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Abstract
In this article, we first introduce the concept of T -mapping of a finite family of strictly
pseudononspreading mapping {Ti}Ni=1, and we show that the fixed point set of the
T -mapping is the set of common fixed points of {Ti}Ni=1 and T is a quasi-nonexpansive
mapping. Based on the concept of a T -mapping, we propose a simultaneous iterative
algorithm to solve the split equality problem with a way of selecting the stepsizes
which does not need any prior information about the operator norms. The sequences
generated by the algorithm weakly converge to a solution of the split equality
problem of two finite families of strictly pseudononspreading mappings. Furthermore,
we apply our iterative algorithms to some convex and nonlinear problems.
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1 Introduction
Due to their extraordinary utility and broad applicability in many areas of applied mathe-
matics (most notably, fully discretized models of problems in image reconstruction from
projections, in image processing, and in intensity-modulated radiation therapy), algo-
rithms for solving convex feasibility problems continue to receive great attention; see for
instance [–]. Recently,Moudafi [] introduced a new convex feasibility problem (CFP).
Let H, H, H be real Hilbert spaces, let C ⊂H, Q ⊂H be two nonempty closed convex
sets, letA :H →H, B :H →H be two bounded linear operators. The convex feasibility
problem in [] is to find

x ∈ C, y ∈Q such that Ax = By, (.)

which allows asymmetric and partial relations between the variables x and y. The interest
is to cover many situations, for instance in decompositionmethods for PDEs, applications
in game theory and in intensity-modulated radiation therapy (IMRT). In decision sciences,
this allows one to consider agents who interplay only via some components of their de-
cision variables, for further details, the interested reader is referred to []. In IMRT, this
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amounts to envisage a weak coupling between the vector of doses absorbed in all voxels
and that of the radiation intensity, for further details, the interested reader is referred to
[, ].
For solving the CFP (.), Moudafi [] studied the fixed point formulation of the solu-

tions of the CFP (.). Assume that the CFP (.) is consistent (i.e., (.) has a solution), if
(x, y) solves (.), then it solves the following fixed point equation system:

{
x = PC(x – γA∗(Ax – By)),
y = PQ(y + βB∗(Ax – By)),

(.)

where γ ,β >  are any positive constants, and then Moudafi introduced the following al-
ternating CQ algorithm:

{
xk+ = PC(xk – γkA∗(Axk – Byk)),
yk+ = PQ(yk + βkB∗(Axk+ – Byk)),

(.)

where γk ,βk ∈ (ε,min( 
λA
, 

λB
) – ε), λA and λB are the spectral radii of A∗A and B∗B, re-

spectively. The weak convergence of the sequence (xk , yk) to a solution of (.) under some
conditions was proved.
In [], Moudafi and Al-Shemas considered the following problem:

x ∈ F(U), y ∈ F(T) such that Ax = By, (.)

and proposed the following simultaneous algorithm:

{
xk+ =U(xk – γkA∗(Axk – Byk)),
yk+ = T(yk + γkB∗(Axk – Byk)),

(.)

for firmly quasi-nonexpansive operatorsU and T , where γk ∈ (ε, 
λA+λB

, –ε), λA and λB are
the spectral radiuses of A∗A and B∗B, respectively.
Observe that in the algorithms (.) and (.) mentioned above, the determination of the

stepsize {γk} depends on the operator (matrix) norms ‖A‖ and ‖B‖ (or the largest eigenval-
ues of A∗A and B∗B). To implement the alternating algorithm (.) and the simultaneous
algorithm (.), one has first to compute (or, at least, estimate) operator norms of A and
B, which is in general not easy in practice.
To overcome this difficulty, Lopez et al. [] and Zhao et al. [] presented usefulmethod

for choosing the stepsizes which do not need prior knowledge of the operator norms for
solving the split feasibility problems and multiple-set split feasibility problems, respec-
tively.
Motivated by above results, we introduce a new choice of the stepsize sequence {γk}

for the simultaneous iterative algorithm to solve (.) governed by quasi-nonexpansive
mapping as follows:

γk ∈
(
,min

{ ‖Axk – Byk‖
‖A∗(Axk – Byk)‖ ,

‖Axk – Byk‖
‖B∗(Axk – Byk)‖

})
. (.)

The advantage of our choice (.) of the stepsizes lies in the fact that no prior information
about the operator norms of A and B is required, and still convergence is guaranteed.
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In this article, we propose the following simultaneous iterative algorithm where the
stepsizes do not depend on the operator norms ‖A‖ and ‖B‖ and prove the weak con-
vergence of the algorithm to solve (.). Let U :H → H and T :H → H be two quasi-
nonexpansive mappings which are defined by (.). We denote by � be the set of solutions
of (.), i.e.,

� =
{
x ∈ F(U), y ∈ F(T) such that Ax = By

}
.

Algorithm . Let x ∈ H, y ∈ H be arbitrary and {ak} be real number sequences in
[a,b]⊂ (, ). Assume that the kth iterate xk ∈H, yk ∈H has been constructed and Axk –
Byk �= , then we calculate (k + )th iterate (xk+, yk+) via the formula

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
uk = xk – γkA∗(Axk – Byk),
xk+ = akxk + ( – ak)U(uk),
vk = yk + γkB∗(Axk – Byk),
yk+ = akyk + ( – ak)T(vk),

(.)

where the stepsize γk is chosen by (.). If Axk – Byk = , then (xk , yk) = (xk+, yk+) is a
solution of the problem (.) and the iterative process stops. Otherwise, we set k := k + 
and go on to (.) to evaluate the next iterate (xk+, yk+).

Remark . Notice that in (.) the choice of the stepsize γk is independent of the norms
‖A‖ and ‖B‖.

2 Preliminaries
Throughout this paper, we denote by H be a real Hilbert space with inner product 〈·, ·〉
and induced norm ‖ · ‖, and denote by C be a nonempty closed convex subset of H . Let
T :H →H be amapping. A point x ∈H is said to be a fixed point of T provided x = Tx. we
use F(T) to denote the fixed point set. We write xn ⇀ x to indicate that the sequence {xn}
converges weakly to x, xn → x implies that {xn} converges strongly to x. We use ωw(xk) =
{x : ∃xkj ⇀ x} to stand for the weak ω-limit set of {xk}. For any x ∈H , there exists a unique
nearest point in C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

Before proceeding, we need to introduce a few concepts.
A mapping T : C → C belongs to the set 	q of quasi-nonexpansive, if

‖Tx – q‖ ≤ ‖x – q‖, ∀(x,q) ∈ C × F(T). (.)

A mapping T : C → C belongs to the set 	n of nonexpansive, if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀(x, y) ∈ C ×C. (.)

A mapping T : C → C belongs to the set 	f of firmly nonexpansive, if

‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(x – y) – (Tx – Ty)
∥∥, ∀(x, y) ∈ C ×C. (.)

http://www.fixedpointtheoryandapplications.com/content/2015/1/1
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A mapping T : C → C belongs to the set 	fq of firmly quasi-nonexpansive, if

‖Tx – q‖ ≤ ‖x – q‖ – ‖x – Tx‖, ∀(x,q) ∈ C × F(T). (.)

A mapping T : C → C is called nonspreading, if

‖Tx – Ty‖ ≤ ‖x – y‖ + 〈x – Tx, y – Ty〉, ∀x, y ∈ K .

A mapping T : C → C is called k-strictly pseudononspreading if there exists k ∈ [, )
such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥x – Tx – (y – Ty)

∥∥ + 〈x – Tx, y – Ty〉, ∀x, y ∈ C.

Remark . It is easy to see that 	f ⊂ 	n ⊂ 	q and 	f ⊂ 	fq ⊂ 	q. Furthermore, 	f

is well known to contain resolvents and projection operators, and 	fq includes subgradi-
ent projection operators []. T is a nonspreading mapping if and only if T is a -strictly
pseudononspreading mapping.

The so-called demiclosedness principle plays an important role in our argument.
A mapping T :H → H is called demiclosed at the origin if for any sequence {xn} which

weakly converges to x, and if the sequence {xn} strongly converges to , then Tx = .
To establish our results, we need the following technical lemmas.

Lemma . ([]) If x, y, z ∈H , then:
(a) ‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉.
(b) For any λ ∈ [, ],

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖.

(c) For a,b, c ∈ [, ] with a + b + c = ,

‖ax + by + cz‖ = a‖x‖ + b‖y‖ + c‖z‖ – ab‖x – y‖ – ac‖x – z‖ – bc‖y – z‖.

The following definition will be useful for our results.
In , Kangtunyakarn and Suantai [] introduced T-mapping generated by T,T,

. . . ,TN and λ,λ, . . . ,λN as follows.

Definition . Let C be a nonempty convex subset of real Banach space. Let {Ti}Ni= be a
finite family of mappings of C into itself, and let λ,λ, . . . ,λN be real numbers such that
 < λi <  for every , , . . . ,N . We define a mapping T : C → C as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = λT + ( – λ)I,
U = λTU + ( – λ)U,
U = λTU + ( – λ)U,
. . . ,
UN– = λN–TN–UN– + ( – λN–)UN–,
T =UN = λNTNUN– + ( – λN )UN–.

(.)

Such a mapping T is called the T-mapping generated by T,T, . . . ,TN and λ,λ, . . . ,λN .

http://www.fixedpointtheoryandapplications.com/content/2015/1/1
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Using the above definition, we have the following important lemma.

Lemma . Let C be a nonempty convex subset of real Banach space. Let {Ti}Ni= be a finite
family of ρi-strictly pseudononspreading mappings of C into itself with

⋂N
i= F(Ti) �= ∅, and

let λ,λ, . . . ,λN be real numbers such that  < λi + ρi <  for every , , . . . ,N . If T is the
T-mapping generated by T,T, . . . ,TN and λ,λ, . . . ,λN , then F(T) =

⋂N
i= F(Ti) and T is

a quasi-nonexpansive mapping.

Proof It is easy to deduce that
⋂N

i= F(Ti) ⊂ F(T). Next, we claim that F(T) ⊂ ⋂N
i= F(Ti).

Let x ∈ F(T) and x∗ ∈ ⋂N
i= F(Ti). Assume that U = I , for i = , , . . . ,N , it follows from

{Ti}Ni= being a finite family of ρi-strictly pseudononspreading mappings of C into itself
that

〈
Ui–x – TiUi–x,Ui–x – x∗〉
=


‖Ui–x – TiUi–x‖ + 


∥∥Ui–x – x∗∥∥ –



∥∥TiUi–x – x∗∥∥

=
 – ρi


‖Ui–x – TiUi–x‖ – 


∥∥TiUi–x – x∗∥∥

+


(∥∥Ui–x – x∗∥∥ + ρi‖Ui–x – TiUi–x‖

)
≥  – ρi


‖Ui–x – TiUi–x‖. (.)

From the definition of T and (.), we have

∥∥x – x∗∥∥ =
∥∥Tx – x∗∥∥

=
∥∥λNTNUN–x + ( – λN )UN–x – x∗∥∥

=
∥∥λN

(
TNUN–x – x∗) + ( – λN )

(
UN–x – x∗)∥∥

= λ
N
∥∥TNUN–x – x∗∥∥ + ( – λN )

∥∥UN–x – x∗∥∥

+ λN ( – λN )
〈
TNUN–x – x∗,UN–x – x∗〉

= λ
N
∥∥TNUN–x – x∗∥∥ + ( – λN )

∥∥UN–x – x∗∥∥

+ λN ( – λN )
〈
TNUN–x –UN–x,UN–x – x∗〉

+ λN ( – λN )
∥∥UN–x – x∗∥∥

≤ ∥∥UN–x – x∗∥∥ – λN
[
 – (ρN + λN )

]‖UN–x – TNUN–x‖

≤ ∥∥UN–x – x∗∥∥

· · ·
≤ ∥∥Ux – x∗∥∥ – λ

[
 – (ρ + λ)

]‖Ux – TUx‖

≤ ∥∥Ux – x∗∥∥

≤ ∥∥Ux – x∗∥∥ – λ
[
 – (ρ + λ)

]‖Ux – TUx‖

≤ ∥∥Ux – x∗∥∥

≤ ∥∥x – x∗∥∥ – λ
[
 – (ρ + λ)

]‖x – Tx‖

≤ ∥∥x – x∗∥∥, (.)

http://www.fixedpointtheoryandapplications.com/content/2015/1/1
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which means ‖x – Tx‖ = , that is, x ∈ F(T). Furthermore,

Ux = λTx + ( – λ)x = x,

it yields x ∈ F(U). Applying the same argument, we can conclude that x ∈ F(Ti) and
x ∈ F(Ui), for i = , , . . . ,N – .
Next, we claim that x ∈ F(TN ). Indeed,

 = Tx – x

= λNTNUN–x + ( – λN )UN–x – x

= λN (TNx – x).

It follows that x ∈ F(TN ). Therefore, x ∈ ⋂N
i= F(Ti), that is, F(T) ⊂ ⋂N

i= F(Ti). Hence,
F(T) =

⋂N
i= F(Ti). From the definition of T and (.), we find that T is a quasi-nonexpan-

sive mapping. �

Proposition . Let C be a closed convex subset of a real Hilbert space H . If T is a quasi-
nonexpansive mapping from C into itself, then F(T) is closed and convex.

Proof Obviously, the continuity of T implies that F(T) is closed. Now, we show that F(T)
is convex. For x, y ∈ F(T) and t ∈ (, ), put z = tx + ( – t)y. Now, we claim that z ∈ F(T).
In fact,

‖z – Tz‖ = ‖z‖ – 〈z,Tz〉 + ‖Tz‖

= ‖z‖ – 
〈
tx + ( – t)y,Tz

〉
+ ‖Tz‖

= ‖z‖ – t〈x,Tz〉 – ( – t)〈y,Tz〉 + ‖Tz‖

= ‖z‖ + t‖x – Tz‖ + ( – t)‖y – Tz‖ – t‖x‖ – ( – t)‖y‖

≤ ‖z‖ + t‖x – z‖ + ( – t)‖y – z‖ – t‖x‖ – ( – t)‖y‖

=
∥∥tx + ( – t)y

∥∥ + t‖x – z‖ + ( – t)‖y – z‖ – t‖x‖ – ( – t)‖y‖

= ,

which means that ‖z – Tz‖ = . Hence, z ∈ F(T) and F(T) is convex. �

3 Main results
Now, we are in a position to prove our convergence results in this section.

Theorem . Let H, H, H be real Hilbert spaces. Given two bounded linear operators
A : H → H, B : H → H. Let {Ti}Ni= be a finite family of ρi-strictly pseudononspreading
mappings of C into itself with

⋂N
i= F(Ti) �= ∅, and Let {Si}Ni= be a finite family of τi-strictly

pseudononspreadingmappings of Q into itself with
⋂N

i= F(Si) �= ∅. Suppose that U is defined
by (.) which is generated by T,T, . . . ,TN and λ,λ, . . . ,λN , with  < λi + ρi <  for every
, , . . . ,N , and suppose that T is defined by (.) which is generated by S,S, . . . ,SN and
β,β, . . . ,βN , with  < βi + τi <  for every , , . . . ,N , respectively. Assume that U – I and

http://www.fixedpointtheoryandapplications.com/content/2015/1/1
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T – I are demiclosed at the origin. If the solution set � of (.) is nonempty and for small
enough ε >  and σ > ,

γk ∈
(

ε, ( – σ )min

{ ‖Axk – Byk‖
‖A∗(Axk – Byk)‖ ,

‖Axk – Byk‖
‖B∗(Axk – Byk)‖

})
,

then the sequence {(xk , yk)} generated byAlgorithm .weakly converges to a solution (x∗, y∗)
of (.).Moreover, ‖Axk – Byk‖ → , ‖xk – xk+‖ → , and ‖yk – yk+‖ →  as k → ∞.

Proof It follows from the condition on {γk} that

inf
Axk �=Byk

{ ‖Axk – Byk‖
‖A∗(Axk – Byk)‖ – γk

}
>  (.)

and

inf
Axk �=Byk

{ ‖Axk – Byk‖
‖B∗(Axk – Byk)‖ – γk

}
> . (.)

On the other hand, from

∥∥A∗(Axk – Byk)
∥∥ ≤ ∥∥A∗∥∥‖Axk – Byk‖

and

∥∥B∗(Axk – Byk)
∥∥ ≤ ∥∥B∗∥∥‖Axk – Byk‖,

we obtain ‖Axk–Byk‖
‖A∗(Axk–Byk )‖ ≥ 

‖A∗‖ and ‖Axk–Byk‖
‖B∗(Axk–Byk )‖ ≥ 

‖B∗‖ . Furthermore,

min

{


‖A∗‖ ,


‖B∗‖
}

≤min

{ ‖Axk – Byk‖
‖A∗(Axk – Byk)‖ ,

‖Axk – Byk‖
‖B∗(Axk – Byk)‖

}
.

Inequalities (.) and (.) lead to supAxk �=Byk γk < +∞ and {γk} is bounded.
For (x, y) ∈ �, by Algorithm ., we obtain

‖uk – x‖ = ∥∥xk – γkA∗(Axk – Byk) – x
∥∥

= ‖xk – x‖ – γk
〈
xk – x,A∗(Axk – Byk)

〉
+ γ 

k
∥∥A∗(Axk – Byk)

∥∥. (.)

Notice that

–
〈
xk – x,A∗(Axk – Byk)

〉
= –〈Axk –Ax,Axk – Byk〉
= –‖Axk –Ax‖ – ‖Axk – Byk‖ + ‖Byk –Ax‖. (.)

Substituting (.) into (.), one has

‖uk – x‖ = ‖xk – x‖ – γk‖Axk – Byk‖ – γk‖Axk –Ax‖

+ γk‖Byk –Ax‖ + γ 
k
∥∥A∗(Axk – Byk)

∥∥. (.)

http://www.fixedpointtheoryandapplications.com/content/2015/1/1
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Similarly, by Algorithm ., we deduce

‖vk – y‖ = ‖yk – y‖ – γk‖Axk – Byk‖ – γk‖Byk – By‖

+ γk‖By –Axk‖ + γ ∥∥B∗(Axk+ – Byk)
∥∥. (.)

Furthermore, adding the two last inequalities, following from the fact Ax = By, we have

‖uk – x‖ + ‖vk – y‖ ≤ ‖xk – x‖ + ‖yk – y‖

– γk
(‖Axk – Byk‖ – γk

∥∥A∗(Axk – Byk)
∥∥)

– γk
(‖Axk – Byk‖ – γk

∥∥B∗(Axk – Byk)
∥∥). (.)

Next, we will estimate ‖xk+ – x‖ and ‖yk+ – y‖. It follows from U and T being two
quasi-nonexpansive mappings that

‖xk+ – x‖ = ∥∥akxk + ( – ak)U(uk) – x
∥∥

=
∥∥ak(xk – x) + ( – ak)

(
U(uk) – x

)∥∥

= ak‖xk – x‖ + ( – ak)
∥∥U(uk) – x

∥∥ – ak( – ak)
∥∥U(uk) – xk

∥∥

≤ ak‖xk – x‖ + ( – ak)‖uk – x‖ – ak( – ak)
∥∥U(uk) – xk

∥∥ (.)

and

‖yk+ – y‖ ≤ ak‖yk – y‖ + ( – ak)‖vk – y‖ – ak( – ak)
∥∥T(vk) – yk

∥∥. (.)

Thus, (.) and (.) lead to

‖xk+ – x‖ + ‖yk+ – x‖ ≤ ak
(‖xk – x‖ + ‖yk – y‖)

+ ( – ak)
(‖uk – x‖ + ‖vk – y‖)

– ak( – ak)
(∥∥U(uk) – xk

∥∥ +
∥∥T(vk) – yk

∥∥). (.)

Furthermore, it follows from (.) that

‖xk+ – x‖ + ‖yk+ – x‖ ≤ ‖xk – x‖ + ‖yk – y‖

– ( – ak)γk
(‖Axk –Ax‖ – γk

∥∥A∗(Axk –Ax)
∥∥)

– ( – ak)γk
(‖Axk – Byk‖ – γk

∥∥B∗(Axk – Byk)
∥∥)

– ak( – ak)
(∥∥U(uk) – xk

∥∥ +
∥∥T(vk) – yk

∥∥). (.)

Now, setting ρk(x, y) = ‖xk – x‖ + ‖yk – y‖, one has

ρk+(x, y) ≤ ρk(x, y) – ( – ak)γk
(‖Axk –Ax‖ – γk

∥∥A∗(Axk –Ax)
∥∥)

– ( – ak)γk
(‖Axk – Byk‖ – γk

∥∥B∗(Axk – Byk)
∥∥)

– ak( – ak)
(∥∥U(uk) – xk

∥∥ +
∥∥T(vk) – yk

∥∥). (.)

http://www.fixedpointtheoryandapplications.com/content/2015/1/1
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On the other hand, note that

ρk(x, y) = ‖xk – x‖ + ‖yk – y‖ ≥ .

From the assumptions on {ak} and {γk}, we see that the sequence ρk(x, y) being de-
creasing and lower bounded by , consequently, converges to some finite limit, that is,
limk→∞ ρk(x, y) = ρ(x, y), which means the sequences {xn} and {yn} are bounded. Thus, we
have

lim
k→∞

γk
(‖Axk – Byk‖ – γk

∥∥A∗(Axk – Byk)
∥∥) = , (.)

lim
k→∞

γk
(‖Axk – Byk‖ – γk

∥∥B∗(Axk – Byk)
∥∥) =  (.)

and

lim
k→∞

∥∥U(uk) – xk
∥∥ = lim

k→∞
∥∥T(vk) – yk

∥∥ = . (.)

Now, we show that limk→∞ ‖Axk –Byk‖ = . Indeed, as is shown below, we break up the
proof by distinguishing two cases.
Case . Suppose that there exists k such that ‖Axk–Byk‖

‖A∗(Axk–Byk )‖ ≥ ‖Axk–Byk‖
‖B∗(Axk–Byk )‖ , for all k ≥ k,

we obtain γ ∈ (ε, ( – σ ) ‖Axk–Byk‖
‖B∗(Axk–Byk )‖ ). It yields

γk
(‖Axk – Byk‖ – γk

∥∥A∗(Axk – Byk)
∥∥)

≥ γk

(
‖Axk – Byk‖ – ( – σ )

‖Axk – Byk‖
‖B∗(Axk – Byk)‖

∥∥A∗(Axk – Byk)
∥∥

)

≥ γk

(
‖Axk – Byk‖ – ( – σ )

‖Axk – Byk‖
‖A∗(Axk – Byk)‖

∥∥A∗(Axk – Byk)
∥∥

)

≥ σε‖Axk – Byk‖.

Furthermore, (.) leads to

lim
k→∞

‖Axk – Byk‖ = . (.)

Since

∥∥A∗(Axk – Byk)
∥∥ ≤ ∥∥A∗∥∥‖Axk – Byk‖

and

∥∥B∗(Axk – Byk)
∥∥ ≤ ∥∥B∗∥∥‖Axk – Byk‖,

we deduce

lim
k→∞

∥∥A∗(Axk – Byk)
∥∥ = lim

k→∞
∥∥B∗(Axk – Byk)

∥∥ = .

http://www.fixedpointtheoryandapplications.com/content/2015/1/1
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Conversely, suppose that there exists k such that ‖Axk–Byk‖
‖A∗(Axk–Byk )‖ ≤ ‖Axk–Byk‖

‖B∗(Axk–Byk )‖ , for all k ≥
k, following the above process, we obtain the results.
Case . Suppose that there does not exist k such that

‖Axk – Byk‖
‖A∗(Axk – Byk)‖ ≥ ‖Axk – Byk‖

‖B∗(Axk – Byk)‖
or

‖Axk – Byk‖
‖A∗(Axk – Byk)‖ ≤ ‖Axk – Byk‖

‖B∗(Axk – Byk)‖ ,

for all k ≥ k. We can divide the sequence ‖Axk–Byk‖
‖A∗(Axk–Byk )‖ into two sequences: one satisfies

‖Axk–Byk‖
‖A∗(Axk–Byk )‖ ≥ ‖Axk–Byk‖

‖B∗(Axk–Byk )‖ , which is denoted by { ‖Axkn–Bykn‖
‖A∗(Axkn–Bykn )‖

} and the other sequence
satisfies ‖Axk–Byk‖

‖A∗(Axk–Byk )‖ <
‖Axk–Byk‖

‖B∗(Axk–Byk )‖ , which is denoted by { ‖Axkm–Bykm‖
‖A∗(Axkm–Bykm )‖ }. Following the

process of Case , we show that the results hold for the subsequences with kn and km. Thus,
we obtain limk→∞ ‖Axk – Byk‖ = .
Let us prove that {xk} and {yk} are asymptotically regular. Indeed, since

‖uk – xk‖ = γk
∥∥A∗(Axk – Byk)

∥∥,
one has

lim
k→∞

‖uk – xk‖ = . (.)

Consequently,

lim
k→∞

‖xk+ – xk‖ = lim
k→∞

( – ak)
∥∥U(uk) – xk

∥∥ = ,

which yields {xk} is asymptotically regular. Similarly, limk→∞ ‖vk – yk‖ =  and {yk} is
asymptotically regular, too.
Next, we show that ‖uk –U(uk)‖ →  and ‖vk – T(vk)‖ →  as k → ∞. Indeed, since

∥∥uk –U(uk)
∥∥ =

∥∥uk – xk + xk –U(uk)
∥∥ ≤ ‖uk – xk‖ +

∥∥xk –U(uk)
∥∥,

(.) and (.) mean that limk→∞ ‖uk – U(uk)‖ = . In the same way as above, we can
also show that ‖vk – T(vk)‖ →  as k → ∞.
Taking (x∗, y∗) ∈ ωw(xk , yk), from limk→∞ ‖uk – xk‖ =  and limk→∞ ‖vk – yk‖ = , we

obtain x ∈ ωw(xk) and y ∈ ωw(yk). Combining with the demiclosednesses ofU – I and T – I
at , one has

lim
k→∞

∥∥U(uk) – uk
∥∥ = lim

k→∞
∥∥T(vk) – vk

∥∥ = ,

which yields Ux∗ = x∗ and Ty∗ = y∗. Thus, x∗ ∈ F(U) and y∗ ∈ F(T). On the other hand,
Ax∗ – By∗ ∈ ωw(Axk – Byk) and lower semicontinuity of the norm imply that

∥∥Ax∗ – By∗∥∥ ≤ lim
k→∞

inf‖Axk – Byk‖ = ,

hence (x∗, y∗) ∈ �.

http://www.fixedpointtheoryandapplications.com/content/2015/1/1
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Finally, we will show the uniqueness of the weak cluster points of {xk} and {yk}. Indeed,
let x, y be other weak cluster points of {xk} and {yk}, respectively. From the definition of
ρk(x, y), we have

ρk
(
x∗, y∗) = ∥∥xk – x∗∥∥ +

∥∥yk – y∗∥∥

= ‖xk – x‖ + ∥∥x – x∗∥∥ + 
〈
xk – x,x – x∗〉

+ ‖yk – y‖ + ∥∥y – y∗∥∥ + 
〈
yk – y, y – y∗〉

= ρk(x, y) +
∥∥x – x∗∥∥ +

∥∥y – y∗∥∥

+ 
〈
xk – x,x – x∗〉 + 

〈
yk – y, y – y∗〉. (.)

Without loss of generality, we may assume that xk ⇀ x, yk ⇀ x, and then

ρ
(
x∗, y∗) = ρ(x, y) +

∥∥x – x∗∥∥ +
∥∥y – y∗∥∥. (.)

Reversing the role of (x∗, y∗) and (x, y), we obtain

ρ(x, y) = ρ
(
x∗, y∗) + ∥∥x∗ – x

∥∥ +
∥∥y∗ – y

∥∥. (.)

Equations (.) and (.) yield

∥∥x∗ – x
∥∥ +

∥∥y∗ – y
∥∥ = ,

which means x∗ = x and y∗ = y. Hence, the sequence {(xk , yk)} weakly converges to a solu-
tion of the problem (.), which completes the proof. �

The following conclusions can be obtained from Theorem . immediately.

Theorem . Let H, H, H be real Hilbert spaces. Given two bounded linear operators
A : H → H, B : H → H. Let U be a ρ-strictly pseudononspreading mapping of C into
itself and Let T be a τ -strictly pseudononspreading mapping of Q into itself. Assume that
U – I and T – I are demiclosed at the origin. If the solution set � of (.) is nonempty and
for small enough ε >  and σ > ,

γk ∈
(

ε, ( – σ )min

{ ‖Axk – Byk‖
‖A∗(Axk – Byk)‖ ,

‖Axk – Byk‖
‖B∗(Axk – Byk)‖

})
,

then the sequence {(xk , yk)} generated byAlgorithm .weakly converges to a solution (x∗, y∗)
of (.).Moreover, ‖Axk – Byk‖ → , ‖xk – xk+‖ → , and ‖yk – yk+‖ →  as k → ∞.

Theorem . Let H, H, H be real Hilbert spaces. Given two bounded linear operators
A :H →H, B :H →H. Let U be a nonspreading mapping of C into itself and let T be a
nonspreading mapping of Q into itself. Assume that U – I and T – I are demiclosed at the
origin. If the solution set � of (.) is nonempty and for small enough ε >  and σ > ,

γk ∈
(

ε, ( – σ )min

{ ‖Axk – Byk‖
‖A∗(Axk – Byk)‖ ,

‖Axk – Byk‖
‖B∗(Axk – Byk)‖

})
,

http://www.fixedpointtheoryandapplications.com/content/2015/1/1
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then the sequence {(xk , yk)} generated byAlgorithm .weakly converges to a solution (x∗, y∗)
of (.).Moreover, ‖Axk – Byk‖ → , ‖xk – xk+‖ → , and ‖yk – yk+‖ →  as k → ∞.

4 Applications
We now pay attention to applying our simultaneous iterative algorithms to some convex
and nonlinear analysis notions; see, for example, [].

4.1 Split feasibility problem
Let C and Q be nonempty closed convex subset of real Hilbert spaces H and H, respec-
tively. The split feasibility problem (SFP) is to find a point

x ∈ C such that Ax ∈Q, (.)

where A :H → H is a bounded linear operator. The SFP was first introduced by Censor
and Elfving [] for modeling inverse problems which arise from phase retrievals and in
medical image reconstruction [].
If B = I , H =H, then Algorithm . becomes:

Algorithm .

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
uk = xk – γkA∗(Axk – yk),
xk+ = akxk + ( – ak)U(uk),
vk = yk + γk(Axk – yk),
yk+ = akyk + ( – ak)T(vk),

(.)

where the stepsize γk is chosen by (.). If Axk = yk , then (xk , yk) = (xk+, yk+) is a solution
of the problem (.) and the iterative process stops. Otherwise, we set k := k +  and go on
to (.) to evaluate the next iterate (xk+, yk+).

Furthermore, if U = PC and T = PQ, then we obtain the following simultaneous iterative
algorithm for solving SFP (.).

Algorithm .

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
uk = xk – γkA∗(Axk – yk),
xk+ = akxk + ( – ak)PC(uk),
vk = yk + γk(Axk – yk),
yk+ = akyk + ( – ak)PQ(vk),

(.)

where the stepsize γk is chosen by (.). If Axk = yk , then (xk , yk) = (xk+, yk+) is a solution
of the problem (.) and the iterative process stops. Otherwise, we set k := k +  and go on
to (.) to evaluate the next iterate (xk+, yk+).

4.2 Variational problems via resolvent mappings
Given a maximal monotone operator M : H → H , it is well known that its associated
resolvent mapping, JMμ = (I + μM)–, is quasi-nonexpansive and  ∈ M(x) ⇔ x = JMμ (x),
which implies that zeroes ofM are exactly fixed points of its resolventmapping. IfUk = JMμ

http://www.fixedpointtheoryandapplications.com/content/2015/1/1
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and Tk = JNv , where N : H → H is another maximal monotone operator, the problem
under consideration is nothing but

find x∗ ∈M–(), y∗ ∈ N–() such that Ax∗ = By∗, (.)

and the algorithm is applied to the following form.

Algorithm .

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
uk = xk – γkA∗(Axk – Byk),
xk+ = akxk + ( – ak)JMμ uk ,
vk = yk + βkB∗(Axk – Byk),
yk+ = akyk + ( – ak)JNv vk ,

(.)

where the stepsize γk is chosen by (.). If Axk – Byk = , then (xk , yk) = (xk+, yk+) is a
solution of the problem (.) and the iterative process stops. Otherwise, we set k := k + 
and go on to (.) to evaluate the next iterate (xk+, yk+).
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