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Abstract
In this paper, we introduce a new concept of probabilistic metric space, which is a
generalization of the Menger probabilistic metric space, and we investigate some
topological properties of this space and related examples. Also, we prove some fixed
point theorems, which are the probabilistic versions of Banach’s contraction principle.
Finally, we present an example to illustrate the main theorems.
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1 Introduction and preliminaries
Let R be the set of all real numbers, R+ be the set of all nonnegative real numbers, Δ

denote the set of all probability distribution functions, i.e., Δ = {F : R ∪ {–∞, +∞} →
[, ] : F is left continuous and nondecreasing on R,F(–∞) =  and F(+∞) = }.

Definition . ([]) A mapping T : [, ] × [, ] → [, ] is called a continuous t-norm if
T satisfies the following conditions:
() T is commutative and associative, i.e., T(a,b) = T(b,a) and

T(a,T(b, c)) = T(T(a,b), c), for all a,b, c ∈ [, ];
() T is continuous;
() T(a, ) = a for all a ∈ [, ];
() T(a,b)≤ T(c,d) whenever a≤ c and b≤ d for all a,b, c,d ∈ [, ].

From the definition of T it follows that T(a,b)≤min{a,b} for all a,b ∈ [, ].
Two simple examples of continuous t-norm are TM(a,b) = min{a,b} and Tp(a,b) = ab

for all a,b ∈ [, ].
In ,Menger [] developed the theory ofmetric spaces andproposed a generalization

of metric spaces called Menger probabilistic metric spaces (briefly, Menger PM-space).

Definition . A Menger PM-space is a triple (X,F ,T), where X is a nonempty set, T is
a continuous t-norm and F is a mapping from X × X → D (Fx,y denotes the value of F at
the pair (x, y)) satisfying the following conditions:
(PM-) Fx,y(t) =  for all x, y ∈ X and t >  if and only x = y;
(PM-) Fx,y(t) = Fy,x(t) for all x, y ∈ X and t > ;
(PM-) Fx,z(t + s)≥ T(Fx,y(t),Fy,z(s)) for all x, y, z ∈ X and t, s ≥ .
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The idea of Menger was to use distribution functions instead of nonnegative real num-
bers as values of the metric. Since Menger, many authors have considered fixed point the-
ory in PM-spaces and its applications as a part of probabilistic analysis (see [, –]).
In , Gähler [] investigated the concept of -metric spaces and he claimed that a

-metric is a natural generalization of an ordinary metric space (for more detailed results,
see the books [, ]). But some authors pointed out that there are no relations between -
metric spaces and ordinary metric spaces []. Later, Dhage [] introduced a new class of
generalizedmetrics calledD-metric spaces. However, as pointed out in [], theD-metric
is also not satisfactory.
Recently, Mustafa and Sims [] introduced a new class of metric spaces called general-

ized metric spaces or G-metric spaces as follows.

Definition . ([]) Let X be a nonempty set and G : X × X × X :→ R
+ be a function

satisfying the following conditions:
(G) G(x, y, z) =  if x = y = z for all x, y, z ∈ X ;
(G)  <G(x,x, y) for all x, y ∈ X with x �= y;
(G) G(x,x, y) ≤G(x, y, z) for all x, y, z ∈ X with z �= y;
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · for all x, y, z ∈ X ;
(G) G(x, y, z) ≤G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X .

Then G is called a generalized metric or a G-metric on X and the pair (X,G) is a G-metric
space.

It was proved that theG-metric is a generalization of ordinarymetric (see []). Recently,
some authors studied G-metric spaces and obtained fixed point theorems on G-metric
spaces [–]. Similar work can be found in [–].
It is well known that the notion of a PM-space corresponds to the situation that we may

know probabilities of possible values of the distance although we do not know exactly the
distance between two points. This idea leads us to seek a probabilistic version ofG-metric
spaces defined by Mustafa and Sims [].

Definition . A Menger probabilistic G-metric space (shortly, PGM-space) is a triple
(X,G∗,T), where X is a nonempty set, T is a continuous t-norm and G∗ is a mapping
from X × X × X into D (G∗

x,y,z denotes the value of G∗ at the point (x, y, z)) satisfying the
following conditions:
(PGM-) G∗

x,y,z(t) =  for all x, y, z ∈ X and t >  if and only if x = y = z;
(PGM-) G∗

x,x,y(t) ≥G∗
x,y,z(t) for all x, y ∈ X with z �= y and t > ;

(PGM-) G∗
x,y,z(t) =G∗

x,z,y(t) =G∗
y,x,z(t) = · · · (symmetry in all three variables);

(PGM-) G∗
x,y,z(t + s)≥ T(G∗

x,a,a(s),G∗
a,y,z(t)) for all x, y, z,a ∈ X and s, t ≥ .

Remark . Golet introduced a concept of probabilistic -metric (or -Menger space)
[] based on -metric [] defined by Gähler. In the concept of probabilistic -metric,
a -t-norm is used. Our definition of a Menger probabilistic G-metric space is different
from the one of Golet. Themetric of Golet is not continuous in two arguments although it
is continuous in any one of its three arguments. ButG∗ is continuous in any two arguments
as shown in Theorem ..
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Example . Let H denote the specific distribution function defined by

H(t) =

⎧⎨
⎩
, t ≤ ,

, t > ,

and D be a distribution function defined by

D(t) =

⎧⎨
⎩
, t ≤ ,

 – e–t , t > .

For any t > , define a function G∗ : X ×X ×X →R
+ by

G∗
x,y,z(t) =

⎧⎨
⎩
H(t), x = y = z,

D( t
G(x,y,z) ), otherwise,

whereG is aG-metric as inDefinition .. SetT =min. ThenG∗ is a probabilisticG-metric.

Proof It is easy to see thatG∗ satisfies (PGM-)-(PGM-). Next we showG∗(x, y, z)(s+ t) ≥
T(G∗(x,a,a)(s),G∗(a, y, y)(t)) for all x, y, z,a ∈ X and all s, t > . In fact, we only need show
that D satisfies

D
(

t + s
G(x, y, z)

)
≥min

{
D

(
s

G(x,a,a)

)
,D

(
t

D(a, y, z)

)}
. (.)

Since G(x, y, z) ≤G(x,a,a) +G(a, y, z), we have

s + t
G(x, y, z)

≥ s + t
G(x,a,a) +G(a, y, z)

. (.)

Furthermore, we have

max

{
s

G(x,a,a)
,

t
G(a, y, z)

}
≥ s + t

G(x,a,a) +G(a, y, z)

≥min

{
s

G(x,a,a)
,

t
G(a, y, z)

}
, (.)

which, from (.) and (.), shows that

s + t
G(x, y, z)

≥min

{
s

G(x,a,a)
,

t
G(a, y, z)

}
.

This implies (.) since D is nondecreasing. �

Example . Let (X,F ,T) be a PM-space. Define a function G∗ : X ×X ×X →R
+ by

G∗
x,y,z(t) =min

{
Fx,y(t),Fy,z(t),Fx,z(t)

}

for all x, y, z,∈ X and t > . Then G∗ is a probabilistic G-metric.

http://www.fixedpointtheoryandapplications.com/content/2014/1/91
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Proof It is obvious that G∗ satisfies (PGM-), (PGM-), and (PGM-). To prove that G∗

satisfies (PGM-), we need to show that, for all x, y, z,a ∈ X and all s, t ≥ ,

G∗
x,y,z(s + t) ≥ T

(
G∗

x,a,a(s),G
∗
a,y,z(t)

)
, (.)

i.e.,

min
{
Fx,y(s + t),Fy,z(s + t),Fx,z(s + t)

}
≥ T

(
Fx,a(s),min

{
Fa,y(t),Fa,z(t),Fy,z(t)

})
. (.)

Now, from

Fx,y(s + t) ≥ T
(
Fx,a(s),Fa,y(t)

)
≥ T

(
Fx,a(s),min

{
Fa,y(t),Fa,z(t),Fy,z(t)

})
,

Fx,z(s + t) ≥ T
(
Fx,a(s),Fa,z(t)

)
≥ T

(
Fx,a(s),min

{
Fa,y(t),Fa,z(t),Fy,z(t)

})

and

Fy,z(s + t) ≥ Fy,z(t)

≥ min
{
Fa,y(t),Fa,z(t),Fy,z(t)

}
≥ T

(
Fx,a(s),min

{
Fa,y(t),Fa,z(t),Fy,z(t)

})
,

we conclude that (.), i.e., (.) holds. Therefore, G∗ satisfies (PGM-) and hence G∗ is a
probabilistic G-metric. �

Example . Let (X,F ,TM) be a PM-space. Define a function G∗ : X ×X ×X →R
+ by

G∗
x,y,z(t) =min

{
Fx,y(t/),Fy,z(t/),Fx,z(t/)

}

for all x, y, z,∈ X and t > . Then (X,G∗,TM) is a PGM-space.

Proof In fact, the proofs of (PGM-)-(PGM-) are immediate. Now, we show that G∗ sat-
isfies (PGM-). It follows that

G∗
x,y,z(t + s)

=min

{
Fx,y

(
t + s


)
,Fy,z

(
t + s


)
,Fx,z

(
t + s


)}

≥min

{
min

{
Fx,a

(
t


)
,Fa,y

(
s


)}
,Fy,z

(
s


)
,min

{
Fx,a

(
t


)
,Fa,z

(
s


)}}

=min

{
min

{
Fx,a

(
t


)
,Fa,a

(
t


)
,Fx,a

(
t


)}
,min

{
Fa,y

(
s


)
,Fy,z

(
s


)
,Fa,z

(
s


)}}

=min
{
G∗

x,a,a(t),G
∗
a,y,z(s)

}
.

Thus (X,G,TM) is a PGM-space. �
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The following remark shows that the PGM-space is a generalization of the Menger PM-
space.

Remark . For any functionG∗ : X×X×X →R
+, the function F : X×X →R

+ defined
by

Fx,y(t) =min
{
G∗

x,y,y(t),G
∗
y,x,x(t)

}

is a probabilistic metric. It is easy to see that F satisfies the conditions (PM-) and (PM-).

Next, we show F satisfies (PM-). Indeed, for any s, t ≥  and x, y, z ∈ X, we have

Fx,y(s + t) =min
{
G∗

x,y,y(s + t),G∗
y,x,x(s + t)

}
,

T
(
Fx,z(s),Fz,y(t)

)
= T

(
min

{
G∗

x,z,z(s),G
∗
z,x,x(s)

}
,min

{
G∗

z,y,y(t),G
∗
y,z,z(t)

})
.

It follows from (PGM-) that

min
{
G∗

x,y,y(s + t),G∗
y,x,x(s + t)

}
≥min

{
T

(
G∗

x,z,z(s),G
∗
z,y,y(t)

)
,T

(
G∗

y,z,z(t),G
∗
z,x,x(s)

)}
.

Since

G∗
x,z,z(s)≥min

{
G∗

x,z,z(s),G
∗
z,x,x(s)

}
, G∗

z,y,y(t) ≥min
{
G∗

z,y,y(t),G
∗
y,z,z(t)

}

and

G∗
y,z,z(t) ≥min

{
G∗

z,y,y(t),G
∗
y,z,z(t)

}
, G∗

z,x,x(s)≥min
{
G∗

x,z,z(s),G
∗
z,x,x(s)

}
,

it follows from (PGM-) that

G∗
x,y,y(s + t) ≥ T

(
G∗

x,z,z(s),G
∗
z,y,y(t)

)
≥ T

(
min

{
G∗

x,z,z(s),G
∗
z,x,x(s)

}
,min

{
G∗

z,y,y(t),G
∗
y,z,z(t)

})
= T

(
Fz,x(s),Fz,y(t)

)

and

G∗
y,x,x(s + t) ≥ T

(
G∗

y,z,z(t),G
∗
z,x,x(s)

)
≥ T

(
min

{
G∗

z,y,y(t),G
∗
y,z,z(t)

}
,min

{
G∗

x,z,z(s),G
∗
z,x,x(s)

})
= T

(
Fz,y(t),Fz,x(s)

)
.

Therefore, we have

Fx,y(s + t) =min
{
G∗

x,y,y(s + t),G∗
y,x,x(s + t)

} ≥ T
(
Fx,z(s),Fz,y(t)

)
.

This shows that F satisfies (PM-).

http://www.fixedpointtheoryandapplications.com/content/2014/1/91
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2 Topology, convergence, and completeness
In this section, we first introduce the concept of neighborhoods in the PGM-spaces. For
the concept of neighborhoods in PM-spaces, we refer the readers to [, ].

Definition . Let (X,G∗,T) be a PGM-space and x be any point in X. For any ε > 
and δ with  < δ < , an (ε, δ)-neighborhood of x is the set of all points y in X for which
G∗

x,y,y(ε) >  – δ and G∗
y,x,x (ε) >  – δ. We write

Nx (ε, δ) =
{
y ∈ X :G∗

x,y,y(ε) >  – δ,G∗
y,x,x (ε) >  – δ

}
.

This means that Nx (ε, δ) is the set of all points y in X for which the probability of the
distance from x to y being less than ε is greater than  – δ.

Lemma . If ε ≤ ε and δ ≤ δ, then Nx (ε, δ) ⊂Nx (ε, δ).

Proof Suppose that z ∈ Nx (ε, δ), so G∗
x,z,z(ε) >  – δ and G∗

z,x,x (ε) >  – δ. Since F is
monotone, we have

G∗
x,z,z(ε) ≥G∗

x,z,z(ε) ≥  – δ ≥  – δ

and

G∗
z,x,x (ε) ≥G∗

z,x,x (ε) ≥  – δ ≥  – δ.

Therefore, by the definition, z ∈Nx (ε, δ). This completes the proof. �

Theorem. Let (X,G∗,T) be aMenger PGM-space.Then (X,G∗,T) is a Hausdorff space
in the topology induced by the family {Nx (ε, δ)} of (ε, δ)-neighborhoods.

Proof We show that the following four properties are satisfied:
(A) For any x ∈ X , there exists at least one neighborhood, Nx , of x and every

neighborhood of x contains x.
(B) If N 

x and N
x are neighborhoods of x, then there exists a neighborhood of x, N

x ,
such that N

x ⊂N 
x ∩N

x .
(C) If Nx is a neighborhood of x and y ∈ Nx , then there exists a neighborhood of y,

Ny, such that Ny ⊂ Nx .
(D) If x �= y, then there exist disjoint neighborhoods, Nx and Ny, such that x ∈Nx

and y ∈Ny.
Now, we prove that (A)-(D) hold.
(A) For any ε >  and  < δ < , x ∈Nx (ε, δ) since G∗

x,x,x (ε) =  for any ε > .
(B) For any ε, ε >  and  < δ, δ < , let

N 
x (ε, δ) =

{
y ∈ X :G∗

x,y,y(ε) >  – δ,G∗
y,x,x (ε) >  – δ

}

and

N
x (ε, δ) =

{
y ∈ X :G∗

x,y,y(ε) >  – δ,G∗
y,x,x (ε) >  – δ

}

http://www.fixedpointtheoryandapplications.com/content/2014/1/91
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be the neighborhoods of x. Consider

N
x =

{
y ∈ X :G∗

x,y,y
(
min{ε, ε}

)
>  –min{δ, δ},

and G∗
y,x,x

(
min{ε, ε}

)
>  –min{δ, δ}

}
.

Clearly, x ∈ N
x and, since min{ε, ε} ≤ ε and min{δ, δ} ≤ δ, by Lemma ., N

x ⊂
N 

x (ε, δ) and N
x ⊂ N

x (ε, δ), so

N
x ⊂N 

x (ε, δ)∩N
x (ε, δ).

(C) Let Nx = {z ∈ X : G∗
x,z,z(ε) >  – δ,G∗

z,x,x (ε) >  – δ} be the neighborhood of x.
Since y ∈Nx ,

G∗
x,y,y(ε) >  – δ, G∗

y,x,x (ε) >  – δ.

Now, G∗
x,y,y is left-continuous at ε, so there exist ε < ε and δ < δ such that

G∗
x,y,y(ε) >  – δ >  – δ, G∗

y,x,x (ε) >  – δ >  – δ.

LetNy = {z ∈ X :G∗
y,z,z(ε) > – δ,G∗

z,y,y(ε) > – δ}, where  < ε < ε – ε and δ is chosen
such that

T( – δ,  – δ) >  – δ.

Such a δ exists since T is continuous, T(a, ) = a for all a ∈ [, ] and  – δ >  – δ.
Now, suppose that s ∈Ny, so that

G∗
y,s,s(ε) >  – δ, G∗

s,y,y(ε) >  – δ.

Then, since G∗ is monotone, it follows from (PGM-) that

G∗
x,s,s(ε) ≥ T

(
G∗

x,y,y(ε),G
∗
y,s,s(ε – ε)

) ≥ T
(
G∗

x,y,y(ε),G
∗
y,s,s(ε)

)
≥ T( – δ,  – δ) >  – δ.

Similarly, we also have G∗
s,x,x (ε) >  – δ. This shows s ∈Nx and hence Ny ⊂Nx .

(D) Let y �= x. Then there exist ε >  and a, a with  ≤ a,a <  such thatG∗
x,y,y(ε) = a

and G∗
y,x,x (ε) = a. Let

Nx =
{
z :G∗

x,z,z(ε/) > b,G∗
z,x,x (ε/) > b

}

and

Ny =
{
z :G∗

y,z,z(ε/) > b,G∗
z,y,y(ε/) > b

}
,

where b and b are chosen such that  < b,b < , T(b,b) > a, where a = max{a,a}.
Such b and b exist since T is continuous, monotone, and T(, ) = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/91
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Now, suppose that there exists a point s ∈Nx ∩Ny such that

G∗
x,s,s(ε/) > b, G∗

s,x,x (ε/) > b, G∗
y,s,s(ε/) > b, G∗

s,y,y(ε/) > b.

Then, by (PGM-), we have

a =G∗
x,y,y(ε) ≥ T

(
G∗

x,s,s(ε/),G
∗
s,y,y(ε/)

) ≥ T(b,b) > a ≥ a

and

a =G∗
y,x,x (ε) ≥ T

(
G∗

y,s,s(ε/),G
∗
s,x,x (ε/)

) ≥ T(b,b) > a ≥ a,

which are contradictions. Therefore, Nx and Ny are disjoint. This completes the proof.�

Next, we give the definition of convergence of sequences in PGM-spaces.

Definition .
() A sequence {xn} in a PGM-space (X,G∗,T) is said to be convergent to a point x ∈ X

(write xn → x) if, for any ε >  and  < δ < , there exists a positive integerMε,δ such
that xn ∈Nx(ε, δ) whenever n >Mε,δ .

() A sequence {xn} in a PGM-space (X,G∗,T) is called a Cauchy sequence if, for any
ε >  and  < δ < , there exists a positive integerMε,δ such that G∗

xn ,xm ,xl (ε) >  – δ

wheneverm,n, l >Mε,δ .
() A PGM-space (X,G∗,T) is said to be complete if every Cauchy sequence in X

converges to a point in X .

Theorem . Let (X,G∗,T) be a PGM-space. Let {xn}, {yn} and {zn} be sequences in X
and x, y, z ∈ X. If xn → x, yn → y and zn → z as n → ∞, then, for any t > , G∗

xn ,yn ,zn (t) →
G∗

x,y,z(t) as n→ ∞.

Proof For any t > , there exists δ >  such that t > δ. Then, by (PGM-), we have

G∗
xn ,yn ,zn (t) ≥ G∗

xn ,yn ,zn (t – δ)

≥ T
(
G∗

xn ,x,x(δ/),G
∗
x,yn ,zn (t – δ/)

)
≥ T

(
G∗

xn ,x,x(δ/),T
(
G∗

yn ,y,y(δ/),G
∗
y,x,zn (t – δ/)

))
≥ T

(
G∗

xn ,x,x(δ/),T
(
G∗

yn ,y,y(δ/),T
(
G∗

z,z,zn (δ/),G
∗
x,y,z(t – δ)

)))

and

G∗
x,y,z(t) ≥ G∗

x,y,z(t – δ)

≥ T
(
G∗

x,xn ,xn (δ/),G
∗
xn ,y,z(t – δ/)

)
≥ T

(
G∗

x,xn ,xn (δ/),T
(
G∗

y,yn ,yn (δ/),G
∗
yn ,xn ,z(t – δ/)

))
≥ T

(
G∗

x,xn ,xn (δ/),T
(
G∗

y,yn ,yn (δ/),T
(
G∗

z,zn ,zn (δ/),G
∗
xn ,yn ,zn (t – δ)

)))
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/91
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Letting n → ∞ in the above two inequalities and noting that T is continuous, we have

lim
n→∞G∗

xn ,yn ,zn (t) ≥G∗
x,y,z(t – δ)

and

G∗
x,y,z(t)≥ lim

n→∞G∗
xn ,yn ,zn (t – δ).

Letting δ →  in above two inequalities, since G∗ is left-continuous, we conclude that

lim
n→∞G∗

xn ,yn ,zn (t) =G∗
x,y,z(t)

for any t > . This completes the proof. �

3 Fixed point theorems
In [], Sehgal extended the notion of a Banach contraction mapping to the setting of
Menger PM-spaces. Later on, Sehgal andBharucha-Raid [] proved a fixed point theorem
for a mapping under the contractive condition in a complete Menger PM-space. Before
proving our fixed point theorems, we first introduce a new concept of contraction in PGM-
spaces, which is a corresponding version of Sehgal’s contraction in PM-spaces.

Definition . Let (X,G∗,T) be a PGM-space. Amapping f : X → X is said to be contrac-
tive if there exists a constant λ ∈ (, ) such that

G∗
fx,fy,fz(t)≥G∗

x,y,z(t/λ) (.)

for all x, y, z ∈ X and t > .

The mapping f satisfying the condition (.) is called a λ-contraction.
Let T be a given t-norm. Then (by associativity) a family of mappings Tn : [, ]→ [, ]

for each n≥  is defined as follows:

T (t) = T(t, t), T(t) = T
(
t,T (t)

)
, . . . , Tn(t) = T

(
t,Tn–(t)

)
, . . .

for any t ∈ [, ].

Definition . ([]) A t-norm T is said to be of Hadzić-type if the family of functions
{Tn(t)}∞n= is equicontinuous at t = , that is, for any ε ∈ (, ), there exists δ ∈ (, ) such
that

t >  – δ �⇒ Tn(t) >  – ε

for each n≥ .

The t-norm T =min is a trivial example of t-norm of Hadzić-type.
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Lemma . Let (X,G∗,T) be a Menger PGM-space with T of Hadžić-type and {xn} be a
sequence in X. Suppose that there exists λ ∈ (, ) satisfying

G∗
xn ,xn+,xn+ (t)≥G∗

xn–,xn ,xn (t/λ)

for any n ≥  and t > . Then {xn} is a Cauchy sequence in X.

Proof Since G∗
xn ,xn+,xn+ (t) ≥G∗

xn–,xn ,xn (t/λ), by induction, we have

G∗
xn ,xn+,xn+ (t)≥G∗

x,x,x

(
t/λn).

Since X is a Menger PGM-space, we have G∗
x,x,x (t/λ

n) →  as n→ ∞, so

lim
n→∞G∗

xn ,xn+,xn+ (t) =  (.)

for any t > .
Now, let n≥  and t > . We show, by induction, that, for any k ≥ ,

G∗
xn ,xn+k ,xn+k (t)≥ Tk(G∗

xn ,xn+,xn+ (t – λt)
)
. (.)

For k = , since T(a,b) is a real number, T(a,b) =  for all a,b ∈ [, ]. Hence,G∗
xn ,xn ,xn (t) =

 = T(G∗
xn ,xn+,xn+ )(t–λt), which implies that (.) holds for k = . Assume that (.) holds

for some k ≥ . Then, since T is monotone, it follows from (PGM-) that

G∗
xn ,xn+k+,xn+k+ (t) = G∗

xn ,xn+k+,xn+k+ (t – λt + λt)

≥ T
(
G∗

xn ,xn+,xn+ (t – λt),G∗
xn+,xn+k+,xn+k+ (λt)

)
≥ T

(
G∗

xn ,xn+,xn+ (t – λt),G∗
xn ,xn+k ,xn+k (t)

)
≥ T

(
G∗

xn ,xn+,xn+ (t – λt),Tk(G∗
xn ,xn+,xn+ (t – λt)

))
= Tk+(G∗

xn ,xn+,xn+ (t – λt)
)
,

so we have the conclusion.
Now, we show that {xn} is a Cauchy sequence in X, i.e., limm,n,l→∞ G∗

xn ,xm ,xl (t) =  for any
t > . To this end, we first prove that limn,m→∞ G∗

xn ,xm ,xm (t) =  for any t > . Let t >  and
ε >  be given. By hypothesis, Tn : n ≥  is equicontinuous at  and Tn() = , so there
exists δ >  such that, for any a ∈ ( – δ, ],

Tn(a) >  – ε (.)

for all n ≥ . From (.), it follows that limn→∞ G∗
xn ,xn+,xn+ (t – λt) = . Hence there exists

n ∈N such that G∗
xn ,xn+,xn+ (t –λt) ∈ ( – δ, ] for any n≥ n. Hence, by (.) and (.), we

conclude that G∗
xn ,xn+k ,xn+k (t) >  – ε for any k ≥ . This shows limn,m→∞ G∗

xn ,xm ,xm (t) =  for

http://www.fixedpointtheoryandapplications.com/content/2014/1/91
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any t > . By (GPM-), we have

G∗
xn ,xm ,xl (t)≥ T

(
G∗

xn ,xn ,xm (t/),G
∗
xn ,xn ,xl (t/)

)
,

G∗
xn ,xn ,xm (t/) ≥ T

(
G∗

xn ,xm ,xm (t/),G
∗
xn ,xm ,xm (t/)

)
,

G∗
xn ,xn ,xl (t/)≥ T

(
G∗

xn ,xl ,xl (t/),G
∗
xn ,xl ,xl (t/)

)
.

Therefore, by the continuity of T , we conclude that

lim
m,n,l→∞

G∗
xn ,xm ,xl (t) = 

for any t > . This shows that the sequence {xn} is a Cauchy sequence in X. This completes
the proof. �

From Example . and Lemma . we get the following corollary.

Corollary . ([]) Let (X,F ,T) be a PM-space with T of Hadžić-type and {xn} ⊂ X be a
sequence. If there exists a constant λ ∈ (, ) such that

Fxn ,xn+ (t) ≥ Fxn–,xn (t/λ), n≥ , t > ,

then {xn} is a Cauchy sequence.

Proof DefineG∗
x,y,z(t) =min{Fx,y(t),Fy,z(t),Fx,z(t)} for all x, y, z ∈ X and all t > . Example .

shows that (X,G∗,T) is a PGM-space. SinceG∗
xn ,xn+,xn+ (t) = Fxn ,xn+ (t) andG∗

xn–,xn ,xn (t/λ) =
Fxn–,xn (t/λ), Fxn ,xn+ (t) ≥ Fxn–,xn (t/λ) implies G∗

xn ,xn+,xn+ (t) ≥ G∗
xn–,xn ,xn (t/λ) for all n ≥ 

and t > . By Lemma . we conclude that {xn} is a Cauchy sequence in the sense of PGM-
space (X,G∗,T). That is, for every ε >  and  < δ < , there exists a positive integer Mε,δ

such that G∗
xn ,xm ,xl (ε) >  – δ for allm,n, l >Mε,δ . By the definition of G∗, we have

min
{
Fxn ,xm (ε),Fxm ,xl (ε),Fxn ,xl (ε)

}
>  – δ, m, l,n >Mε,δ .

This shows that {xn} is a Cauchy sequence in the sense of PM-space (X,F ,T). �

Theorem . Let (X,G∗,T) be a complete Menger PGM-space with T of Hadžić-type. Let
λ ∈ (, ) and f : X → X be a λ-contraction. Then, for any x ∈ X, the sequence {f nx}
converges to a unique fixed point of T .

Proof Take an arbitrary point x in X. Construct a sequence {xn} by xn+ = f nx for all
n≥ . By (.), for any t > , we have

G∗
xn ,xn+,xn+ (t) =G∗

fxn–,fxn ,fxn (t)

≥G∗
xn–,xn ,xn (t/λ).

Lemma . shows that {xn} is a Cauchy sequence in X. Since X is complete, there exists a
point x ∈ X such that xn → x as n→ ∞. By (.), it follows that

G∗
fx,fxn ,fxn (t) ≥G∗

x,xn ,xn (t/λ).

http://www.fixedpointtheoryandapplications.com/content/2014/1/91
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Letting n → ∞, since xn → x and fxn → x as n→ ∞, we have

G∗
fx,x,x(t) = 

for any t > . Hence x = fx.
Next, suppose that y is another fixed point of f . Then, by (.), we have

G∗
x,y,y(t) =G∗

fx,fy,fy(t) ≥G∗
x,y,y(t/λ)≥ · · · ≥G∗

x,y,y
(
t/λn).

Letting n → ∞, since X is a Menger PGM-space, G∗
x,y,y(t/λn)→  as n→ ∞, so

G∗
x,y,y(t) = 

for any t > , which implies that x = y. Therefore, f has a unique fixed point in X. This
completes the proof. �

Theorem . Let (X,G∗,T) be a complete Menger PGM-space with T of Hadžić-type. Let
f : X → X be a mapping satisfying

G∗
fx,fy,fz(λt)≥



[
G∗

x,fx,fx(t) +G∗
y,fy,fy(t) +G∗

z,fz,fz(t)
]

(.)

for all x, y, z ∈ X, where λ ∈ (, ). Then, for any x ∈ X, the sequence {f nx} converges to a
unique fixed point of f .

Proof Take an arbitrary point x in X. Construct a sequence {xn} by xn+ = f nx for all
n≥ . By (.), for any t > , we have

G∗
xn ,xn+,xn+ (λt) =G∗

fxn–,fxn ,fxn (λt)

≥ 

[
G∗

xn–,fxn–,fxn– (t) + G∗
xn ,fxn ,fxn (t)

]

≥ 

[
G∗

xn–,fxn–,fxn– (t) + G∗
xn ,fxn ,fxn (λt)

]

=


[
G∗

xn–,xn ,xn (t) + G∗
xn ,xn+,xn+ (λt)

]
.

This shows that

G∗
xn ,xn+,xn+ (t)≥G∗

xn–,xn ,xn (t/λ).

Lemma . shows that {xn} is a Cauchy sequence in X. Since X is complete, there exists a
point x ∈ X such that xn → x as n→ ∞. By (.), it follows that

G∗
fx,fx,fxn (t)≥



[
G∗

x,fx,fx(t/λ) +G∗
xn ,fxn ,fxn (t/λ)

]
.

Letting n → ∞, since xn → x and fxn → x as n→ ∞, we have, for any t > ,

G∗
fx,fx,x(t) ≥



[
G∗

x,fx,fx(t/λ) +G∗
x,x,x(t/λ)

] ≥ 

[
G∗

x,fx,fx(t) +G∗
x,x,x(t/λ)

]

http://www.fixedpointtheoryandapplications.com/content/2014/1/91
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i.e.,

G∗
fx,fx,x(t) ≥G∗

x,x,x(t/λ) = .

Hence x = Tx.
Next, suppose that y is another fixed point of f . Then, by (.), we have, for any y > ,

G∗
x,y,y(t) =G∗

fx,fy,fy(t)

≥ 

[
G∗

x,fx,fx(t/λ) + G∗
y,fy,fy(t/λ)

]

= .

This shows that x = y. Therefore, f has a unique fixed point in X. This completes the
proof. �

Finally, we give the following example to illustrate Theorem . and Theorem ..

Example . Set X = [,∞) and T(a,b) =min{a,b} for all a,b ∈ [, ]. Define a function
G∗ : X × [,∞) → [,∞) by

G∗
x,y,z(t) =

t
t +G(x, y, z)

for all x, y, z ∈ X, whereG(x, y, z) = |x–y|+ |y–z|+ |z–x|. ThenG is aG-metric (see []). It
is easy to check that G∗ satisfies (PGM-)-(PGM-). Since G(x, y, z) ≤G(x,a,a) +G(a, y, z)
for all x, y, z,a ∈ X, we have

t + s
s + t +G(x, y, z)

≥ t + s
s + t +G(x,a,a) +G(a, y, z)

≥min

{
s

s +G(x,a,a)
,

t
t +G(a, y, z)

}
.

This shows that G∗ satisfies (PGM-). Hence (X,G∗,min) is a PGM-space.
() Let λ ∈ (, ). Define a mapping f : X → X by fx = λx for all x ∈ X. For any t > , we

have

G∗
fx,fy,fz(t) =

t
t + λ(|x – y| + |y – z| + |z – x|)

and

G∗
x,y,z(t/λ) =

t/λ
t/λ + (|x – y| + |y – z| + |z – x|) .

Therefore, we conclude that f is a λ-contraction and f has a fixed point in X by Theo-
rem .. In fact, the fixed point is x = .
() Let λ ∈ (, ). Define a mapping f : X → X by fx =  for all x ∈ X. For any t >  and all

x, y, z ∈ X, since

G∗
fx,fy,fz(t) =G∗

,,(t) = 

http://www.fixedpointtheoryandapplications.com/content/2014/1/91
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and



[
G∗

x,fx,fx(λt) +G∗
y,fy,fy(λt) +G∗

z,fz,fz(λt)
] ≤ ,

we conclude that

G∗
fx,fy,fz(t)≥



[
G∗

x,fx,fx(λt) +G∗
y,fy,fy(λt) +G∗

z,fz,fz(λt)
]

and hence f has a fixed point in X by Theorem .. In fact, the fixed point is x = .
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