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Abstract
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1 Introduction
Let E be a normed space. A subset K of E is called proximinal if for each x ∈ E there exists
k ∈ K such that

‖x – k‖ = inf
{‖x – y‖ : y ∈ K

}
= d(x,K ).

It is well known that every closed convex subset of a uniformly convex Banach space is
proximinal. For a nonempty set E, we shall denote the family of all nonempty proximinal
subsets of E by P(E), the family of all nonempty closed and bounded subsets of E byCB(E),
the family of all nonempty closed, convex, and bounded subsets of E byCVB(E), the family
of all nonempty closed subsets of E by C(X), the family of all nonempty subsets of E by
E , the identity on E by I , the weak topology of E by σ (E,E∗), and the norm (or strong)
topology of E by (E,‖ · ‖).
LetH denote the Hausdorffmetric induced by themetric d on E, that is, for everyA,B ∈

E ,

H(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}
.

If A,B ∈ CB(E), then

H(A,B) = inf
{
ε >  : A⊆N(ε,B) and B ⊆N(ε,A)

}
,

where N(ε,C) =
⋃

c∈C{x ∈ E : d(x, c) < ε}. Let E be a normed space. Let T :D(T)⊆ E → E

be a multivalued mapping on E. A point x ∈D(T) is called a fixed point of T if x ∈ Tx. The
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set F(T) = {x ∈ D(T) : x ∈ Tx} is called the fixed point set of T . A point x ∈ D(T) is called
a strict fixed point of T if Tx = {x}. The set Fs(T) = {x ∈ D(T) : Tx = {x}} is called the strict
fixed point set of T . A multivalued mapping T :D(T) ⊆ E → E is called L-Lipschitzian if
there exists L ≥  such that for all x, y ∈D(T)

H(Tx,Ty) ≤ L‖x – y‖. (.)

In (.) if L ∈ [, ), T is said to be a contraction, while T is nonexpansive if L = . T is called
quasi-nonexpansive if F(T) = {x ∈D(T) : x ∈ Tx} 	= ∅ and for all p ∈ F(T),

H(Tx,Tp) ≤ ‖x – p‖. (.)

Clearly every nonexpansivemappingwith nonempty fixedpoint set is quasi-nonexpansive.
Several authors have studied various classes of multivalued mappings. In [], Shahzad

and Zegeye studied certain classes of multivalued nonself mappings in Banach spaces and
constructed an appropriate net which converges strongly to a fixed point of the classes of
the mappings. Recently, Isiogugu [] introduced new classes of multivalued mappings as
follows.

Definition . ([]) Let X be a normed space. Amultivaluedmapping T :D(T) ⊆ X → X

is said to be k-strictly pseudocontractive-type in the sense of Browder and Petryshyn []
if there exists k ∈ [, ) such that given any x, y ∈ D(T) and u ∈ Tx, there exists v ∈ Ty
satisfying ‖u – v‖ ≤ H(Tx,Ty) and

H(Tx,Ty) ≤ ‖x – y‖ + k
∥∥x – u – (y – v)

∥∥. (.)

If k =  in (.) T is said to be a pseudocontractive-type mapping. T is called nonexpan-
sive-type if k = . Clearly, every multivalued nonexpansive mapping is nonexpansive-type
mapping.

From the definitions, it is clear that every multivalued nonexpansive-type mapping is
k-strictly pseudocontractive-type and every k-strictly pseudocontractive-typemapping is
pseudocontractive-type. Examples to show that the class of nonexpansive-type mappings
is properly contained in the class of k-strictly pseudocontractive-type mappings and that
the class of k-strictly pseudocontractive-type mappings is properly contained in the class
of pseudocontractive-type mappings were given in []. The following theorems were also
proved in [].

Theorem . Let K be a nonempty closed and convex subset of a real Hilbert space H .
Suppose that T : K → P(K ) is a k-strictly pseudocontractive-type mapping from K into the
family of all proximinal subsets of K with k ∈ (, ) such that F(T) 	= ∅ and T(p) = {p} for
all p ∈ F(T). Suppose (I – T) is weakly demiclosed at zero. Then the Mann-type sequence
defined by

xn+ = ( – αn)xn + αnyn

converges weakly to q ∈ F(T), where yn ∈ Txn with ‖xn – yn‖ = d(xn,Txn) and αn is a real
sequence in (, ) satisfying: (i) αn → α <  – k; (ii) α > ; (iii)

∑∞
n= αn( – αn) = ∞.

http://www.fixedpointtheoryandapplications.com/content/2014/1/93


Isiogugu and Osilike Fixed Point Theory and Applications 2014, 2014:93 Page 3 of 12
http://www.fixedpointtheoryandapplications.com/content/2014/1/93

Theorem . Let K be a nonempty closed and convex subset of a real Hilbert space X .
Suppose that T : K → P(K ) is an L-Lipschitzian pseudocontractive-type mapping from K
into the family of all proximinal subsets of K such that F(T) 	= ∅ and T(p) = {p} for all
p ∈ F(T). Suppose for any pair x, y ∈ K and u ∈ Tx with ‖x – u‖ = d(x,Tx), there exists
v ∈ Ty with ‖y – v‖ = d(y,Ty) satisfying the conditions of Definition .. Suppose T satisfies
condition () (i.e., if there exists a nondecreasing function f : [,∞) → [,∞) with f () = 
and f (r) >  for all r ∈ (,∞) such that d(x,Tx)≥ f (d(x,F(T))), ∀x ∈ K . Then the Ishikawa
sequence defined by

{
yn = ( – βn)xn + βnun,
xn+ = ( – αn)xn + αnwn

(.)

converges strongly to p ∈ F(T), where un ∈ Txn with ‖xn – un‖ = d(xn,Txn), wn ∈ Tyn with
‖yn –wn‖ = d(yn,Tyn) satisfying the conditions in Definition . and {αn} and {βn} are real
sequences satisfying: (i)  ≤ αn ≤ βn < ; (ii) lim infn→∞ αn = α > ; (iii) supn≥ βn ≤ β ≤

√
+L+

.

In [], Chidume et al. also considered a class ofmultivalued k-strictly pseudocontractive
mappings defined as follows.
Let H be a real Hilbert space. A multivalued mapping T :D(T)⊆H → CB(H) is said to

be k-strictly pseudocontractive if there exists k ∈ (, ) such that for all x, y ∈D(T) one has

H(Tx,Ty) ≤ ‖x – y‖ + k
∥∥x – u – (y – v)

∥∥, ∀u ∈ Tx, v ∈ Ty.

If k = , T is said to be pseudocontractive mapping. They constructed a Mann-type it-
eration scheme which is an approximate fixed point sequence and obtain some strong
convergence theorems for the class of k-strictly pseudocontractive mappings.
The following example shows that the class ofmultivalued pseudocontractive-typemap-

pings considered by Isiogugu [] is not a subclass of the multivalued pseudocontractive
mappings considered by Chidume et al. [].

Example . Let X =R (the reals with usual metric). Define T : [,∞) → CB(R) by

Tx =
[
–
x

,–x

]
. (.)

It was shown in [] that T is k-strictly pseudocontractive-type mapping hence pseudo-
contractive-type. However, for x = , y =  if we choose u = – ∈ Tx and v = – ∈ Ty then
H(Tx,Ty) = 

 and ‖x – y‖ + ‖x – u – (y – v)‖ = . Consequently,

H(Tx,Ty) > ‖x – y‖ + ∥∥x – u – (y – v)
∥∥,

which implies that T is not pseudocontractive and hence not k-strictly pseudocontractive
mapping in the sense of Chidume et al. [].
It is our purpose in this work to introduce and study new classes of multivalued

demicontractive-type and hemicontractive-type mappings which are more general than
the class ofmultivalued quasi-nonexpansivemappings and are also related to themultival-
ued k-strictly pseudocontractive-type and pseudocontractive-type mappings of Isiogugu
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[], single-valued mappings of Browder and Petryshyn [], Hicks and Kubicek [] and
Naimpally and Singh []. We also prove weak and strong convergence theorems for ap-
proximation of fixed points of our classes of mappings.

2 Preliminaries
We shall need the following definitions and lemmas.

Definition . (see, e.g., []) Let E be a Banach space. Let T : D(T) ⊆ E → E be a mul-
tivalued mapping. I – T is said to be strongly demiclosed at zero if for any sequence
{xn}∞n= ⊆ D(T) such that xn converges strongly to p and a sequence {yn} with yn ∈ Txn
for all n ∈N such that {xn – yn} converges strongly to zero, then p ∈ Tp (i.e.,  ∈ (I – T)p).
Observe that if T is a multivalued Lipschitzian mapping, then I – T is strongly demi-

closed.

Definition . (see, e.g., [, ]) Let E be a Banach space. Let T : D(T) ⊆ E → E be a
multivalued mapping. I – T is said to be weakly demiclosed at zero if for any sequence
{xn}∞n= ⊆D(T) such that {xn} converges weakly to p and a sequence {yn} with yn ∈ Txn for
all n ∈N such that {xn – yn} converges strongly to zero. Then p ∈ Tp (i.e.,  ∈ (I – T)p).

Definition . (see, e.g., [, ]) Let E be a Banach space. Let T : D(T) ⊆ E → E be a
multivalued mapping. The graph of I – T is said to be closed in σ (E,E∗) × (E,‖ · ‖) (i.e.,
I –T isweakly demiclosed or demiclosed) if for any sequence {xn}∞n= ⊆D(T) such that {xn}
converges weakly to p and a sequence {yn} with yn ∈ Txn for all n ∈ N such that {xn – yn}
converges strongly to y. Then y ∈ (I – T)p (i.e., y = p – v for some v ∈ Tp).

Definition . ABanach X is said to satisfy Opial’s condition if whenever a sequence {xn}
converges weakly to x ∈ X then it is the case that

lim inf‖xn – x‖ < lim inf‖xn – y‖,

for all y ∈ X, y 	= x.

Definition . ([]) A multivalued mapping T : K → P(K ) is said to satisfy condition
() (see for example []) if there exists a nondecreasing function f : [,∞) → [,∞) with
f () =  and f (r) >  for all r ∈ (,∞) such that

d(x,Tx)≥ f
(
d
(
x,F(T)

))
, ∀x ∈ K .

Lemma . ([]) Let {an}, {βn}, and {γn} be sequences of nonnegative real numbers satis-
fying the following relation:

an+ ≤ ( + βn)an + γn, n≥ n,

where n is a nonnegative integer. If
∑

βn < ∞,
∑

γn < ∞, then limn→∞ an exists.

Lemma . ([]) Let K be a normed space. Let T : K → P(K ) be a multivalued mapping
and PT (x) = {y ∈ Tx : ‖x – y‖ = d(x,Tx)}. Then the following are equivalent:

http://www.fixedpointtheoryandapplications.com/content/2014/1/93
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() x ∈ Tx;
() PTx = {x};
() x ∈ F(PT ).

Moreover, F(T) = F(PT ).

Lemma . ([]) Let A,B ∈ CB(X) and a ∈ A. If γ > , then there exists b ∈ B such that

d(a,b)≤H(A,B) + γ .

3 Main results
We now introduce the new classes of multivalued demicontractive-type and hemicon-
tractive-type mappings and prove some convergence theorems for these classes of map-
pings.

Definition . Let X be a real normed space. A mapping T : D(T) ⊆ X → X is said to
be demicontractive in the terminology of Hicks and Kubicek [] if F(T) 	= ∅ and for all
p ∈ F(T), x ∈D(T) there exists k ∈ [, ) such that

H(Tx,Tp) ≤ ‖x – p‖ + kd(x,Tx), (.)

where H(Tx,Tp) = [H(Tx,Tp)] and d(x,p) = [d(x,p)].
If k =  in (.) then T is called a hemicontractive mapping.

The following are some examples of demicontractive mappings.

Example . Every multivalued quasi-nonexpansive mapping is demicontractive.

Example . LetX be a normed space. Suppose thatT is amultivaluedmapping such that
F(T) 	= ∅ and that PT is a k-strictly pseudocontractive-type mapping; then PT is demicon-
tractive.

Example . Let X be a normed space. Let T : D(T) ⊆ X → P(X) be a multivalued
k-strictly pseudocontractive-type with a nonempty fixed point set. Suppose Tp = {p} for
all p ∈ F(T); then for any x ∈ D(T), p ∈ F(T) and u ∈ Tx with ‖u – x‖ = d(x,Tx) we have

H(Tx,Tp) ≤ ‖x – p‖ + k‖x – u‖ = ‖x – p‖ + kd(x,Tx);

therefore, T is demicontractive-type.

Example . Let X =R (the reals with usual metric). Define T :R → R by

Tx =

{
[–x

 , –x], x ∈ (–∞, ],
[–x, – x

 ], x ∈ (,∞).
(.)

Then F(T) = {}. For each x ∈ (–∞, )∪ (,∞),

H(Tx,T) = |–x – | = |x – | = |x – | + |x|,

d(x,Tx) =
∣∣∣∣x –

(
–
x


)∣∣∣∣


=
∣∣∣∣x

∣∣∣∣


=



|x|.

http://www.fixedpointtheoryandapplications.com/content/2014/1/93
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Therefore,

H(Tx,T) = |x – | + |x| = |x – | + 


d(x,Tx)≤ |x – | + kd(x,Tx).

Consequently, T is demicontractive-type with k = 
 . It then follows that T is hemicon-

tractive. Observe that T is not quasi-nonexpansive so that the class of multivalued quasi-
nonexpansivemappings is properly contained in the class ofmultivalued demicontractive-
type mappings.

Next is an example of a multivaluedmapping T with F(T) 	= ∅, Tp = {p} for all p ∈ Tp for
which PT is a demicontractive-type but not a k-strictly pseudocontractive-type mapping.

Example . Let X =R (the reals with usual metric). Define T : [–, ] → [–,] by

Tx =

⎧⎪⎨
⎪⎩
[–, x sin


x ], x ∈ (, ],

{}, x = ,
[ x sin


x , ], x ∈ [–, ).

(.)

Then F(T) = {}. For each x ∈ [–, ],

PTx =

{
{ x sin 

x }, x 	= ,
{}, x = ,

(.)

which is demicontractive-type but not k-strictly pseudocontractive-type (see for exam-
ple []).

The following example shows that the class of demicontractivemapping is properly con-
tained in the class of hemicontractive mappings.

Example . Let X =R (the reals with the usual metric). Define T :R → R by

Tx =

{
[–

√
x, ], x ∈ [,∞),

[,–
√
x], x ∈ (–∞, ).

(.)

Then F(T) = {}. For each x ∈ (–∞, )∪ (,∞),

H(Tx,T) = |√x – | = |x – | = |x – | + |x – |,
d(x,Tx) = |x – | = |x – |.

Therefore,

H(Tx,T)≤ |x – | + |x – | = |x – | + d(x,Tx) > |x – | + kd(x,Tx), (.)

∀x ∈ B and ∀k ∈ [, ). Therefore, T is hemicontractive but not demicontractive.

Other examples of hemicontractive mappings include the following.

http://www.fixedpointtheoryandapplications.com/content/2014/1/93
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Example . Let X be a normed space. Suppose T is a multivalued mapping such that
F(T) 	= ∅ and PT is pseudocontractive-type mapping; then PT is hemicontractive.

Example . Let X be a normed space. Let T : D(T) ⊆ X → P(X) be a multivalued
pseudocontractive-typewith a nonempty fixed point set. SupposeTp = {p} for all p ∈ F(T);
then for any x ∈ D(T), p ∈ F(T) and u ∈ Tx with ‖u – x‖ = d(x,Tx) we have

H(Tx,Tp) ≤ ‖x – p‖ + ‖x – u‖ = ‖x – p‖ + d(x,Tx).

The following lemma shows that Lemma . is also valid for all A,B ∈ P(E) and γ = .

Lemma. Let E be ametric space. If A,B ∈ P(E) and a ∈ A, then it is a simple consequence
of the Hausdorff metric H that there exists b ∈ B such that

d(a,b)≤H(A,B). (.)

Proof Let E be a metric space and P(E) be the family of all nonempty proximinal subsets
of E. Let A,B ∈ P(E) and a ∈ A. Since B is proximinal, there exists ba ∈ B such that

d(a,B) = d(a,ba).

Observe that

H(A,B) = max
{
sup
u∈A

d(u,B), sup
v∈B

d(v,A)
}

≥ sup
u∈A

d(u,B) ≥ d(a,B) = d(a,ba).

Hence the result follows. �

Remark . Lemma . holds if E is a reflexive real Banach space and P(E) is replaced
with CB(K ) with B weakly closed (see for example []).

We now prove the following theorems.

Theorem . Let K be a nonempty closed and convex subset of a real Hilbert space H .
Suppose that T : K → P(K ) is a demicontractive mapping from K into the family of all
proximinal subsets of K with k ∈ (, ) and T(p) = {p} for all p ∈ F(T). Suppose (I – T) is
weakly demiclosed at zero. Then the Mann type sequence defined by

xn+ = ( – αn)xn + αnyn, (.)

converges weakly to q ∈ F(T), where yn ∈ Txn and αn is a real sequence in (, ) satisfying:
(i) αn → α <  – k; (ii) α > .

Proof Using the well-known identity:

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖,

http://www.fixedpointtheoryandapplications.com/content/2014/1/93
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which holds for all x, y ∈H and for all t ∈ [, ], we obtain

‖xn+ – p‖ =
∥∥( – αn)xn + αnyn – p

∥∥

=
∥∥( – αn)(xn – p) + αn(yn – p)

∥∥

= ( – αn)‖xn – p‖ + αn‖yn – p‖ – αn( – αn)‖xn – yn‖

≤ ( – αn)‖xn – p‖ + αnH(Txn,Tp) – αn( – αn)‖xn – yn‖

≤ ( – αn)‖xn – p‖ + αn
[‖xn – p‖ + kd(xn,Txn)

]
– αn( – αn)‖xn – yn‖

≤ ‖xn – p‖ + αnk‖xn – yn‖

– αn( – αn)‖xn – yn‖

= ‖xn – p‖ – αn
(
 – (αn + k)

)‖xn – yn‖. (.)

It then follows that limn→∞ ‖xn – p‖ exists; hence {xn} is bounded. Also,
∞∑
n=

αn
(
 – (αn + k)

)‖xn – yn‖ ≤ ‖x – p‖ < ∞.

Since α >  from (ii), we have limn→∞ ‖xn – yn‖ = . Thus limn→∞ d(xn,Txn) = . Also
since K is closed and {xn} ⊆ K with {xn} bounded, there exist a subsequence {xnt } ⊆ {xn}
such that {xnt } converges weakly to some q ∈ K . Also limn→∞ ‖xn – yn‖ =  implies that
limn→∞ ‖xnt – ynt‖ = . Since (I –T) is weakly demiclosed at zero we have q ∈ Tq. Since H
satisfies Opial’s condition [] we find that {xn} converges weakly to q ∈ F(T). �

Corollary . Let K be a nonempty closed and convex subset of a real Hilbert space H .
Suppose that T : K → P(K ) is k-strictly pseudocontractive-type mapping from K into the
family of all proximinal subsets of K with k ∈ (, ) such that F(T) 	= ∅ and T(p) = {p} for
all p ∈ F(T). Suppose (I – T) is weakly demiclosed at zero. Then the Mann sequence {xn}
defined in Theorem . converges weakly to a point of F(T).

Proof The proof follows easily from Example . and Theorem .. �

Corollary . Let H be a real Hilbert space and K a nonempty closed and convex subset
of H . Let T : K → P(K ) be a multivalued mapping from K into the family of all proximinal
subsets of K . Suppose PT is a demicontractive mapping with k ∈ (, ) and (I –PT ) is weakly
demiclosed at zero. Then the Mann sequence {xn} defined in Theorem . converges weakly
to a point of F(T).

Proof The proof follows easily from Lemma . and Theorem .. �

Remark . Since the choice of yn ∈ Txn in the Mann-type iteration scheme is indepen-
dent of d(xn,Txn), we can also replace P(K ) with CB(K) in Theorem . and its corollaries.
Furthermore, since limn→∞ d(xn,Txn) = , one can impose standard conditions on T or K
which guarantee strong convergence.
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Theorem . Let K be a nonempty closed and convex subset of a real Hilbert space X .
Suppose that T : K → P(K ) is an L-Lipschitzian hemicontractive mapping from K into the
family of all proximinal subsets of K and Tp = {p} for all p ∈ F(T). Suppose T satisfies
condition (). Then the Ishikawa sequence defined by

{
yn = ( – βn)xn + βnun,
xn+ = ( – αn)xn + αnwn

(.)

converges strongly to p ∈ F(T), where un ∈ Txn, wn ∈ Tyn satisfying the conditions
of Lemma . and {αn} and {βn} are real sequences satisfying: (i)  ≤ αn ≤ βn < ;
(ii) lim infn→∞ αn = α > ; (iii) supn≥ βn ≤ β ≤ √

+L+
.

Proof

‖xn+ – p‖ = ∥∥( – αn)xn + αnwn – p
∥∥

=
∥∥( – αn)(xn – p) + αn(wn – p)

∥∥

= ( – αn)‖xn – p‖ + αn‖wn – p‖

– αn( – αn)‖xn –wn‖

≤ ( – αn)‖xn – p‖ + αnH(Tyn,Tp)

– αn( – αn)‖xn –wn‖

≤ ( – αn)‖xn – p‖ + αn
[‖yn – p‖

+ d(yn,Tyn)
]
– αn( – αn)‖xn –wn‖

= ( – αn)‖xn – p‖ + αn‖yn – p‖ + αnd(yn,Tyn)

– αn( – αn)‖xn –wn‖, (.)

d(yn,Tyn)≤ ‖yn –wn‖

=
∥∥( – βn)xn + βnun –wn

∥∥

=
∥∥( – βn)(xn –wn) + βn(un –wn)

∥∥

= ( – βn)‖xn –wn‖ + βn‖un –wn‖

– βn( – βn)‖xn – un‖. (.)

Equations (.) and (.) imply that

‖xn+ – p‖ ≤ ( – αn)‖xn – p‖ + αn‖yn – p‖

+ αn
[
( – βn)‖xn –wn‖ + βn‖un –wn‖

– βn( – βn)‖xn – un‖
]

– αn( – αn)‖xn –wn‖, (.)

‖yn – p‖ = ∥∥( – βn)xn + βnun – p
∥∥

=
∥∥( – βn)(xn – p) + βn(un – p)

∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/93
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= ( – βn)‖xn – p‖ + βn‖un – p‖ – βn( – βn)‖xn – un‖

≤ ( – βn)‖xn – p‖ + βnH(Txn,Tp) – βn( – βn)‖xn – un‖

≤ ( – βn)‖xn – p‖ + βn
[‖xn – p‖ + d(xn,Txn)

]
– βn( – βn)‖xn – un‖

≤ ( – βn)‖xn – p‖ + βn‖xn – p‖ + βn‖xn – un‖

– βn( – βn)‖xn – un‖

= ‖xn – p‖ + β
n‖xn – un‖. (.)

Equations (.) and (.) imply that

‖xn+ – p‖ ≤ ( – αn)‖xn – p‖

+ αn
[‖xn – p‖ + β

n‖xn – un‖
]

+ αn
[
( – βn)‖xn –wn‖ + βn‖un –wn‖

– βn( – βn)‖xn – un‖
]

– αn( – αn)‖xn –wn‖

= ( – αn)‖xn – p‖ + αn‖xn – p‖ + αnβ

n‖xn – un‖

+ αn( – βn)‖xn –wn‖ + αnβn‖un –wn‖

– αnβn( – βn)‖xn – un‖ – αn( – αn)‖xn –wn‖

≤ ‖xn – p‖ + αnβ

n‖xn – un‖ + αnβnH(Txn,Tyn)

– αn(βn – αn)‖xn –wn‖

– αnβn( – βn)‖xn – un‖

≤ ‖xn – p‖ + αnβ

n‖xn – un‖ + αnβ


nL

‖xn – un‖

– αnβn( – βn)‖xn – un‖

– αn(βn – αn)‖xn –wn‖

= ‖xn – p‖ – αnβn
[
 – βn – Lβ

n
]‖xn – un‖

– αn(βn – αn)‖xn –wn‖

= ‖xn – p‖ – αnβn
[
 – βn – Lβ

n
]‖xn – un‖. (.)

It then follows from Lemma . that limn→∞ ‖xn–p‖ exists. Hence {xn} is bounded so {un}
and {wn} also are. We then have from (.), (ii), and (iii)

∞∑
n=

α[ – β – Lβ]‖xn – un‖ ≤
∞∑
n=

αnβn
[
 – βn – Lβ

n
]‖xn – un‖

≤
∞∑
n=

[‖xn – p‖ – ‖xn+ – p‖]
≤ ‖x – p‖ +D < ∞.
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Isiogugu and Osilike Fixed Point Theory and Applications 2014, 2014:93 Page 11 of 12
http://www.fixedpointtheoryandapplications.com/content/2014/1/93

It then follows that limn→∞ ‖xn–un‖ = . Since un ∈ Txn we have d(xn,Txn) ≤ ‖xn–un‖ →
 as n → ∞. Since T satisfies condition (), limn→∞ d(xn,F(T)) = . Thus there exists a
subsequence {xnk } of {xn} such that ‖xnk – pk‖ ≤ 

k for some {pk} ⊆ F(T). From (.)

‖xnk+ – pk‖ ≤ ‖xnk – pk‖.

We now show that {pk} is a Cauchy sequence in F(T). We have

‖pk+ – pk‖ ≤ ‖pk+ – xnk+‖ + ‖xnk+ – pk‖

≤ 
k+

+

k

=


k–
.

Therefore {pk} is a Cauchy sequence and converges to some q ∈ K because K is closed.
Now,

‖xnk – q‖ ≤ ‖xn – pk‖ + ‖pk – q‖.

Hence xnk → q as k → ∞. We have

d(q,Tq) ≤ ‖q – pk‖ + ‖pk – xnk‖ + d(xnk ,Txnk ) +H(Txnk ,Tq)

≤ ‖q – pk‖ + ‖pk – xnk‖ + d(xnk ,Txnk ) + L‖xnk – q‖.

Hence, q ∈ Tq and {xnk } converges strongly to q. Since lim‖xn – q‖ exists we see that xn
converges strongly to q ∈ F(T). �

Corollary . Let K be a nonempty closed and convex subset of a real Hilbert space X .
Suppose that T : K → P(K ) is an L-Lipschitzian pseudocontractive-type mapping from K
into the family of all proximinal subsets of K such that F(T) 	= ∅ and T(p) = {p} for all
p ∈ F(T). Suppose T satisfies condition (). Then the Ishikawa sequence {xn} defined in
(.) converges strongly to p ∈ F(T).

Proof The proof follows easily from Example ., Lemma ., and Theorem .. �

Corollary . Let H be a real Hilbert space and K a nonempty closed and convex subset
of H . Let T : K → P(K ) be a multivalued mapping from K into the family of all proximinal
subsets of K such that F(T) 	= ∅. Suppose PT is an L-Lipschitzian hemicontractive mapping.
If T satisfies condition (). Then the Ishikawa sequence {xn} defined in (.) converges
strongly to p ∈ F(T).

Proof The proof follows easily from Lemma . and Theorem .. �

Remark . InTheorem. and its corollarieswe can replace P(K ) withCB(K ) with addi-
tional condition that T is weakly closed for all x ∈D(T) = K in order to ensure that un and
wn satisfy Lemma . as indicated in Remark .. Furthermore, since limn→∞ d(xn,Txn) =
, the additional requirement that (I – T) is weakly demiclosed at zero in Theorem .
yields weak convergence without condition ().
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