
Khamsemanan et al. Fixed Point Theory and Applications 2014, 2014:97
http://www.fixedpointtheoryandapplications.com/content/2014/1/97

RESEARCH Open Access

A fixed point theorem for smooth extension
maps
Nirattaya Khamsemanan1*, Robert F Brown2, Catherine Lee3 and Sompong Dhompongsa4

*Correspondence:
nirattaya@siit.tu.ac.th
1Sirindhorn International Institute of
Technology (SIIT), Thammasat
University, Pathum Thani, Thailand
Full list of author information is
available at the end of the article

Abstract
Let X be a compact smooth n-manifold, with or without boundary, and let A be an
(n – 1)-dimensional smooth submanifold of the interior of X . Let φ : A → A be a
smooth map and f : (X ,A) → (X ,A) be a smooth map whose restriction to A is φ . If
p ∈ A is an isolated fixed point of f that is a transversal fixed point of φ , that is, the
linear transformation dφp – IA : TpA → TpA is nonsingular, then the fixed point index of
f at p satisfies the inequality |i(X , f ,p)| ≤ 1. It follows that if φ has k fixed points, all
transverse, and the Lefschetz number L(f ) > k, then there is at least one fixed point of f
in X \ A. Examples demonstrate that these results do not hold if the maps are not
smooth.
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1 Introduction
It has been known at least since the work of Shub and Sullivan in  [] that the values
of the fixed point index of smooth maps are more restricted than they are for continuous
functions in general. In [] it is proved that, given integers r and s, there is amap f : X → X
of a manifold with boundary ∂X that restricts to f |∂X = φ : ∂X → ∂X and an isolated fixed
point p of f such that the fixed point indices are i(∂X,φ,p) = r and i(X, f ,p) = s. On the
other hand, it is proved in that paper that if f : (X, ∂X) → (X, ∂X) is smooth and p is a trans-
verse fixed point of φ, then either i(X, f ,p) =  or i(X, f ,p) = i(∂X,φ,p). A consequence of
this result is that, under appropriate hypotheses on a smooth map f , it must have fixed
points on X \ ∂X, the interior of the manifold X. Those same hypotheses are shown to be
insufficient to imply the existence of such interior fixed points if the map f is not smooth.
(See also [, ].)
We will consider a somewhat different setting, as follows. Let X be a compact smooth

n-manifold, with or without boundary, and letA be a smooth (n–)-dimensional subman-
ifold of the interior of X. As in [], we shall consider f : (X,A)→ (X,A) to be an extension
of its restriction f |A = φ : A → A. Suppose that p is a transverse fixed point of φ, then a
simple example will show that the relationship between i(X, f ,p) and i(A,φ,p) cannot be
as close as it is when A = ∂X. However, we will prove that there is still a very strong re-
striction on the value of i(X, f ,p), namely, that |i(f ,X,p)| ≤ . As a consequence, we obtain
a condition on the Lefschetz number L(f ) of f that implies the existence of fixed points of
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f in X \ A. We demonstrate by an example that the same Lefschetz number condition is
not sufficient to imply the existence of fixed points in X \A for maps f : (X,A)→ (X,A) in
general.

2 The index of fixed points of smooth extensionmaps
The index theorem of [] is the following.

Theorem  Let X be a compact smooth n-manifold with boundary ∂X. Given a smooth
map φ : ∂X → ∂X and a smooth map f : (X, ∂X) → (X, ∂X) extending φ, suppose that p ∈
∂X is an isolated fixed point of f and that dφp – I∂X : Tp(∂X) → Tp(∂X) is a nonsingular
linear transformation. Then either i(X, f ,p) =  or i(X, f ,p) = i(∂X,φ,p).

We will modify the proof of Theorem  that was given in [] in order to obtain a result of
this type in the setting of smooth extension maps on a pair consisting of an n-dimensional
compact smooth manifold X and an (n – )-dimensional smooth submanifold A of the
interior of X. Although our index result is similar to Theorem , the following example
demonstrates that we cannot expect that there will be as close a relationship between
the indices of φ and of f as there is in Theorem . Let f : (S,S) → (S,S) where S is
viewed as the complex plane C compactified at infinity, S is the unit circle, f (z) = z for
z ∈ C and f (∞) = ∞. Let φ : S → S be the restriction of f . Then i(S,φ, ) = –, whereas
i(S, f , ) = .

Theorem  Let X be a smooth n-manifold, with or without boundary, and let A be an
(n – )-dimensional smooth submanifold of the interior of X . Let φ : A → A be a smooth
map with smooth extension f : (X,A) → (X,A). Suppose that p ∈ A is an isolated fixed
point of f and that dφp – IA : TpA → TpA is a nonsingular linear transformation. Then
|i(X, f ,p)| ≤ .

Proof If the linear transformation dfp – I : TpX → TpX is nonsingular, then i(X, f ,p) =
±, see []. Therefore, we assume that the linear transformation dfp – I : TpX → TpX is
singular. Note that determining the index of a map f at a fixed point p is a local problem,
so we may choose a local coordinate system about p in which the smooth manifold X
is identified with R

n such that p is the origin in R
n and the smooth submanifold A is

identified with the subspace Rn–.
Let us define G : Rn → R

n by G(x) = f (x) – x. To calculate the index of f at p, we need
to determine the degree of –G restricted to a sphere around . More specifically, for ε > 
sufficiently small, we may consider the map Eε : Sn– →R

n – {} defined by

Eε(x) = –G(εx).

Since G is a C function with value  at the point p, we know from the definition of the
derivative that

∣∣G(εx) – dGp(εx)
∣∣ ≤ o(ε)

uniformly over {x ∈ A| : |x| = }. Our goal is to define maps Pσ
ε related to Eε such that Pσ

ε

takes each of the upper and lower half-plane into either the upper or the lower half-plane
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and that will allow us to calculate the index i(X, f ,p). However, we need to make use of
a change of coordinate. Since dfp – I = dGp is singular but dGp|A is not, we know that
dGp(, . . . , , ) ∈ span{x, . . . ,xn–}. Now rotate the x, . . . ,xn– coordinate system so that
xn– points in the direction of dGp(, . . . , , ). Choose new coordinates y, . . . , yn so that
the hyperplane yn =  is the same as xn =  and, for each j = , . . . ,n–, the transformation
dGp takes the xj unit vector to the yi unit vector. Now we have

{
(x, . . . ,xn–, ) ∈R

n} = {
(y, . . . , yn–, ) ∈R

n},{
(x, . . . ,xn–,xn) ∈R

n} = {
(y, . . . , yn–, yn) ∈R

n}
and the positive yn axis is in the same half-space as the positive xn axis.With this change of
coordinates, dGp, as a map from x coordinates into y coordinates, has the following form:

dGp(α, . . . ,αn–,αn) = (α, . . . ,αn–, ) + αn(, . . . , ,B, )

for some constant B. Define

S+ =
{
(x, . . . ,xn) ∈R

n : xn ≥ 
} ∩ Sn–, S– =

{
(x, . . . ,xn) ∈R

n : xn ≤ 
} ∩ Sn–.

It is easy to check the following:
(i) The point

x+ =
(
, . . . , , –

B
( + B) 

,


( + B) 

)

is the unique point of S+ with the property that dGp(x+) = . From the inverse
function theorem, there is a small neighborhood U+ of the point x+ such that
dGp|S+ is a nonsingular diffeomorphism of U+ onto a neighborhood of  in the
hyperplane yn =  and (dGp|S+ )–(dGp(U+)) =U+.

(ii) The point

x– =
(
, . . . , , –

B
( + B) 

, –


( + B) 

)

is the unique point of S– with the property that dGp(x–) = . Similarly, from the
inverse function theorem, there is a small neighborhood U– of the point x– such
that dGp|S– is a nonsingular diffeomorphism of U– onto a neighborhood of  in the
hyperplane yn =  and (dGp|S– )–(dGp(U–)) =U–.

Now consider the maps Pε defined by

Pε(x) = ε–Eε(x).

The map Pε |Sn– converges in the C topology to –dGp|Sn– because

d
(
Pε(x)

)
= d

(
ε–Eε(x)

)
= d

(
ε–

(
–G(εx)

))
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= –ε–d
(
G(εx)

)
= –ε–dGp(εx)ε

= –dGp(εx).

Consequently, we have the following analogues of (i)-(ii) above.
() There is a unique point x+ε ∈ S+ such that the y, . . . , yn– coordinates of Pε(x+ε ) are all

. Also, since p is an isolated fixed point of f ,Pε(x+ε ) �= . In particular, the yn
coordinate of Pε(x+ε ) is nonzero. Hence we have

Pε

(
x+ε

)
=

(
, . . . , , yε+

n
)
,

where yε+
n �= .

() There is a unique point x–ε ∈ S– such that the y, . . . , yn– coordinates of Pε(x–ε ) are all
. Also, since p is an isolated fixed point of f ,Pε(x–ε ) �= . In particular, the yn
coordinate of Pε(x–ε ) is nonzero. Hence we have

Pε

(
x–ε

)
=

(
, . . . , , yε–

n
)
,

where yε–
n �= .

If Pε(x) = (y, y, . . . , yn), define a map Pσ
ε : Sn– →R

n – {} by

Pσ
ε =

{
(y, . . . , yn–,σ +|yn|) if x ∈ S+,
(y, . . . , yn–,σ –|yn|) if x ∈ S–\Rn–,

where σ + = yε+
n /|yε+

n | =± and σ – = yε–
n /|yε–

n | =±.
Notice that the values of Pσ

ε |S+ lie entirely in the half-space where Pε(x+ε ) is located with
respect to the y, . . . , yn coordinates and the values of Pσ

ε |S– lie entirely in the half-space
where Pε(x–ε ) is located with respect to the y, . . . , yn coordinates. Furthermore, Pε and Pσ

ε

are homotopic as maps into R
n – {} by the following homotopy:

H(x, t) = tPε(x) + ( – t)Pσ
ε (x).

For x ∈ S+, either (y, . . . , yn–) �=  or x = x+ε . If (y, . . . , yn–) �= , then H(x, t) �=  by defini-
tion. If x = x+ε , then H(x, t) = Pε(x) which we know is never . A similar argument shows
that H(x, t) �=  for x ∈ S–\Rn–.
Since the map Pσ

ε takes S+ into either the upper or lower half-planes with respect to the
y coordinates and takes S– into either the upper or lower half-planes with respect to the
y, . . . , yn coordinates, the map Pσ

ε is homotopic either to a constant map, the suspension
of Pσ

ε |Sn– = Pε |Sn– or the suspension of Pσ
ε |Sn– = Pε |Sn– followed by a reflection about the

hyperplane yn = . This homotopy tells us that either Pε has degree  or deg(Pε |Sn– ) or
–deg(Pε |Sn– ).
Although Pε is a map from x to y coordinates, we know that the x and y coordinates are

related by a linear map, call it L, satisfying L(xi) = yi, for i = , . . . ,n. Thus, the map L– ◦Pε
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takes x, . . . ,xn coordinates to x, . . . ,xn coordinates and

deg
(
L– ◦ Pε

)
= deg

(
L–

) · deg(Pε) = deg(Pε).

Thus the index i(X, f ,p) = deg(Pε) which is either  or ±. �

3 Fixed point theorem for smooth extensionmaps
We can now use Theorem  to establish the existence of fixed points in X \A.

Theorem  Suppose that A is an (n – )-dimensional smooth submanifold of the interior
of a compact smooth n-manifold X . Given a smooth map φ : A → A and a smooth map
f : (X,A) → (X,A) extending φ, suppose that the fixed points of φ are {x,x, . . . ,xk}, all
of which are transversal, that is, the linear map dφxj – IA is nonsingular for each xj. If the
Lefschetz number L(f ) > k, then there must be at least one fixed point in X \A.

Proof Suppose that f only has fixed points in A. This means the fixed point set of f is
{x, . . . ,xk}, the set of fixed points of φ. Then, by the Lefschetz-Hopf theorem [], the Lef-
schetz number of f is

L(f ) =
k∑
j=

i(X, f ,xj) ≤ k

because i(X, f ,xj) ≤  by Theorem . This is contrary to the assumption that L(f ) > k, so f
has fixed points in X \A. �

A consequence of this theorem is the following.

Corollary  Let S be the complex plane C compactified at infinity and S be the unit
circle. Suppose that φ : S → S is a smooth map defined by φ(ζ ) = ζ k for some k ≥  and
that f : (S,S) → (S,S) is a smooth extension of φ. If f is homotopic to the suspension of
φ, then there is at least one fixed point in S\S.

Proof Since f is homotopic to the suspension of φ, then f is of degree k and thus L(f ) =
 + k. However, φ has only k –  fixed points. Note here that the k –  fixed points of φ on
S are all transversal so that the hypotheses of Theorem  hold. �

The following example illustrates the fact that the corollary, and therefore Theorem ,
require the hypothesis that the map f is smooth, by exhibiting a non-smooth map
f : (S,S) → (S,S) homotopic to the suspension of φ that has no fixed points on S\S.

Example  Let S = C ∪ {∞} be the complex plane C compactified at infinity and S be
the unit circle. Let φ : S → S be defined by φ(ζ ) = ζ . Let B

+ = {z ∈ C : |z| ≤ } and B
– =

{z ∈C : |z| ≥ } ∪ {∞}, so S = B
+ ∪B

– and B
+ ∩B

– = S. For z ∈ B
– \ {}, there exist ζ ∈ S

and t ∈ [, ) such that z = t + ( – t)ζ . As in Lemma . of [], define f : B
+ → B

+ by
setting f (z) = t + ( – t)φ(ζ ) for z �=  and f () = , then f has no fixed points in B

+ \ S. In
order to extend f to a selfmap of B

– so that there are no fixed points on B
– \ S, we define

ρ : S → S by ρ(z) = ρ(reiθ ) = 
r e

iθ , ρ() = ∞ and ρ(∞) = , so ρ(B
–) = B

+ and ρ(B
+) = B

–.
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Then, for z ∈ B
–, let f (z) = ρf ρ(z). The only fixed point of f is z =  and thus there are no

fixed points in S \ S.
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