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Abstract
The implicit midpoint rule (IMR) for nonexpansive mappings is established. The IMR
generates a sequence by an implicit algorithm. Weak convergence of this algorithm is
proved in a Hilbert space. Applications to the periodic solution of a nonlinear
time-dependent evolution equation and to a Fredholm integral equation are
included.
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1 Introduction
The implicit midpoint rule (IMR) is one of the powerful numerical methods for solving
ordinary differential equations (in particular, the stiff equations) [–] and differential-
algebra equations [].
For the ordinary differential equation

y′ = f (y), y() = y, (.)

IMR generates a sequence {yn} by the recursion procedure

yn+ = yn + hf
(
yn + yn+



)
, n≥ , (.)

where h >  is a stepsize. It is known that if f : Rk → R
k is Lipschitz continuous and suf-

ficiently smooth, then the sequence {yn} converges to the exact solution of (.) as h → 
uniformly over t ∈ [, t̄] for any fixed t̄ > .
If we write the function f in the form f (y) = y – g(y), then differential equation (.)

becomes

y′ = y – g(y), y() = y, (.)

and the process (.) is rewritten as

yn+ = yn + h
[
yn + yn+


– g

(
yn + yn+



)]
, n≥ . (.)
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The equilibriumproblem associatedwith differential equation (.) is the fixed point prob-
lem

y = g(y). (.)

This motivates us to transplant IMR (.) to the solving of the fixed point equation

x = Tx, (.)

where T is, in general, a nonlinear operator in a Hilbert space. We below introduce our
implicit midpoint rule (IMR) for the fixed point problem (.) in two iterative algorithms.
The first algorithm generates a sequence {xn} in the following manner.

Algorithm I Initialize x ∈H arbitrarily and iterate

xn+ = xn – tn
[
xn + xn+


– T

(
xn + xn+



)]
, n≥ , (.)

where tn ∈ (, ) for all n.

Our second IMR is an algorithm that generates a sequence {xn} as follows.

Algorithm II Initialize x ∈H arbitrarily and iterate

xn+ := ( – tn)xn + tnT
(
xn + xn+



)
, n≥ , (.)

where tn ∈ (, ) for all n.

We observe that Algorithm I is equivalent to Algorithm II since it is easy to rewrite (.),
by partially solving for xn+, as

xn+ = ( – sn)xn + snT
(
xn + xn+



)
, (.)

where

sn =
tn
 + tn

. (.)

Consequently, we may concentrate on Algorithm II.
The purpose of this paper is to study the convergence of two IMR (.) and (.) in the

case where the mapping T is a nonexpansive mapping in a general Hilbert space H , that
is,

‖Tx – Ty‖ ≤ ‖x – y‖, x, y ∈H . (.)

The iterative methods for finding fixed points of nonexpansive mappings have received
much attention due to the fact that in many practical problems, the governing operators
are nonexpansive (cf. [, ]). Two iterative methods are basic and they are Mann’s method
[, ] and Halpern’s method [–]. An implicit method is also proposed in [].
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2 Convergence analysis
Throughout this sectionwe always assume thatH is aHilbert spacewith the inner product
〈· , ·〉 and the norm ‖ · ‖ and that T :H →H is a nonexpansive mapping with a fixed point.
We use Fix(T) to denote the set of fixed points of T . Namely, Fix(T) = {x ∈ H : Tx = x}. It
is not hard to find that both IMR (.) and (.) are well defined. As a matter of fact, for
each fixed u ∈H and t ∈ (, ), the mapping

x 
→ Tux := u – t
[
u + x


– T
(
u + x


)]
(.)

is a contraction with coefficient +t
 ∈ (, ). That is,

‖Tux – Tuy‖ ≤  + t


‖x – y‖, x, y ∈H . (.)

This is immediately clear due to the nonexpansivity of T .
It is also easily seen that the mapping

x 
→ Tux := ( – t)u + tT
(
u + x


)
(.)

is a contraction with coefficient t/.

2.1 Properties of Algorithm II
We first discuss the properties of Algorithm II.

Lemma . Let {xn} be the sequence generated by Algorithm II. Then
(i) ‖xn+ – p‖ ≤ ‖xn – p‖ for all n≥  and p ∈ Fix(T).
(ii)

∑∞
n= tn‖xn – xn+‖ < ∞.

(iii)
∑∞

n= tn( – tn)‖xn – T( xn+xn+ )‖ <∞.

Proof Let p ∈ Fix(T). We deduce that

‖xn+ – p‖ =
∥∥∥∥( – tn)(xn – p) + tn

[
T

(
xn + xn+



)
– p

]∥∥∥∥


= ( – tn)‖xn – p‖ + tn
∥∥∥∥T

(
xn + xn+



)
– p

∥∥∥∥


– tn( – tn)
∥∥∥∥xn – T

(
xn + xn+



)∥∥∥∥


≤ ( – tn)‖xn – p‖ + tn
∥∥∥∥xn + xn+


– p

∥∥∥∥


– tn( – tn)
∥∥∥∥xn – T

(
xn + xn+



)∥∥∥∥


= ( – tn)‖xn – p‖

+ tn
(


‖xn – p‖ + 


‖xn+ – p‖ – 


‖xn – xn+‖

)

– tn( – tn)
∥∥∥∥xn – T

(
xn + xn+



)∥∥∥∥


.
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It turns out that
(
 –

tn


)
‖xn+ – p‖ ≤

(
 –

tn


)
‖xn – p‖ – tn


‖xn – xn+‖

– tn( – tn)
∥∥∥∥xn – T

(
xn + xn+



)∥∥∥∥


and

‖xn+ – p‖ ≤ ‖xn – p‖ – tn
( – tn)

‖xn – xn+‖

–
tn( – tn)
 – tn

∥∥∥∥xn – T
(
xn + xn+



)∥∥∥∥


. (.)

It is then immediately evident that

‖xn+ – p‖ ≤ ‖xn – p‖, n≥ . (.)

Moreover, since tn ∈ (, ), (.) also implies that

∞∑
n=

tn‖xn – xn+‖ < ∞ (.)

and

∞∑
n=

tn( – tn)
∥∥∥∥xn – T

(
xn + xn+



)∥∥∥∥


< ∞. (.)

The proof of the lemma is complete. �

Lemma . Let {xn} be the sequence generated by Algorithm II. Suppose that tn+ ≤ atn for
all n≥  and some a > . Then

lim
n→∞‖xn+ – xn‖ = . (.)

Proof By definition (.) of Algorithm II, we derive that

‖xn+ – xn+‖ = tn+
∥∥∥∥xn+ – T

(
xn+ + xn+



)∥∥∥∥
≤ tn+

∥∥∥∥xn+ – T
(
xn + xn+



)∥∥∥∥
+ tn+

∥∥∥∥T
(
xn + xn+



)
– T

(
xn+ + xn+



)∥∥∥∥
≤ tn+( – tn)

∥∥∥∥xn – T
(
xn + xn+



)∥∥∥∥
+ tn+

∥∥∥∥xn + xn+


–
xn+ + xn+



∥∥∥∥
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≤ tn+( – tn)
∥∥∥∥xn – T

(
xn + xn+



)∥∥∥∥
+ tn+

(


‖xn+ – xn‖ + 


‖xn+ – xn+‖

)
.

Hence

‖xn+ – xn+‖ ≤ tn+
 – tn+

‖xn+ – xn‖ + tn+( – tn)
 – tn+

∥∥∥∥xn – T
(
xn + xn+



)∥∥∥∥
≤ tn+‖xn+ – xn‖ + tn+( – tn)

∥∥∥∥xn – T
(
xn + xn+



)∥∥∥∥.

Using the assumption that tn+ ≤ atn, we further derive that

‖xn+ – xn+‖ ≤ tn+‖xn+ – xn‖ + tn+( – tn)
∥∥∥∥xn – T

(
xn + xn+



)∥∥∥∥


≤ atn‖xn+ – xn‖ + atn( – tn)
∥∥∥∥xn – T

(
xn + xn+



)∥∥∥∥


.

Now (.) and (.) imply that

∞∑
n=

‖xn+ – xn+‖ <∞.

This in turn implies (.). �

2.2 Convergence of Algorithms I and II
As Algorithm I is a variant of Algorithm II, we focus on the convergence of Algorithm II.
To this end, we need two conditions for the sequence of parameters {tn} as follows:
(C) tn+ ≤ atn for all n ≥  and some a > ,
(C) lim infn→∞ tn > .
These two conditions are not restrictive. As a matter of fact, it is not hard to find that,

for each p > , the sequence

tn =  –


(n + )p
, n≥ ,

satisfies (C) and (C).

Lemma . Assume (C) and (C). Then the sequence {xn} generated by Algorithm II sat-
isfies the property

lim
n→∞‖xn – Txn‖ = . (.)

Proof From (.) it follows that

‖xn+ – xn‖ = tn
∥∥∥∥xn – T

(
xn + xn+



)∥∥∥∥. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/96
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Now condition (C) implies that tn ≥ t̄ >  for all large enough n. Hence from Lemma .,
we immediately get

lim
n→∞

∥∥∥∥xn – T
(
xn + xn+



)∥∥∥∥ = . (.)

Conclusion (.) now follows from the following inference:

‖xn – Txn‖ ≤
∥∥∥∥xn – T

(
xn + xn+



)∥∥∥∥ +
∥∥∥∥Txn – T

(
xn + xn+



)∥∥∥∥
≤

∥∥∥∥xn – T
(
xn + xn+



)∥∥∥∥ +


‖xn – xn+‖ → . �

To prove the convergence of Algorithm II, we need the following so-called demiclosed-
ness principle for nonexpansive mappings.

Lemma . ([]) Let C be a nonempty closed convex subset of a Hilbert space H , and let
V : C → H be a nonexpansive mapping with a fixed point. Assume that {xn} is a sequence
in C such that xn → x weakly and (I –V )xn →  strongly. Then (I – T)x =  (i.e., Tx = x).

We use the notation ωw(xn) to denote the set of all weak cluster points of the sequence
{xn}.
The following result is easily proved (see []).

Lemma . Let K be a nonempty closed convex subset of a Hilbert space H , and let {xn}
be a bounded sequence in H . Assume that

(i) limn→∞ ‖xn – p‖ exists for all p ∈ K ,
(ii) ωw(xn) ⊂ K .

Then {xn} weakly converges to a point in K .

We are now in a position to state and prove the main convergence result of this paper.

Theorem . Let H be a Hilbert space and T :H → H be a nonexpansive mapping with
Fix(T) = ∅. Assume that {xn} is generated by IMR (.) where the sequence {tn} of parame-
ters satisfies conditions (C) and (C). Then {xn} converges weakly to a fixed point of T .

Proof By Lemmas . and ., we have ωw(xn) ⊂ Fix(T). Furthermore, by Lemma .,
limn→∞ ‖xn – p‖ exists for all p ∈ Fix(T). Consequently, we can apply Lemma . with
K = Fix(T) to assert the weak convergence of {xn} to a point in Fix(T). �

We then have the following convergence result for IMR (.).

Theorem . Let H be a Hilbert space and T : H → H be a nonexpansive mapping with
Fix(T) = ∅. Assume that {xn} is generated by IMR (.) where the sequence {tn} of parame-
ters satisfies conditions (C) and (C). Then {xn} converges weakly to a fixed point of T .

Proof Since {xn} is also generated by algorithm (.), it suffices to verify that the sequence
{sn} defined in (.) satisfies conditions (C) and (C). As ≤ tn ≤  and satisfies (C), it is

http://www.fixedpointtheoryandapplications.com/content/2014/1/96
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evident that {sn} satisfies (C) as well. To see that {sn} also fulfils (C), we argue as follows,
using the fact that {tn} satisfies (C):

sn+ =
tn+

( + tn+)
≤ tn+ ≤ atn = asn( + tn) ≤ asn. �

3 Applications
3.1 Periodic solution of a nonlinear evolution equation
Consider the time-dependent nonlinear evolution equation in a (possibly complex)
Hilbert space H ,

du
dt

+A(t)u = f (t,u), t > , (.)

where A(t) is a family of closed linear operators in H and f :R×H → H .
Browder [] proved the following existence of periodic solutions of equation (.).

Theorem . ([]) Suppose that A(t) and f (t,u) are periodic in t of period ξ >  and
satisfy the following assumptions:

(i) For each t and each pair u, v ∈H ,

Re
〈
f (t,u) – f (t, v),u – v

〉 ≤ .

(ii) For each t and each u ∈D(A(t)), Re〈A(t)u,u〉 ≥ .
(iii) There exists a mild solution u of equation (.) on R

+ for each initial value v ∈ H .
Recall that u is a mild solution of (.) with the initial value u() = v if, for each t > ,

u(t) =U(t, )v +
∫ t


U(t, s)f

(
s,u(s)

)
ds,

where {U(t, s)}t≥s≥ is the evolution system for the homogeneous linear system

du
dt

+A(t)u =  (t > s). (.)

(iv) There exists some R >  such that

Re
〈
f (t,u),u

〉
< 

for ‖u‖ = R and all t ∈ [, ξ ].
Then there exists an element v of H with ‖v‖ < R such that the mild solution of equation
(.) with the initial condition u() = v is periodic of period ξ .

We next apply our IMR for nonexpansive mappings to provide an iterative method for
finding a periodic solution of (.).
As a matter of fact, define a mapping T : H → H by assigning to each v ∈ H the value

u(ξ ), where u is the solution of (.) satisfying the initial condition u() = v. Namely, we
define T by

Tv = u(ξ ), where u solves (.) with u() = v.

http://www.fixedpointtheoryandapplications.com/content/2014/1/96
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We then find thatT is nonexpansive.Moreover, assumption (iv) forcesT tomap the closed
ball B := {v ∈ H : ‖v‖ ≤ R} into itself. Consequently, T has a fixed point which we denote
by v, and the corresponding solution u of (.) with the initial condition u() = v is a desired
periodic solution of (.) with period ξ . In other words, to find a periodic solution u of (.)
is equivalent to finding a fixed point of T . Our IMR is thus applicable to (.). It turns out
that the sequence {vn} defined by the IMR

vn+ = ( – tn)vn + tnT
(
vn + vn+



)
(.)

converges weakly to a fixed point v of T , and themild solution of (.) with the initial value
u() = ξ is a periodic solution of (.). Note that the iteration method (.) is essentially to
find a mild solution of (.) with the initial value of (vn + vn+)/.

3.2 Fredholm integral equation
Consider a Fredholm integral equation of the form

x(t) = g(t) +
∫ 


F
(
t, s,x(s)

)
ds, t ∈ [, ], (.)

where g is a continuous function on [, ] and F : [, ]× [, ]×R→R is continuous. The
existence of solutions has been investigated in the literature (see [] and the references
therein). In particular, if F satisfies the Lipschitz continuity condition

∣∣F(t, s,x) – F(t, s, y)
∣∣ ≤ |x – y|, t, s ∈ [, ],x, y ∈R, (.)

then equation (.) has at least one solution in L[, ] ([, Theorem .]). Define a map-
ping T : L[, ]→ L[, ] by

(Tx)(t) = g(t) +
∫ 


F
(
t, s,x(s)

)
ds, t ∈ [, ]. (.)

It is easily seen that T is nonexpansive. As a matter of fact, we have, for x, y ∈ L[, ],

‖Tx – Ty‖ =
∫ 



∣∣Tx(t) – Ty(t)
∣∣ dt

=
∫ 



∣∣∣∣
∫ 



(
F
(
t, s,x(s)

)
– F

(
t, s, y(s)

))
ds

∣∣∣∣


dt

≤
∫ 



∣∣∣∣
∫ 



∣∣x(s) – y(s)
∣∣ds

∣∣∣∣


dt

≤
∫ 



∣∣x(s) – y(s)
∣∣ ds = ‖x – y‖.

This means that to find the solution of integral equation (.) is reduced to finding a fixed
point of the nonexpansivemapping T in theHilbert space L[, ]. Hence our IMR is again
applicable. Initiating with any function x ∈ L[, ], we define a sequence of functions {xn}

http://www.fixedpointtheoryandapplications.com/content/2014/1/96
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in L[, ] by

xn+ = ( – tn)xn + tnT
(
xn + xn+



)
. (.)

Then the sequence {xn} converges weakly in L[, ] to the solution of integral equation
(.).
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