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1 Introduction
Let K be a nonempty subset of a real Banach space E and let J : E → E∗ is the normalized
duality mapping defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖‖f ‖;‖x‖ = ‖f ‖}, ∀x ∈ E,

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality pairing.
It is well known that if E∗ is strictly convex, then J is single valued.
In the sequel, we shall denote the single valued normalized duality mapping by j.
Let K be a nonempty subset of E. A mapping T : K → K is said to be L-Lipschitzian if

there exists a constant L >  such that for all x, y ∈ K , we have ‖Tx – Ty‖ ≤ L‖x – y‖. It is
said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖, for all x, y ∈ K . T is called asymptotically
nonexpansive [] if there exists a sequence {hn} ⊆ [,∞) with limn→∞ hn =  such that
‖Tnx – Tny‖ ≤ hn‖x – y‖, for all integers n≥  and all x, y ∈ K .
A mapping T is said to be pseudo-contractive [, ], if there exists j(x– y) ∈ J(x– y) such

that 〈Tx–Ty, j(x – y)〉 ≤ ‖x – y‖, for all x, y ∈ K . T is called strongly pseudo-contractive, if
there exists a constant β ∈ (, ), j(x– y) ∈ J(x– y) such that 〈Tx–Ty, j(x– y)〉 ≤ β‖x – y‖,
for all x, y ∈ K . It is said to be asymptotically pseudo-contractive [] if there exists a se-
quence {hn} ⊆ [,∞) with limn→∞ hn =  and j(x – y) ∈ J(x – y) such that

〈
Tnx – Tny, j(x – y)

〉 ≤ hn‖x – y‖, ∀x, y ∈ K ,∀n≥ . (.)

It follows from Kato [] that

‖x – y‖ ≤ ∥∥x – y + r
[(
hnI – Tn)x – (

hnI – Tn)y]∥∥, ∀x, y ∈ K ,∀n≥ , r > . (.)
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We use F(T) to denote the set of fixed points of T ; that is, F(T) = {x ∈ K : x = Tx}.
It follows from the definition that if T is asymptotically nonexpansive, then for all j(x –

y) ∈ J(x – y),

〈
Tnx – Tny, j(x – y)

〉
= ‖x – y‖∥∥Tnx – Tny

∥∥ ≤ hn‖x – y‖.

Hence every asymptotically nonexpansive mapping is asymptotically pseudo-contrac-
tive.
It can be observed from the definition that an asymptotically nonexpansive mapping is

uniformly L-Lipschitzian, where L = supn≥{hn}.
Now consider an example of non-Lipschitzian mapping due to Rhoades []. Define a

mapping T : [, ] → [, ] by the formula Tx = { – x 
 } 

 , for x ∈ [, ]. Schu [] used this
example to show that the class of asymptotically nonexpansive mappings is a subclass of
the class of pseudo-contractivemappings. Since T is not Lipschitzian, it cannot be asymp-
totically nonexpansive. AlsoT is the identitymapping andT ismonotonically decreasing,
and it follows that

|x – y|∣∣Tnx – Tny
∣∣ = |x – y| for all n = m,m ∈N

and

(x – y)
(
Tnx – Tny

)
= (x – y)(Tx – Ty)

≤ 

≤ |x – y| for all n = m – ,m ∈N.

Hence T is asymptotically pseudo-contractive mapping with constant sequence {}.
The iterative approximation problems for a nonexpansive mapping, an asymptotically

nonexpansive mapping, and an asymptotically pseudo-contractive mapping were studied
extensively by Browder [], Kirk [], Goebel and Kirk [], Schu [], Xu [, ], Liu [] in
the setting of Hilbert space or uniformly convex Banach space.
In , Xu and Ori [] introduced the following implicit iteration process for a finite

family of nonexpansive self-mappings in Hilbert space:

{
x ∈ K arbitrary,
xn = αnxn– + ( – αn)Tnxn, n≥ ,

(.)

where {αn} be a sequence in (, ) and Tn = Tn mod N . They proved in [] that the sequence
{xn} converges weakly to a common fixed point of Tn, n = , , . . . ,N .
Later on Osilike and Akuchu [], and Chen et al. [] extended the iteration process

(.) to a finite family of asymptotically pseudo-contractive mapping and a finite family of
continuous pseudo-contractive self-mapping, respectively. Zhou and Chang [] studied
the convergence of a modified implicit iteration process to the common fixed point of a
finite family of asymptotically nonexpansive mappings. Then Su and Li [], and Su and
Qin [] introduced the composite implicit iteration process and the general iteration al-
gorithm, respectively, which properly include the implicit iteration process. Recently, Beg
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and Thakur [] introduced a modified general composite implicit iteration process for a
finite family of random asymptotically nonexpansive mapping and proved strong conver-
gence theorems.
The purpose of this paper is to consider a finite family {Ti}Ni= of asymptotically pseudo-

contractive mappings and to establish convergence results in Banach spaces based on the
modified general composite implicit iteration:
For x ∈ K , construct a sequence {xn} by

xn = αnxn– + ( – αn)Tk(n)
i(n) yn,

yn = rnxn + snxn– + tnTk(n)
i(n) xn +wnTk(n)

i(n) xn–
(.)

for each n ≥ , which can be written as n = (k(n) – )N + i(n), where i(n) = , , . . . ,N and
k(n) ≥  is a positive integer, with k(n)→ ∞ as n→ ∞. The sequences {αn}, {rn}, {sn}, {tn}
and {wn} are in (, ) such that rn + sn + tn +wn =  for all n≥ .

2 Preliminaries
In what follows we shall use the following results.

Lemma . [] Let E be a Banach space, K be a nonempty closed convex subset of E,
and T : K → K be a continuous and strong pseudo-contraction. Then T has a unique fixed
point.

Lemma . [] Let {an}, {bn}, and {cn} be three nonnegative sequences satisfying the fol-
lowing condition:

an+ ≤ ( + bn)an + cn for all n ≥ n,

where n is some nonnegative integer,
∑∞

n= bn <∞ and
∑∞

n= cn <∞.
Then
(i) limn→∞ an exists;
(ii) if, in addition, there exists a subsequence {ani} ⊂ {an} such that ani → , then

an →  as n→ ∞.

Lemma . [] Let E be a uniformly convex Banach space and let a, b be two constants
with  < a < b < . Suppose that {tn} ⊂ [a,b] is a real sequence and {xn}, {yn} are two se-
quences in E. Then the conditions

lim sup
n→∞

‖xn‖ ≤ d, lim sup
n→∞

‖yn‖ ≤ d and lim
n→∞

∥∥tnxn + ( – tn)yn
∥∥ = d

imply that limn→∞ ‖xn – yn‖ = , where d ≥  is some constant.

Lemma . [] Let E be a reflexive smooth Banach space with a weakly sequential con-
tinuous duality mapping J . Let K be a nonempty bounded and closed convex subset of E
and T : K → K be a uniformly L-Lipschitzian and asymptotical pseudo-contraction. Then
I – T is demiclosed at zero, where I is the identical mapping.

We shall denote weak convergence by ⇀ and strong convergence by →.
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A Banach space E is said to satisfy Opial’s condition if for any sequence {xn} ∈ E, xn ⇀ x
as n→ ∞ implies

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖, ∀y ∈ E with x �= y.

We know that a Banach space with a sequentially continuous duality mapping satisfies
Opial’s condition (for details, see []).

3 Themain results
Throughout this section, E is a uniformly convex Banach space, K a nonempty closed
convex subset of E. N denotes the set of natural numbers and I = {, , . . . ,N}, the set of
the firstN natural numbers.Ti (i ∈ I) areN uniformly Lipschitzian asymptotically pseudo-
contractive self-mappings on K . Let F =

⋂
i∈I F(Ti) �= ∅.

Since Ti (i ∈ I) are uniformly Lipschitzian, there exist constants Li >  such that ‖Tn
i x –

Tn
i y‖ ≤ Li‖x – y‖, for all x, y ∈ K , n ∈ N and i ∈ I . Also, since Ti (i ∈ I) are asymptotically

pseudo-contractive; therefore there exist sequences {h(i)n } such that 〈Tn
i x–Tn

i y, j(x– y)〉 ≤
h(i)n ‖x – y‖ for all x, y ∈ K and i ∈ I .
Take L =maxi∈I(Li) and hn =maxi∈I(h(i)n ).
Before presenting the main results, we first show that the proposed iteration (.) is well

defined.
Let T be uniformly Lipschitzian asymptotically pseudo-contractive mapping. For every

fixed u ∈ K and α ∈ ( L+L
L+L+ , ), define a mapping Sn : K → K by the formula

Snx = αu + ( – α)Tna,

a = rx + su + tTnx +wTnu for all x ∈ K , (.)

where α, r, s, t,w ∈ (, ), with ( – α)(L + L) < .
Then, for all x, y ∈ K , j(x – y) ∈ J(x – y), we have

Sny = αu + ( – α)Tnb,

b = ry + su + tTny +wTnu for all x ∈ K . (.)

Now

〈
Tna – Tnb, j(x – y)

〉
=

∥∥Tna – Tnb
∥∥‖x – y‖

≤ L‖a – b‖‖x – y‖
= L

∥∥r(x – y) + t
(
Tnx – Tny

)∥∥‖x – y‖
≤ L

(
r‖x – y‖ + tL‖x – y‖)‖x – y‖

=
(
Lr + tL

)‖x – y‖

≤ (
L + L

)‖x – y‖,

so
〈
Snx – Sny, j(x – y)

〉
= ( – α)

〈
Tna – Tnb, j(x – y)

〉
≤ ( – α)

(
L + L

)‖x – y‖.

http://www.fixedpointtheoryandapplications.com/content/2014/1/90
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Since (–α)(L+L) ∈ (, ), Sn is strongly pseudo-contractive, which is also continuous,
by Lemma ., Sn has a unique fixed point x∗ ∈ K , i.e.

Snx∗ = αu + ( – α)Tna,

a = rx∗ + su + tTnx∗ +wTnu for all x ∈ K . (.)

Thus the implicit iteration (.) is defined in K for a finite family {Ti} of uniformly
Lipschitzian asymptotically pseudo-contractive self-mappings on K , provided αn ∈ (α, ),
where α = L+L

L+L+ , for all n ∈N, L =maxi∈I(Li).

Lemma . Let E, K , and Ti (i ∈ I) be as defined above and let {xn} be the sequence de-
fined by (.), where {αn} is a sequence of real numbers such that  < α < αn ≤ β <  for
α = L+L

L+L+ and β is some constant and satisfying the conditions
∑∞

n= ( – αn) < ∞ and
limn→∞ hn–

–αn
= . Let b >  be a real number such that tn +wn ≤ b/L < . Then

(i) limn→∞ ‖xn – p‖ exists, for all p ∈F ,
(ii) limn→∞ d(xn,F ) exists, where d(xn,F ) = infp∈F ‖xn – p‖,
(iii) limn→∞ ‖xn – Tlxn‖ = , ∀l ∈ I .

Proof Let p ∈F . Using (.), we have

‖xn – p‖ =
〈
xn – p, j(xn – p)

〉
≤ αn

〈
xn– – p, j(xn – p)

〉
+ ( – αn)

〈
Tk(n)
i(n) yn – Tk(n)

i(n) xn, j(xn – p)
〉

+ ( – αn)hk(n)‖xn – p‖

= αn‖xn– – p‖‖xn – p‖ + ( – αn)L‖yn – xn‖‖xn – p‖
+ ( – αn)hk(n)‖xn – p‖. (.)

Using (.), we obtain

‖yn – xn‖ =
∥∥sn(xn– – xn) + tn

(
Tk(n)
i(n) xn – xn

)
+wn

(
Tk(n)
i(n) xn– – xn

)∥∥
≤ sn‖xn– – p‖ + sn‖xn – p‖ + tnL‖xn – p‖ + tn‖xn – p‖

+wnL‖xn– – p‖ +wn‖xn – p‖. (.)

Substituting (.) in (.), we get

‖xn – p‖ ≤ (
αn + ( – αn)L(sn +wnL)

)‖xn– – p‖‖xn – p‖
+ ( – αn)

[
(sn + tn +wn + tnL)L + hk(n)

]‖xn – p‖

≤ (
αn + ( – αn)( + L)L

)‖xn– – p‖‖xn – p‖
+ ( – αn)

[
( + L)L + hk(n)

]‖xn – p‖

≤ (
αn + ( – αn)( + L)L

)‖xn– – p‖‖xn – p‖
+

[
( – αn)( + L)L + ( – αn +μk(n))

]‖xn – p‖, (.)

where μk(n) = hk(n) –  for all n≥ , by condition
∑∞

n=(hk(n) – ) < ∞, we have
∑∞

n= μk(n) <
∞.

http://www.fixedpointtheoryandapplications.com/content/2014/1/90
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Therefore, we have

‖xn – p‖ ≤ (αn + ( – αn)( + L)L)
αn –μk(n) – ( – αn)( + L)L

‖xn– – p‖

≤
[
 +

μk(n) + ( – αn)( + L)L
αn –μk(n) – ( – αn)( + L)L

]
‖xn– – p‖

≤
[
 +

μk(n) + ( – αn)( + L)L
 – ( – αn +μk(n) + ( – αn)( + L)L)

]
‖xn– – p‖. (.)

Since limn→∞
hk(n)–
–αn

= limn→∞
μk(n)
–αn

= , there exists aM such that μk(n)
–αn

<M.
Now, we consider the second term on the right side of (.). We have

(
 – αn +μk(n) + ( – αn)( + L)L

) ≤ ( – αn)
[
 +M + ( + L)L

]
.

By condition
∑∞

n= ( – αn) < ∞, we have limn→∞( – αn) = , then there exists a natural
number N such that if n >N, then

 –
(
 – αn +μk(n) + ( – αn)( + L)L

) ≥ 

.

Therefore, it follows from (.) that

‖xn – p‖ ≤ [
 + 

{
μk(n) + ( – αn)( + L)L

}]‖xn– – p‖
= ( + σn)‖xn– – p‖, (.)

where σn = {μk(n) + ( – αn)( + L)L}.
Taking the infimum over p ∈F , we have

d(xn,F ) ≤ ( + σn)d(xn–,F ). (.)

Since
∑∞

n= μk(n) < ∞ and
∑∞

n=( – αn) < ∞, we have

∞∑
n=

σn < ∞.

Thus, by Lemma ., limn→∞ ‖xn – p‖ and limn→∞ d(xn,F ) exist.
Without loss of generality, we assume

lim
n→∞‖xn – p‖ = d. (.)

Set vk(n) =
hk(n)–
hk(n)

, and from (.), we have

‖xn – p‖ ≤
∥∥∥∥xn – p +

 – αn

αnhk(n)

[(
hk(n)I – Tk(n)

i(n)
)
xn –

(
hk(n)I – Tk(n)

i(n)
)
p
]∥∥∥∥

≤
∥∥∥∥xn – p +

 – αn

αn

[
αn

(
xn– – Tk(n)

i(n) xn
)
+ ( – αn)

(
Tk(n)
i(n) yn – Tk(n)

i(n) xn
)]∥∥∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/90
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+
(
 – αn

αn

)(
hk(n) – 
hk(n)

)∥∥Tk(n)
i(n) xn – p

∥∥
=

∥∥∥∥xn – p +
 – αn


(
xn– – Tk(n)

i(n) xn
)
+
( – αn)

αn

(
Tk(n)
i(n) yn – Tk(n)

i(n) xn
)∥∥∥∥

+
(
 – αn

αn

)
vk(n)

∥∥Tk(n)
i(n) xn – p

∥∥
≤

∥∥∥∥xn – p +


(xn– – xn)

∥∥∥∥ +
(
 – αn

αn

)
vk(n)

∥∥Tk(n)
i(n) xn – p

∥∥
+
( – αn)

αn
L‖yn – xn‖

≤
∥∥∥∥  (xn – p) +



(xn– – p)

∥∥∥∥ +
(
 – αn

αn

)
vk(n)

∥∥Tk(n)
i(n) xn – p

∥∥
+
( – αn)

αn
L‖yn – xn‖.

Thus

lim inf
n→∞ ‖xn – p‖ ≤ lim inf

n→∞

∥∥∥∥  (xn – p) +


(xn– – p)

∥∥∥∥
+ lim inf

n→∞

(
 – αn

αn

)
vk(n)

∥∥Tk(n)
i(n) xn – p

∥∥
+ lim inf

n→∞
( – αn)

αn
L‖yn – xn‖.

Since vk(n) =
hk(n)–
hk(n)

∈ (, ), we have limn→∞ vk(n) =  and from
∑∞

n= ( – αn) < ∞, we
have limn→∞ ( – αn) =  and using (.), we have

lim inf
n→∞

∥∥∥∥  (xn – p) +


(xn– – p)

∥∥∥∥ ≥ d. (.)

On the other hand, we obtain

lim sup
n→∞

∥∥∥∥  (xn – p) +


(xn– – p)

∥∥∥∥ ≤ lim sup
n→∞

[


‖xn – p‖ + 


‖xn– – p‖

]
= d, (.)

from (.) and (.), we have

lim
n→∞

∥∥∥∥  (xn – p) +


(xn– – p)

∥∥∥∥ = d.

It follows from Lemma . that

lim
n→∞‖xn – xn–‖ = . (.)

Thus, for any i ∈ I , we have

lim
n→∞‖xn – xn+i‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/90
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Since  < α < αn ≤ β <  and from (.) and (.), we get

lim
n→∞

∥∥xn – Tk(n)
i(n) yn

∥∥ = lim
n→∞

αn

 – αn
‖xn – xn–‖

≤ 
 – β

lim
n→∞‖xn – xn–‖ = . (.)

On the other hand, from (.) and (.)

lim
n→∞

∥∥xn– – Tk(n)
i(n) yn

∥∥ ≤ lim
n→∞‖xn– – xn‖ + lim

n→∞
∥∥xn – Tk(n)

i(n) yn
∥∥ = . (.)

Now,

∥∥Tk(n)
i(n) xn – xn

∥∥ ≤ ‖xn – xn–‖ +
∥∥Tk(n)

i(n) yn – xn–
∥∥ +

∥∥Tk(n)
i(n) yn – Tk(n)

i(n) xn
∥∥

≤ ( + L)‖xn – xn–‖ +
∥∥Tk(n)

i(n) yn – xn–
∥∥ + L‖yn – xn–‖. (.)

Again, by using (.), we obtain

‖yn – xn–‖ ≤ ∥∥rnxn + snxn– + tnTk(n)
i(n) xn +wnTk(n)

i(n) xn– – xn–
∥∥

≤ tn
∥∥Tk(n)

i(n) xn – xn
∥∥ +wn

∥∥Tk(n)
i(n) xn– – xn

∥∥ + (rn + tn +wn)‖xn – xn–‖
≤ (tn +wn)

∥∥Tk(n)
i(n) xn – xn

∥∥ + (rn + tn +wn +wnL)‖xn – xn–‖. (.)

Substituting (.) into (.), we get

∥∥Tk(n)
i(n) xn – xn

∥∥ ≤ ( + L)‖xn – xn–‖ +
∥∥Tk(n)

i(n) yn – xn–
∥∥ + L(tn +wn)

∥∥Tk(n)
i(n) xn – xn

∥∥
+ L(rn + tn +wn +wnL)‖xn – xn–‖.

Since tn +wn ≤ b/L < , the above inequality gives

( – b)
∥∥Tk(n)

i(n) xn – xn
∥∥ ≤ [

 + L( + rn + tn +wn +wnL)
]‖xn – xn–‖ +

∥∥Tk(n)
i(n) yn – xn–

∥∥.
Then from (.), (.), and the above inequality, we have

lim
n→∞

∥∥Tk(n)
i(n) xn – xn

∥∥ = . (.)

From (.), (.), and (.), we get

lim
n→∞‖yn – xn–‖ = . (.)

On the other hand, from (.) and (.) we have

lim
n→∞‖yn – xn‖ ≤ lim

n→∞‖yn – xn–‖ + lim
n→∞‖xn– – xn‖ = . (.)

Since for any positive integer n >N , we can write n = (k(n) – )N + i(n), i(n) ∈ I .

http://www.fixedpointtheoryandapplications.com/content/2014/1/90
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Let An = ‖Tk(n)
i(n) yn – xn–‖, then from (.), we have An → . Also,

‖xn– – Tnxn‖ ≤ ∥∥xn– – Tk(n)
i(n) yn

∥∥ +
∥∥Tk(n)

i(n) yn – Tnxn
∥∥

= An +
∥∥Tk(n)

i(n) yn – Ti(n)xn
∥∥ ≤An + L

∥∥Tk(n)–
i(n) yn – xn

∥∥
≤ An + L

{∥∥Tk(n)–
i(n) yn – Tk(n)–

i(n–N)xn–N
∥∥

+
∥∥Tk(n)–

i(n–N)xn–N – Tk(n)–
i(n–N)yn–N

∥∥
+

∥∥Tk(n)–
i(n–N)yn–N – x(n–N)–

∥∥ + ‖x(n–N)– – xn‖
}
. (.)

Since for each n > N , n = (n – N) (mod N) and n = (k(n) – )N + i(n), n – N = ((k(n) –
) – )N + i(n) = (k(n –N) – )N + i(n –N), i.e.

k(n –N) = k(n) –  and i(n –N) = i(n).

Therefore from (.), we have

‖xn– – Tnxn‖ ≤ An + L
{∥∥Tk(n)–

i(n) yn – Tk(n)–
i(n) xn–N

∥∥
+

∥∥Tk(n–N)
i(n–N) xn–N – Tk(n–N)

i(n–N) yn–N
∥∥

+
∥∥Tk(n–N)

i(n–N) yn–N – x(n–N)–
∥∥ + ‖x(n–N)– – xn‖

}
≤ An + L

{
L‖yn – xn–N‖ + L‖xn–N – yn–N‖

+An–N + ‖x(n–N)– – xn‖
}

≤ An + L
(‖yn – xn‖ + ‖xn – xn–N‖ + ‖xn–N – yn–N‖)

+ L
(
An–N + ‖x(n–N)– – xn‖

)
. (.)

From (.), (.), andAn → , we have

lim
n→∞‖xn– – Tnxn‖ = . (.)

It follows from (.) and (.) that

lim
n→∞‖xn – Tnxn‖ ≤ lim

n→∞
{‖xn – xn–‖ + ‖xn– – Tnxn‖

}
= . (.)

Consequently, for any i ∈ I , from (.), (.), we obtain

‖xn – Tn+ixn‖ ≤ ‖xn – xn+i‖ + ‖xn+i – Tn+ixn+i‖ + ‖Tn+ixn+i – Tn+ixn‖
≤ ( + L)‖xn – xn+i‖ + ‖xn+i – Tn+ixn+i‖ → ,

as n→ ∞. This implies that the sequence

N⋃
i=

{‖xn – Tn+ixn‖
}∞
n= → , as n→ ∞.
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Since for each l = , , . . . ,N , {‖xn–Tlxn‖} is a subsequence of⋃N
i={‖xn–Tn+ixn‖}, there-

fore, we have

lim
n→∞‖xn – Tlxn‖ = , ∀l ∈ I. (.)

This completes the proof. �

3.1 Strong convergence theorems
First, we prove necessary and sufficient conditions for the strong convergence of themodi-
fied general composite implicit iteration process to a common fixed point of a finite family
of asymptotically pseudo-contractive mappings.

Theorem . Let E, K , and Ti (i ∈ I) be as defined above and {αn} be a sequence of real
numbers as in Lemma .. Then the sequence {xn} generated by (.) converges strongly to
a member of F if and only if lim infn→∞ d(xn,F ) = .

Proof The necessity of the condition is obvious. Thus, we will only prove the sufficiency.
Let lim infn→∞ d(xn,F ) = . Then from (ii) in Lemma ., we have limn→∞ d(xn,F ) = .
Next, we show that {xn} is a Cauchy sequence in K . For any given ε > , since

limn→∞ d(xn,F ) = , there exists a natural number n such that d(xn,F ) < ε/when n≥ n.
Since limn→∞ ‖xn – p‖ exists for all p ∈F , we have ‖xn – p‖ <M′, for all n ≥  and some

positive numberM′.
Furthermore

∑∞
n= σn < ∞ implies that there exists a positive integer n such that∑∞

j=n σj < ε/M′ for all n≥ n. Let N ′ =max{n,n}. It follows from (.) that

‖xn – p‖ ≤ ‖xn– – p‖ +M′σn.

Now, for all n,m ≥N ′ and for all p ∈F , we have

‖xn – xm‖ ≤ ‖xn – p‖ + ‖xm – p‖

≤ ‖xN ′ – p‖ +M′
n∑

j=N ′+
σj + ‖xN ′ – p‖ +M′

m∑
j=N ′+

σj

≤ ‖xN ′ – p‖ + M′
∞∑
j=N ′

σj.

Taking the infimum over all p ∈F , we obtain

‖xn – xm‖ ≤ d
(
xN ′ ,F

)
+ M′

∞∑
j=N ′

σj < ε.

This implies that {xn} is a Cauchy sequence. Since E is complete, therefore {xn} is conver-
gent.
Suppose limn→∞ xn = q.
Since K is closed, we get q ∈ K , then {xn} converges strongly to q.
It remains to show that q ∈F .

http://www.fixedpointtheoryandapplications.com/content/2014/1/90
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Notice that

∣∣d(q,F ) – d(xn,F )
∣∣ ≤ ‖q – xn‖, ∀n ∈ N,

since limn→∞ xn = q and limn→∞ d(xn,F ) = , we obtain q ∈F .
This completes the proof. �

Corollary . Suppose that the conditions are the same as in Theorem .. Then the se-
quence {xn} generated by (.) converges strongly to u ∈ F if and only if {xn} has a subse-
quence {xnj} which converges strongly to u ∈F .

A mapping T : K → K with F(T) �= ∅ is said to satisfy condition (A) [] on K if there
exists a nondecreasing function f : [,∞) → [,∞), with f () =  and f (r) > r, for all r ∈
(,∞), such that for all x ∈ K ,

‖x – Tx‖ ≥ f
(
d
(
x,F(T)

))
.

A family {Ti}Ni= of N self-mappings of K with F =
⋂

i∈I F(Ti) �= ∅ is said to satisfy
() condition (B) on K [] if there is a nondecreasing function f : [,∞) → [,∞) with

f () =  and f (r) > r for all r ∈ (,∞) such that for all x ∈ K such that

max
≤l≤N

{‖x – Tlx‖
} ≥ f

(
d(x,F )

)
;

() condition (C) on K [] if there is a nondecreasing function f : [,∞) → [,∞) with
f () =  and f (r) > r for all r ∈ (,∞) such that for all x ∈ K such that

{‖x – Tlx‖
} ≥ f

(
d(x,F )

)
for at least one Tl , l = , , . . . ,N or, in other words, at least one of the Tl ’s satisfies
condition (A).

Condition (B) reduces to condition (A) when all but one of the Tl ’s are identities. Also
condition (B) and condition (C) are equivalent (see []).
Senter and Dotson [] established a relation between condition (A) and demicompact-

ness that the condition (A) is weaker than demicompactness for a nonexpansive mapping
T defined on a bounded set. Every compact operator is demicompact. Since every com-
pletely continuous mapping T : K → K is continuous and demicompact, it satisfies con-
dition (A).
Therefore in the next result, instead of complete continuity of mappings T,T, . . . ,TN ,

we use condition (C).

Theorem . Let E and K be as defined above, Ti (i ∈ I) be N asymptotically pseudo-
contractive mappings as defined above and satisfying condition (C) and {αn} be a sequence
of real numbers as in Lemma .. Then the sequence {xn} generated by (.) converges
strongly to a member of F .

Proof By Lemma ., we see that limn→∞ ‖xn – p‖ and limn→∞ d(xn,F ) exist.

http://www.fixedpointtheoryandapplications.com/content/2014/1/90
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Let one of the Ti ’s, say Tl , l ∈ I , satisfy condition (A).
By Lemma ., we have limn→∞ ‖xn – Tlxn‖ = . Therefore we have limn→∞ f (d(xn,

F )) = . By the nature of f and the fact that limn→∞ d(xn,F ) exists, we have limn→∞ d(xn,
F ) = . By Theorem ., we find that {xn} converges strongly to a common fixed point
in F .
This completes the proof. �

A mapping T : K → K is said to be semicompact, if the sequence {xn} in K such that
‖xn – Txn‖ → , as n→ ∞, has a convergent subsequence.

Theorem . Let E and K be as defined above, and let Ti (i ∈ I) be N asymptotically
pseudo-contractive mappings as defined above such that one of the mappings in {Ti}Ni=
is semicompact, and let {αn} be a sequence of real numbers as in Lemma .. Then the
sequence {xn} generated by (.) converges strongly to a member of F .

Proof Without loss of generality, we may assume that Ts is semicompact for some fixed
s ∈ {, , . . . ,N}. Then by Lemma ., we have limn→∞ ‖xn – Tsxn‖ = . So by definition
of semicompactness, there exists a subsequence {xnj} of {xn} such that {xnj} converges
strongly to x∗ ∈ K . Now again by Lemma ., we have

lim
nj→∞‖xnj – Tlxnj‖ = 

for all l ∈ I . By continuity of Tl , we have Tlxnj → Tlx∗ for all l ∈ I .
Thus limj→∞ ‖xnj – Tlxnj‖ = ‖x∗ – Tlx∗‖ =  for all l ∈ I . This implies that x∗ ∈ F . Also,

lim infn→∞ d(xn,F ) = . ByTheorem., we find that {xn} converges strongly to a common
fixed point in F . �

3.2 Weak convergence theorem
Theorem . Let E be a uniformly convex and smooth Banach space which admits a
weakly sequentially continuous duality mapping, and let K and Ti (i ∈ I) be as defined
above and {αn} be a sequence of real numbers as in Lemma .. Then the sequence {xn}
generated by (.) converges weakly to a member of F .

Proof Since {xn} is a bounded sequence in K , there exists a subsequence {xnk } ⊂ {xn} such
that {xnk } converges weakly to q ∈ K . Hence from Lemma ., we have

lim
n→∞‖xnk – Tlxnk‖ = , ∀l ∈ I.

By Lemma ., we find that (I – Tl) is demiclosed at zero, i.e. (I – Tl)q = , so that q ∈
F(Tl). By the arbitrariness of l ∈ I , we know that q ∈F =

⋂
l∈I F(Tl).

Next we prove that {xn} converges weakly to q.
If {xn} has another subsequence {xnj} which converges weakly to q �= q, then we must

have q ∈F , and since limn→∞ ‖xn – q‖ exists and since the Banach space E has a weakly
sequentially duality mapping, it satisfies Opial’s condition, and it follows from a standard
argument that q = q. Thus {xn} converges weakly to q ∈F . �

Remark . Our results improve and generalize the corresponding results of Browder [],
Kirk [], Goebel and Kirk [], Schu [], Xu [, ], Liu [], Zhou and Chang [], Osilike
[], Osilike and Akuchu [], Su and Li [], Su and Qin [], and many others.
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Let K be a nonempty subset of a real Banach space E. Let D be a nonempty bounded
subset of K . The set-measure of noncompactness of D, γ (D), is defined as

γ (D) = inf{d >  :D can be covered by a finite number of sets of diameter ≤ d}.

The ball-measure of compactness of D, χ (D), is defined as

χ (D) = inf{r >  :D can be covered by a finite family of balls with centers in E

and radius r}.

A bounded continuous mapping T : K → E is called
() k-set-contractive if γ (T(D))≤ kγ (D), for each bounded subset D of K and some

constant k ≥ ;
() k-set-condensing if γ (T(D)) < γ (D), for each bounded subset D of K with γ (D) > ;
() k-ball-contractive if χ (T(D))≤ kχ (D), for each bounded subset D of K and some

constant k ≥ ;
() k-ball-condensing if χ (T(D)) < χ (D), for each bounded subset D of K with χ (D) > .
A mapping T : K → E is called
() compact if cl(T(A)) is compact whenever A⊂ K is bounded;
() completely continuous if it maps weakly convergence sequences into strongly

convergent sequences;
() a generalized contraction if for each x ∈ K there exists k(x) <  such that

‖Tx – Ty‖ ≤ k(x)‖x – y‖ for all y ∈ K ;
() a mapping T : E → E is called uniformly strictly contractive (relative to E) if for each

x ∈ E there exists k(x) <  such that ‖Tx – Ty‖ ≤ k(x)‖x – y‖ for all y ∈ K . Every
k-set-contractive mapping with k <  is set-condensing and also every compact
mapping is set-condensing.

Let K be a nonempty closed bounded subset of E and T : K → E a continuous mapping.
Then
(a) T is strictly semicontractive if there exists a continuous mapping V : E × E → E

with T(x) = V (x,x) for x ∈ E such that for each x ∈ E, V (·,x) is a k-contraction with
k <  and V (x, ·) is compact;

(b) T is of strictly semicontractive type if there exists a continuous mapping
V : K ×K → E with T(x) = V (x,x), for x ∈ K such that for each x ∈ K , V (·,x) is a
k-contraction with some k <  independent of x and x �→ V (·,x) is compact from K
into the space of continuous mapping of K into E with the uniform metric;

(c) T is of strongly semicontractive type relative to X if there exists a mapping
V : E ×K → E with T(x) = V (x,x), for x ∈ K such that x ∈ K , V (·,x) is uniformly
strictly contractive on K relative to E and V (x, ·) is a completely continuous from K
to E, uniformly for x ∈ K .

For details refer to [–].
Let K be a nonempty closed convex bounded subset of a uniformly convex Banach

space E. SupposeT : K → K . Then T is semicompact if T satisfies any one of the following
conditions [, Proposition .]:

(i) T is either set-condensing or ball-condensing (or compact);
(ii) T is a generalized contraction;
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(iii) T is uniformly strictly contractive;
(iv) T is strictly semicontractive;
(v) T is of strictly semicontractive type;
(vi) T is of strongly semicontractive type.

Remark . In view of the above, it is possible to replace the semicompactness assump-
tion in Theorem . with any of the contractive assumptions (i)-(vi).

We now give an example of asymptotically pseudo-contractive mapping with nonempty
fixed point set.

Example . [] Let E =R = (–∞,∞) with usual norm andK = [, ] and define T : K →
K by

Tx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

 if x = ,

 if x = ,
x – 

n+ if 
n+ ≤ x < 

 (


n+ +

n ),


n – x if 

 (


n+ +

n ) ≤ x < 

n

for all n ≥ . Then F(T) = {} and for any x ∈ K , there exists j(x – ) ∈ J(x – ) satisfying

〈
Tnx – Tn, j(x – )

〉
= Tnx · x ≤ 


‖x‖ < ‖x‖

for all n ≥ . That is, T is an asymptotically pseudo-contractive mapping with sequence
{kn} = .
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