T(xn)) > r.
This fact contradicts d(x,T(xn)) →  when n → ∞, which is true by the hypotheses
and because x = limn→∞ xn. This means that our assumption is false, and it remains that
x ∈ T(x). We proved that T satisfies condition (P). �

Lemma . Let (X,d) be a metric space, C be a non-empty closed subset of X and T : C →
X be a correspondence such that T and T– have closed values. Therefore, if x /∈ T(x),
there exists a real r >  such that x /∈ B(T(x); r)∩B(x, r) for each x ∈ B(x, r). If, in addition,
C is locally compact, then T satisfies condition (P).

Proof Let us consider x ∈ C such that x /∈ T(x). Since {x} ∩ T–(x) = ∅ and X
is a regular space, there exists r >  such that B(x, r) ∩ B(T–(x); r) = ∅, and then
B(x, r) ∩ T–(x) = ∅. Consequently, for each x ∈ B(x, r), we have x /∈ T–(x), which
is equivalent with x /∈ T(x) or {x} ∩ T(x) = ∅. The closedness of each T(x) and the reg-
ularity of X imply the existence of a real number r >  such that B(x, r) ∩ T(x) = ∅ for
each x ∈ B(x, r), which implies x /∈ B(T(x); r) for each x ∈ B(x, r). Let r = min{r, r}.
Hence, x /∈ B(T(x); r) for each x ∈ B(x, r), and thus the conclusion is fulfilled. In view of
Lemma ., the last assertion is true. �
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The following theorem states the existence of the random fixed points for lower semi-
continuous correspondences defined on locally compact complete metric spaces.

Theorem . Let (�,F ) be a measurable space, C be a closed separable subset of a locally
compact complete metric space and let T :�×C → X be a lower semicontinuous random
operator with closed values. Suppose that, for each ω ∈ �, (T(ω, ·))– : X → C is closed
valued and the set F(ω) := {x ∈ C : x ∈ T(ω,x)} �= ∅.
Then T has a random fixed point.

Proof Since C is locally compact and for each ω ∈ �, T(ω, ·) : C → X and (T(ω, ·))– :
X → C have closed values, by applying Lemma ., we find that T satisfies condition (P).
All the assumptions of Lemma . are fulfilled, then T has a random fixed point. �

The existence of the random fixed points remains valid if for each ω ∈ �, (T(ω, ·))– :
X → C is lower semicontinuous. In this case, we establish Theorem ..

Theorem . Let (�,F ) be a measurable space, C be a closed separable subset of a locally
compact complete metric space and let T :� ×C → X be an operator with closed values.
Suppose that, for each ω ∈ �, (T(ω, ·))– = U(ω, ·) : X → C is lower semicontinuous and
closed valued, for each x ∈ X, U(·,x) : � → C is measurable and the set F(ω) := {x ∈ C :
x ∈ T(ω,x)} �= ∅.
Then T has a random fixed point.

Proof According to Theorem ., there exists a measurable mapping ξ :� → C such that
for each ω ∈ �, ξ (ω) ∈ (T(ω, ·))–(ξ (ω)), that is, for each ω ∈ �, ξ (ω) ∈ T(ω, ξ (ω)). There-
fore, we obtained a random fixed point for T . �

The next result, due toMichael, is very important in the theory of continuous selections.

Lemma . (Michael []) Let X be a T, paracompact space. If Y is a Banach space,
then each lower semicontinuous convex closed valued correspondence T : X → Y admits
a continuous selection.

By using the above lemma, we obtain Theorem ..

Theorem . Let (�,F ) be a measurable space, C be a compact convex separable subset
of a Banach space and let T : � × C → C be a lower semicontinuous random operator
with closed convex values, such that for each ω ∈ �, (T(ω, ·))– : C → C is closed valued.
Then T has a random fixed point.

Proof Since C is compact and for each ω ∈ �, T(ω, ·) : C → C and (T(ω, ·))– : C → C

have closed values, by applying Lemma ., we find that T satisfies condition (P).
According to Michael’s selection theorem, there exists a continuous function f : C → C

such that f is continuous and f (x) ∈ T(ω,x). According to Brouwer-Schauder fixed point
theorem, there exist deterministic fixed points for f , then the set F(ω) := {x ∈ C : x ∈
T(ω,x)} �= ∅. All the assumptions of Theorem . are fulfilled, then T has a random fixed
point. �

http://www.fixedpointtheoryandapplications.com/content/2014/1/89
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Remark . Theorem . can be compared with Theorem . in []. This last result also
refers to the existence of random fixed points for lower semicontinuous operators and its
proof is based on Michael’s selection theorem. A comparison of the assumptions of the
two theorems makes the object of the research in [].

Fierro et al. showed in [] (the proof of Theorem .) that if T is lower semicontinuous,
then it satisfies the following condition, which we call (∗), condition necessary to prove
the existence of random fixed points. We denote Fix(T) = {x ∈ C : x ∈ T(x)}.

Definition . Let (X,d) be a complete metric space, C be a non-empty closed separable
subset of X and Z = {zn} be a countable dense subset of C. We say that the correspondence
T : C → X satisfies condition (∗) if, for each closed ball B in X with the property that
B ∩ Fix(T) �= ∅, there exists a subsequence {znk } of {zn} such that d(znk ,B) < /k and
d(znk ,T(znk )) < /k for each k ∈ N.

Our work will consider simpler assumptions which imply condition (∗). Now, we are
introducing condition α.

Definition . Let X be a topological vector space and C be a non-empty subset of X.
() We say that the correspondence T : C → X satisfies condition α, if for each

x ∈ Fix(T), T is sub-lower semicontinuous in x.
() If � is a non-empty set, we say that the operator T :� ×C → X satisfies condition

α if, for each ω ∈ �, the correspondence T(ω, ·) : C → X satisfies condition α.

Next lemma shows that condition α is stronger than condition (∗).

Lemma . Let (X,d) be a complete metric space and C a non-empty closed separable
subset of X. If the correspondence T : C → X satisfies condition α, then T satisfies (∗).

Proof Let Z = {zn} be a countable dense subset of C. Let B be a closed ball in X such
that B ∩ Fix(T) �= ∅. Then there exists x ∈ X with the property that x ∈ B ∩ C and
x ∈ T(x). According to condition α, for each k ∈ N, there exists an open neighborhood
Uk(x) of x such that x ∈ B(T(x), /k) for each x ∈Uk(x). Then x ∈ B(T(x), /k) for each
x ∈ B(x, /k) ∩Uk(x) and thus the intersection B(x, /k) ∩Uk(x) ∩ B(T(x), /k) is non-
empty for each x ∈ B(x, /k)∩Uk(x). Since B(x, /k)∩Uk(x) and B(T(x), /k) are open
sets, B(x, /k) ∩ Uk(x) ∩ B(T(x), /k) �= {x}. Therefore, for each k ∈ N, we can choose
znk ∈ B(x, /k) ∩ C ∩ Z, znk �= x. Consequently, for each k ∈ N, znk ∈ B(B, /k) ∩ C ∩ Z
and d(znk ,T(znk )) < /k, that is T satisfies (∗). �

We establish the following random fixed point theorem.

Theorem . Let (�,F ) be a measurable space, C be a closed separable subset of a com-
plete metric space and let T : � × C → X be a random operator which enjoys conditions
(P) and (∗). Suppose that, for each ω ∈ �, the set F(ω) := {x ∈ C : x ∈ T(ω,x)} �= ∅.
Then T has a random fixed point.

Proof Let Z = {zn} be a countable dense subset of C. Let us define F : � → C by F(ω) =
{x ∈ C : x ∈ T(ω,x)}. We will prove the measurability of F . In order to do this, we consider

http://www.fixedpointtheoryandapplications.com/content/2014/1/89
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B an arbitrary closed ball of C, and let us denote

L(B) :=
∞⋂

k=

⋃

z∈B(B;/k)∩Z

{
ω ∈ � : d

(
z,T(ω, z)

)
< /k

}
.

Now, we are proving that F–(B) = L(B).
Firstly, let us consider ω ∈ F–(B) and hence there exists x ∈ B such that x ∈

(T(ω, ·))–(x).
Since T satisfies condition (∗), for each k ∈N, there exists znk ∈ B(B, /k)∩Z such that

d(znk ,T(ω, znk )) < /k. Therefore, ω ∈ L(B) and then F–(B) ⊆ L(B).
The rest of the proof is similar to the corresponding one inTheorem. in []. Therefore,

F is measurable with non-empty closed values, and according to the Kuratowski and Ryll-
Nardzewski Proposition ., F has a measurable selection ξ : � → C such that ξ (ω) ∈
T(ω, (ξ ,ω)) for each ω ∈ �. �

We state the following consequence of Theorem . and Lemma ..

Corollary . Let (�,F ) be a measurable space, C be a closed separable subset of a com-
plete metric space and let T : � × C → X be a random operator which enjoys conditions
(P) and α. Suppose that, for each ω ∈ �, the set F(ω) := {x ∈ C : x ∈ T(ω,x)} �= ∅.
Then T has a random fixed point.

Based on Theorem . and Lemma ., we obtain the next corollary.

Corollary . Let (�,F ) be ameasurable space,C be a closed separable subset of a locally
compact complete metric space and let T :�×C → X be a random operator which enjoys
condition α and has closed values, such that for each ω ∈ �, (T(ω, ·))– : C → C is closed
valued. Suppose that, for each ω ∈ �, the set F(ω) := {x ∈ C : x ∈ T(ω,x)} �= ∅.
Then T has a random fixed point.

Proof Since for each ω ∈ �, T(ω, ·) : C → X and (T(ω, ·))– : X → C are closed valued
and C is locally compact, then T fulfills condition (P). In order to complete the proof, we
apply Theorem .. �

We will use further the following notation.

Notation . Let X be a vector space, C be a non-empty subset of X and T : C → X

be a correspondence. We denote ST : C → X the correspondence defined by ST (x) =
co{T(x),x} for each x ∈ C.
We notice that for each x ∈ X, T(x)⊆ ST (x) and T(x) = ST (x) if only if x ∈ T(x) and T(x)

is convex. We also notice that x ∈ ST (x) for each x ∈ X.

Now, we define the notion of a local approximating pair of correspondences.

Definition . Let X be a topological space and Y be a topological vector space. Let S,T :
X → Y be correspondences.We say that (T ,S) is a local approximating pair if T(x)⊆ S(x)
for each x ∈ X and if S(x) = T(x), then, for each open neighborhood of the originV , there
exists U(x), an open neighborhood of x such that S(x)⊆ T(x) +V for each x ∈U(x).

http://www.fixedpointtheoryandapplications.com/content/2014/1/89
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Lemma . gives a new condition which implies (∗).

Lemma. Let C be a non-empty closed separable subset of a Fréchet space X . Let T : C →
X be a correspondence such that (T ,ST ) is a local approximating pair.Then T satisfies (∗).

Proof Let Z = {zn} be a countable dense subset of C. Let us consider x ∈ X such that
x ∈ T(x), {x} being included in a closed ball B, and the neighborhoods of the origin
of the following type: Vk = B(, /k), k ∈ N. For each k ∈ N , there exists a neighborhood
Uk of x such that Uk ⊂ B ∩ B(x, /k) and ST (x) = co{T(x) ∪ x} ⊂ T(x) + Vk for each
x ∈Uk . For each k ∈N, we can pick znk ∈Uk ∩Z. Then, for each k ∈N, d(znk ,x) < /k and
d(znk ,T(znk )) < /k. �

The next result is a consequence of Theorem . and Lemma ..

Corollary . Let (�,F) be a measurable space, C be a closed separable subset of Fréchet
space and let T : � × C → X be a random operator such that (T ,ST ) is a local approxi-
mating pair. Assume that T enjoys condition (P) and for each ω ∈ �, the set F(ω) := {x ∈
C : x ∈ T(ω,x)} �= ∅.
Then T has a random fixed point.

5 Random fixed point theorems for upper semicontinuous correspondences
The main aim of this section is to provide a new proof for the random version of Ky Fan’s
fixed point theorem. Our result is distinguished by the fact that (�,F ) is only a measur-
able space, without having other additional properties. The proof is based on the upper
approximation technique, which is due to Ionescu Tulcea []. The notions related to this
topic are presented below.
Let X, Y be topological spaces and T : X → Y be a correspondence. The correspon-

dence T : X → Y is defined by T(x) := {y ∈ Y : (x, y) ∈ clX×Y Gr(T)} for each x ∈ X (the set
clX×Y Gr(T) is called the adherence of the graph of T ). It is easy to see that clT(x) ⊆ T(x)
for each x ∈ X.
Let X be a topological space and Y be a topological vector space. A correspondence T :

X → Y is quasi-regular (see []) if: () it has open lower sections, that is, T–(y) is open
in X for each y ∈ Y ; () T(x) is non-empty and convex for each x ∈ X and () T(x) = clT(x)
for each x ∈ X. T is called regular (see []) if it is quasi-regular and it has an open graph.
In [] Ionescu Tulcea defined the notion of upper approximating family for a corre-

spondence.
Let X be a non-empty set, Y be a non-empty subset of topological vector space E and

T : X → Y . A family (Tj)j∈J of correspondences betweenX andY , indexed by a non-empty
filtering set J (denote by ≤ the order relation in J) is an upper approximating family for T
[] if:
() T(x) ⊂ Tj(x) for each x ∈ X and for each j ∈ J ;
() for each j ∈ J there exists j∗ ∈ J such that, for each h≥ j∗ and h ∈ J , Th(x)⊂ Tj(x) for

each x ∈ X ;
() for each x ∈ X and V ∈ ß, where ß is a base of neighborhood of  in E, there exists

jx,V ∈ J such that Th(x)⊂ T(x) +V if h ∈ J and jx,V ≤ h.
By ()-() we deduce that
() for each x ∈ X and k ∈ J , T(x)⊂ ⋂

j∈J Tj(x) =
⋂

k≤j,k∈J Tj(x)⊂ clT(x) ⊂ T(x).

http://www.fixedpointtheoryandapplications.com/content/2014/1/89


Patriche Fixed Point Theory and Applications 2014, 2014:89 Page 12 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/89

Conditions for the existence of an approximating family for an upper semicontinuous
correspondence are given in the following lemma. We recall that a subset X of a locally
convex topological vector space E has the property (K ) (see []) if, for every compact
subset D of X, the set coD is relatively compact in E.

Lemma . (see []) Let X be a paracompact space and let Y be a non-empty closed
convex subset in a Hausdorff locally convex topological vector space and with the property
(K ). Let T : X → Y be a compact and upper semicontinuous correspondence with non-
empty convex compact values. Then there exists a filtering set J such that there exists a
family (Tj)j∈J of correspondences between X and Y with the following properties:
() for each j ∈ J , Tj is regular;
() (Tj)j∈J and (Tj)j∈J are upper approximating family for T ;
() for each j ∈ J , Tj is continuous if Y is compact.

Theorem . is a random version of the Ky Fan fixed point theorem. A new proof is
provided. Our result is distinguished by the fact that (�,F ) must be only a measurable
space, without any additional properties.

Theorem . Let (�,F ) be a measurable space, C be a compact convex separable subset
of a Fréchet space X and let T :� ×C → C be a random operator. Suppose that, for each
ω ∈ �, T(ω, ·) is upper semicontinuous with non-empty convex compact values.
Then T has a random fixed point.

Proof Let Z = {zn} be a countable dense subset of C. Let us define F : � → C by F(ω) =
{x ∈ C : x ∈ T(ω,x)}. We will prove the measurability of F . In order to do this, we consider
B an arbitrary closed ball of C, and let us denote

L(B) :=
∞⋂

k=

⋃

z∈B(B,/k)∩Z

{
ω ∈ � : d

(
z,T(ω, z)

)
< /k

}
.

Now, we are proving that F–(B) = L(B).
Firstly, let us considerω ∈ F–(B) and hence there exists x ∈ B such that x ∈ T(ω,x).

Since T(ω, ·) satisfies the assumptions of Lemma ., there exists a filtering set J such that
there exists an upper approximating family (Tj(ω, ·))j∈J of correspondences betweenC and
X, everyTj(ω, ·) being regular. For j ∈ J , eachTj(ω, ·) is lower semicontinuous, then it fulfills
condition (∗). We will prove that condition (∗) is also fulfilled by T(ω, ·).
Since (Tj(ω, ·))j∈J is an approximating family for T(ω, ·), for each x ∈ C and r > , there

exists jx,r ∈ J such that Ti(ω,x)⊂ B(T(ω,x); r) if i ∈ J and jx,r ≤ i. ForU =
⋃

n≥ B(B; /n)∩
C and every r > , there exists jU ,r ∈ J such that Ti(ω,x)⊂ B(T(ω,x); r) if i ∈ J and jU ,r ≤ i.
If x ∈ T(ω,x), then x ∈ Ti(ω,x) for each i ∈ J . For each k ∈ N, there exist jU ,k ∈ J and

ik ∈ J such that jU ,k ≤ ik and Tik (ω,x) ⊂ B(T(ω,x); /k) for each x ∈ U . Since Tik (ω, ·) is
lower semicontinuous, there exists {xiknh} ∈ C∩Z such that for each h ∈N, d(xiknh ,B) < /h
and d(xiknh ,Tih (ω,x

ik
nh )) < /h. Consequently, d(xiknk ,T(ω,x

ik
nk )) < /k for each k ∈ N. Let us

construct the sequence {znk } ∈ C ∩ Z such that for each k ∈ N, znk = xiknk . Therefore, we
found a subsequence {znk } of {zn} such that znk ∈ B(B; /k) and d(znk ,T(ω, znk )) < /k.
Hence, ω ∈ L(B) and the inclusion F–(B) ⊆ L(B) is proven.
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Let ω ∈ �, let B be a closed ball of C and {xn} be a sequence in C such that d(xn,B) → 
and d(xn,T(ω,xn)) →  when n → ∞. The set C is compact, then we can assume that
{xn} is a convergent sequence. Let limn→∞ xn = x ∈ B. Since d(xn,T(ω,xn)) →  when
n → ∞, for each n ∈ N, there exists yn ∈ T(ω,xn) such that d(xn, yn) →  when n → ∞.
This fact assures the convergence of the sequence {yn} and limn→∞ yn = x. Now, we are
using the upper semicontinuity of T and we conclude that for each ε > , there exists
N(ε) ∈ N such that T(ω,xn) ⊆ B(T(ω,x); ε) for each n > N(ε). It follows that for each
ε > , x ∈ B(T(ω,x); ε), which implies x ∈ T(ω,x).
We showed that the operator T satisfies condition (P).
We prove that F : � → C is measurable and has closed values, by following the same

line as in the proof of Theorem . in [].
In addition, we mention that since C is compact and convex, and for each ω ∈ �, T(ω, ·)

is upper semicontinuous with non-empty convex compact values, then, according to the
Ky Fan fixed point theorem, the set F(ω) := {x ∈ C : x ∈ T(ω,x)} �= ∅.
Consequently, F is measurable with non-empty closed values. According to the Kura-

towski and Ryll-Nardzewski Proposition ., F has a measurable selection ξ :� → C such
that ξ (ω) ∈ T(ω, (ξ ,ω)) for each ω ∈ �. We proved the existence of a random fixed point
for T . �

Wealso establish a new randomfixed point result concerning the upper semicontinuous
random operators.

Corollary . Let (�,F ) be a measurable space, C be a compact convex separable subset
of a Fréchet space X, and let T :� ×C → C be an operator. Suppose that, for each ω ∈ �,
(T(ω, ·))– = U(ω, ·) : C → C is upper semicontinuous with non-empty convex compact
values and for each x ∈ X, U(·,x) :� → C is measurable .
Then T has a random fixed point.

Proof According to Theorem ., there exists a measurable mapping ξ :� → C such that
for everyω ∈ �, ξ (ω) ∈ (T(ω, ·))–(ξ (ω)), that is, for everyω ∈ �, ξ (ω) ∈ T(ω, ξ (ω)). There-
fore, we obtained a random fixed point for T . �

In the end of the paper we state the following theorem, which is a consequence of The-
orem ..

Theorem . Let (�,F ) be a measurable space, C be a compact convex separable subset
of a Fréchet space X, and let T : � × C → C . Suppose that T : � × C → C is a random
operator and for each ω ∈ �, T(ω, ·) has non-empty convex values, where T(ω, ·) is defined
by T(ω,x) := {y ∈ C : (x, y) ∈ clC×C Gr(T(ω, ·))} for each x ∈ C.
Then there exists a measurable mapping ξ :� → C such that ξ (ω) ∈ T(ω, (ξ ,ω)) for each

ω ∈ �.

Proof For each ω ∈ �, T(ω, ·) is upper semicontinuous with non-empty convex compact
values, and we can apply Theorem .. �

6 Concluding remarks
We have proven the existence of random fixed points for almost lower semicontinuous
and lower semicontinuous operators defined on Fréchet spaces. Our research extends
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some results which exist in the literature. It is an interesting problem to find new types
of operators which satisfy weak continuity properties and have random fixed points.
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